

Victor Aladjev, Vjacheslav Vaganov

Extension of Mathematica
system functionality

TRG – 2015

 Extension of Mathematica system functionality:

 Victor Aladjev, Vjacheslav Vaganov.– Tallinn: TRG, 563 p., 2015

Systems of computer mathematics find more and more broad application in
a number of natural, economical and social fields. These systems are rather
important tools for scientists, teachers, researchers and engineers, very well
combining symbolical methods with advanced computing methods. One of
leaders among means of this class undoubtedly is the Mathematica system.
The book focuses on one important aspect – modular programming supported
by Mathematica. The given aspect is of particular importance not only for
appendices but also above all it is quite important in the creation of the user
means that expand the most frequently used standard means of the system
and/or eliminate its shortcomings, or complement the new facilities.

Software tools presented in the book contain a number of rather useful and
effective methods of procedural and functional programming in Mathematica
system that extend the system software and allow sometimes much more
efficiently and easily to program the objects for various purposes first of all
wearing system character. The above software tools rather essentially dilate
the Mathematica functionality and can be useful enough for programming
of many applications above all of system character. Furthermore, the book
is provided with freeware package AVZ_Package containing more than 680
procedures, functions, global variables and other program objects.

The present book is oriented on a wide enough range of users of systems of
the computer mathematics, teachers and students of universities at courses
of computer science, mathematics and other natural–science disciplines.

In the course of preparation of the present book the license releases 8 ÷ 10 of
the Mathematica system provided by Wolfram Research Inc. have been used.

© Victor Aladjev, Vjacheslav Vaganov. All rights reserved.

 ISBN 978–9985–9508–8–3

Extension of Mathematica system functionality

 3

Contents

Preface 5
Chapter 1. Additional means in interactive mode of the Mathematica 13

Chapter 2. Additional tools of processing of expressions in the
Mathematica software 26

Chapter 3. Additional means of processing of symbols and string
structures in the Mathematica system 58

Chapter 4. Additional means of processing of sequences and lists in the
Mathematica software 81

Chapter 5. The additional means expanding the standard Mathematica
functions, or its software as a whole 101

5.1. The control branching structures and cyclic structures in the
Mathematica system 123

5.2. The cyclic control structures of the Mathematica system 127

Chapter 6. Problems of procedural programming in the Mathematica
software 130

6.1. Definition of procedures in the Mathematica software 130

6.2. Definition of the user functions and pure functions in software of
the Mathematica system 146

6.3. Means of testing of procedures and functions in the Mathematica
software 154

6.4. Headings of procedures and functions in the Mathematica system 182

6.5. Formal arguments of procedures and functions; the means of
processing them in the Mathematica software 207

6.6. Local variables of modules and blocks; the means of manipulation
by them in the Mathematica software 235

6.7. Global variables of modules and blocks; the means of
manipulation by them in the Mathematica software 259

6.8. Attributes, options and values by default for the arguments
of the user blocks, functions and modules; additional means
of processing of them in the Mathematica system 275

V.Z. Aladjev, V.A. Vaganov

 4

6.9. Some additional facilities for operating with blocks, functions and
modules in the Mathematica software 292

Chapter 7. Means of input–output of the Mathematica 354

7.1. Means of the Mathematica for work with internal files 354

7.2. Means of the Mathematica system for work with external files 369

7.3. Means of the Mathematica system for processing of attributes
of directories and datafiles 385

7.4. Additional means of processing of datafiles and directories 396

7.5. Certain special means of processing of datafiles and directories 420

Chapter 8. The manipulations organization with the user packages
in the Mathematica software 431

8.1. Concept of the context, and its use in the software of the
Mathematica system 432

8.1.1. Interconnection of contexts and packages in the software of
the Mathematica system 437

8.2. Definition of the user packages, and their usage in the
Mathematica software 440

8.3. Additional means of operating with packages in the Mathematica 473

8.4. The organization of the user software in the Mathematica system 534

8.5. A package for the Mathematica system 550

References 553

Monographs, textbooks and books on computer science,
theory of general statistics, cellular automata theory and
computer mathematics systems, prepared and published by
members of the Baltic Branch during 1995 – 2015 558

About the Authors 563

Mathematica 2, 5 ÷ 10 – trademarks of Wolfram Research Inc.

Extension of Mathematica system functionality

 5

Preface

Systems of computer mathematics (SCM) find more and more wide application
in a number of natural, economical and social sciences such as: informatics,
chemistry, mathematics, physics, technologies, education, economics, sociology, etc.
Such systems as Mathematica, Maple, REDUCE, MuPAD, Derive, Magma,
Axiom, Maxima, GAP, MathPiper and others are more and more demanded
for learning of the mathematically oriented disciplines, in various scientific
researches and technologies. These systems are the main tools for teachers,
scientists, researchers, and engineers. Researches on the basis of technology
SCM, as a rule, well combine algebraic methods with advanced computing
methods. In this sense of SCM – interdisciplinary area between informatics
and mathematics in which researches are concentrated on development of
algorithms for algebraical (symbolical) and numerical calculations and data
processing, and on creation of programming languages along with program
environment for realization of this kind of algorithms and tasks of different
purpose which are based on them.

Solution of applied user problems in one or the other field of appendices is
supported by packages of applied programs (PAP or simply packages) of special,
highly specialized or general purpose. Classification and characteristic of
such class of software can be found in our previous books [3–5]. Naturally,
the qualified user well owning one of effective programming languages (for
example, Basic, C, Fortran, PL/1, Pascal, Lisp, Prolog, etc.) in a number of cases
for the solution of own tasks can independently write and debug a separate
program or a complex of programs allowing to realize algorithm of its tasks
on a personal computer. In some cases such approach can be more effective,
than use for these purposes of ready software since the software developer
at the same time well owns specifics of the solved task and conditions of its
operation. However, such approach demands as a rule of serious costs and
at present abundance of various type and purpose of means for a personal
computer becomes considerably inexpedient. At the same time, developed
PAP are supplied with own builtin programming language of one or other
level of complexity allowing to program the whole tasks or their separate
fragments which may be in the environment of a package are inefficiently,
inexpedient, and in some cases and is impossible to realize by the standard

V.Z. Aladjev, V.A. Vaganov

 6

means of a package.

This book is devoted to the class of software called by systems of computer
mathematics which, first of all, are intended for the solution of problems of
mathematical character, and, first of all, to leaders in this class to systems
Mathematica and Maple. Moreover, only the indirect attention concerning
comparison of systems on certain separate moments is paid to the second
system whereas quite developed their comparative analysis can be found in
our books [28-30]. At that, much attention was paid both on experience with
described means, and features of their usage, and also recommendations for
the user following from them. As far as possible, the most effective technique
of application of these means for the solution of those or other applied user
tasks have been offered. Moreover, in book [33] we presented an excursus
in history of computer algebra systems that represents a certain interest for
the user of this class of software. Rather detailed characteristic of this series
of books can be found, in particular, in [30-33] and in the present book isn't
considered. Our operating experience with systems of computer algebra, first
of all, Mathematica and Maple allowed not only to carry out a comparative
analysis of these means, to reveal deficiencies inherent to them, and also to
create a number of the means expanding their functionality and eliminating
their some defects. All these questions including questions of terminological
character with various extent of detailing have been considered in a series of
our books and papers [1-48].

The Mathematica system along with the above–mentioned Maple system is
one of the most known and popular SCM, it contains a rather large number
of functions for providing as symbolical transformations, and for numerical
calculations. The Mathematica system for today is multipurpose means that
includes a large number of opportunities for the solution of quite wide range
of problems. Naturally, for these means can`t be given a rather full analysis
within the framework of the given book. Furthermore, the target of the book
consists in other – in the book the attention is focused only on one aspect of
system – opportunities of her program environment for solution of special
problems of mass and system character.

This aspect has the special importance not only for solution of applied tasks
but above all it is quite important at creation of the software expanding often
used system means and/or eliminating their defects, or supplementing the

Extension of Mathematica system functionality

 7

system with new means. In this context possibilities of built–in language of
the system on creation of such kind of procedures or functions are of special
interest. So, programming in the system is a multifaceted subject and in it we
focus attention only on questions of realization of procedures/functions that
represent main program objects both for the most often used means of the
user, and for the means expanding and improving standard system means
in the system software, i.e. realized by means of the built–in language of the
system (Math-language). In this context it is also possible to estimate in quite
full measure the Mathematica system software, without regarding to some
subjective moments, first of all, the user preferences and habits. Naturally,
these moments play a rather essential part for the user which has a certain
experience of work with program languages of procedural type whereas for
a beginner they stand not so sharply because of lack of such experience. So,
considering orientation of the given book, for conscious acquaintance with
its contents the knowledge of Math-language at the level above the initial is
supposed, for example, within the works [29-33,51,52,55,57,60,62,64,66,71].
Since the 10th version Math–language is called as Wolfram Language what,
in our opinion, is result of certain painful ambitions similar to those that are
associated with book "A New Kind of Science" along with a fair share of self–
advertisement of allegedly new means.

The given book affects a rather extensive material on Mathematica software
in the context of its opportunities in procedural and functional programming.
Meanwhile, main purpose of this book laid aside the questions which are of
interest, first of all, to readers who are in own activity at the first stages of an
mastering of the Mathematica system. For beginners it is recommended to
address oneself to the corresponding editions whose list is rather extensive,
above all, the English-language. The Mathematica system is considered and
in Russian–language literature, however English–language editions, in our
opinion, are represented to us more preferable. In general, it is possible to
familiarize oneself with literature on the website www.wolfram.com/books,
quite useful sources can be found in the represented references, including a
rather useful references in the Internet.

Thus, the given book represents a certain set of the selected system problems
whose purpose not only to expand or make more effective the Mathematica
system, but also to give certain help to those users of the Mathematica who

V.Z. Aladjev, V.A. Vaganov

 8

would like to move from the user's level to a level of the programmer or to
those who when using Mathematica already faced some its restrictions and
want to improve its program environment. At that, the skilled Mathematica
programmers probably will also be able to find for themselves in our book a
rather useful information and of applied character, and to reflection.

Therefore illumination only of some questions essence without their rather
detailed discussion, certain nuances and consideration of adjacent questions
that are often interesting and important per se often takes place. Moreover,
the system means presented in the book can be used as rather useful means
at developing own applications in the environment of Mathematica. In our
opinion, an analysis of the source codes of the means presented in this book
which use both effective, and nonstandard methods of programming along
with quite certain practical interest will allow to master the environment of
Mathematica system more deeply. For convenience of their use in the given
quality the reader has possibility of free download of AVZ_Package package
for Mathematica system of versions 8 ÷ 10 which contains these means [48].

The means considered throughout the present book answer fully the main
goal of the offered book which can be characterized by the following 2 main
directions, namely:

(1) representation of a number of useful enough means of system character
that expand and supplement standard means of the Mathematica system;
(2) illustration on their example of receptions and methods, enough useful
in procedural and functional programming, along with a number of essential
enough features of this paradigm of programming in the conditions of the
program environment of the Mathematica system.

Here is quite appropriate to note a quite natural mechanism of formation of
own software means of the user working in some program environment. In
course of programming of one or other means, or the whole project a certain
situation is quite real when is rather expedient to program some additional
tools that are absent among standard means, either they are more effective,
or they are more convenient than standard means. In many important cases
the applicability of these means can have mass enough character, allowing
to form program toolkit of quite wide range of applicability.

Exactly in many respects thanks to the described mechanism we have created

Extension of Mathematica system functionality

 9

quite famous library UserLib for Maple along with package AVZ_Package
for Mathematica which contain more than 850 and 680 means respectively
[47,48]. All above-mentioned means are supplied with FreeWare license and
have open program code. Such approach to programming of many projects
both in Mathematica, and in Maple also substantially promoted emergence
of a number of system means from above–mentioned library and package,
when development of software for simplification of its realization revealed
expediency of definition of the new accompanying tools of system character
that are rather frequently used both in applied and in system programming.

So, openness of the AVZ_Package package code allows both to modify the
means containing in it, and to program on their basis own means, or to use
their components in various appendices. In our opinion, tasks and means of
their realization in Mathematica which are presented in the above package
can be rather useful at deeper mastering of system and in a number of cases
will allow to simplify rather significantly programming of appendices in it,
first of all, the system problems. At that, the methodological considerations
represented in our previous books [29-33] fully remain in force and relative
to the present book.

Means of AVZ_Package package have different complexity of organization
and used algorithms; in certain cases, they use effective and nonstandard
receptions of programming in Mathematica. The given means can be used
as individually (for the decision of various problems or for creation on their basis
of new means), and in structure of AVZ_Package package extending standard
tools of the Mathematica, eliminating a number of its defects and mistakes,
raising its compatibility relatively to its releases and raising effectiveness of
programming of problems in Mathematica. A tool represented in the book
is supplied with description and explanations, contains the source code and
the more typical examples of its application. As required, a description has
supplied by necessary considerations, concerning peculiarities of program
execution in the Mathematica environment.

The given book considers certain principal questions of procedure–functional
programming in Mathematica, not only for the decision of various applied
problems, but, first of all, for creation of the software expanding frequently
used facilities of the system and/or eliminating their defects or expanding
the system with new facilities. The software presented in this book contains

V.Z. Aladjev, V.A. Vaganov

 10

a series of useful and effective receptions of programming in Mathematica
system, and extends its software which enables more simply and effectively
to programme in the system Mathematica the problems of various purpose.

The represented monograph, is mostly for people who want the more deep
understanding in the Mathematica programming, and particularly those
Mathematica users who would like to make a transition from the user to a
programmer, or perhaps those who already have certain limited experience
in Mathematica programming but want to improve their possibilities in the
system. Whereas the expert Mathematica programmers will also probably
find an useful enough information for yourself.

At that, it should be noted that the source codes of means given in this book
contain calls of non–standard tools that didn't find reflection in the present
book in a number of cases, but are presented in our package[48]. Therefore,
their detailed analysis requires acquaintance with these tools, at least, at the
level of usages on them. Meanwhile, the main algorithm of many means of
the presented book is rather well looked through and without acquaintance
with similar means while real use of these means perhaps only after loading
of this package into the current session. Along with the illustrative purposes
the means represented in this monograph quite can be used and as enough
useful means extending the program Mathematica environment that rather
significantly facilitate programming of a wide range of the problems first of
all having the system character. Our experience of conducting of the master
classes of various level in systems and Mathematica, and Maple confirms
expediency of application in common with standard means of both systems
and some user tools created in the course of programming of appendices.

Tools represented in the book increase the range and efficiency of usage of
Mathematica on Windows platform owing to the innovations in three basic
directions, namely: (1) elimination of a series of basic defects and shortcomings,
(2) extending of capabilities of a series of standard tools, and (3) replenishment of
the system by new means which increase capabilities of its program environment,
including the means which improve the level of compatibility of releases 7 – 10. At
last, with organization of the user software and programming of large-scale
systems in Mathematica software along with our standpoint on a question:
Mathematica or Maple? the interested reader can familiarize in [29–33].

At last, a number of means represented in the above books is intended for a

Extension of Mathematica system functionality

 11

extension of standard means of the systems Mathematica and Maple along
with elimination of their shortcomings and mistakes. These means not only
more accurately accent distinctions of both systems, but also their problems
of common character. And in this relation they allow to look from different
points of view on these or other both advantages, and shortcomings of both
systems. In the present book we present a number of means of similar type
concerning the Mathematica system. At that, it should be noted that a mass
optimization of procedures have not been performed, procedures in many
cases have been written, as they say on 'sheet'; on the other hand, numerous

procedures have been optimized using both the standard means and newly
created tools of system character. In this context here there is a magnificent
experimental field for increasing of professionalism of the user at operating
with the Mathematica software.

Inclusion of source codes of the procedures and functions presented in this
book with their short characteristic directly in the book text allows to work
with them without computer, considering a habit of considerable number
of the users of the senior generation to operate with program listings before
exit to the computer what in a series of cases promoted better programming
in due time at programming in batch mode. In our opinion, skill to operate
with program listings is a rather important component of the programmer
culture, allowing better to feel the used program environment. In a certain
measure it is similar to possession of the musician by the sheet music.

Moreover, many listings of the represented means have a rather small size,
allowing to analyze them outside of the Mathematica environment in the
assumption that the reader is sufficiently familiar with its software. Now, at
mass existence of personal computers of various type the mentioned visual
analysis of the program listings was replaced with the mode of interactive
programming, however it's not the same, and in the first case the process of
programming seems to us more better and efficient. Meanwhile, even tools
with small source code often are useful enough at programming of various
applications, in particular, of system character. Whereas others demand for
the understanding of serious enough elaboration, including acquaintance
with our package AVZ_Package [48].

As shows our experience, the programming in the above mode slightly more
slowly, than directly on the computer, however it allows to concentrate our

V.Z. Aladjev, V.A. Vaganov

 12

better on an object of programming and it is better to think over a problem
and a way of its decision, rather, than method of its decision in the so-called
interactive mode. Even in the presence of the personal computer (PC) we got
used the basic skeleton of a program to write on paper and only then to pass
to debugging onto the personal computer in the interactive mode. So, in our
opinion, such approach allows to write programs more thoughtfully; at that,
following the old habit to write optimal enough codes for their subsequent
performance on quite limited computing resources of the computers 20–30
years ago. However, in many respects this is matter of habit, however you
shouldn't forget that the old isn't always worse than new one and, getting
new opportunities, we, often, lose the old skills important for work. Here
and in this case, having received very convenient means of communication,
we, sometimes, lose sight of efficiency of a program code, creating it without
especial difficulties in the interactive mode with the only purpose to receive
the demanded result, often, ignoring quality.

Of course, there is no only best way of creation of еру programs. Different
technologies and paradigms are required for the programming of different
problems and their levels of complexity. So, in the elementary cases is quite
enough of the knowing of elements of structural writing of programs. While
for creation of complex program projects is required not only to be fluent in
a programming language in rather full volume, but also to have notion of the
principles of elaboration and debugging of programs, opportunities of both
standard and other libraries of one or the other software, etc.

As a rule, than the problem is more complex, the more time is required for
mastering of the tools necessary for its decision. In this context the software
(procedures/functions/global variables) which is presented in the present book
contain a number of rather useful and effective methods of programming in
the Mathematica environment and extends its program environment, they
give opportunity more simply and effective to program different problems.
These means in the process of application of the AVZ_Package package are
updated, taking into account both the new means, and the optimization of
already existing means. In many problems of different purpose the package
AVZ_Package showed itself as a rather effective toolkit. The package on the
freeware conditions is attached to the present book [48].

Extension of Mathematica system functionality

 13

Chapter 1. Additional means in interactive mode of the
Mathematica system

Further we will distinguish two main operating modes with Mathematica –
interactive and program. Under the first mode step-by-step performance with
a Mathematica document, i.e. from an input In[n] up to output Out[n] will
be understood while under the program mode the operating within a block or
a module is understood. In the present chapter some additional means rather
useful at work with Mathematica in interactive mode are considered.

In the course of operating in interactive mode in many cases there is a need of
use of earlier calculated expressions in the previous In-paragraphs. For this
purpose the %k-operator {%, %%, %% ... %% (k times)} serves which defines
return of the last, penultimate and k-th previous result of calculations in the
current session. In addition, it should be noted that %–operators in systems
Mathematica and Maple are conceptually various. Though, having various
real areas of applicability in Mathematica and Maple, at the same time %–
operators possess both the shortcomings, and essential advantages [28-33].
The Mathematica supports 2 rather useful predetermined global variables:
$Line – defines number of the last In-paragraph of the current session;
$HistoryLength – defines number of the previous paragraphs In and Out kept in
the current session.

Moreover, these variables allow redefinitions by simple assignment of new
values. For $HistoryLength variable value by default is the infinity (∞); but
using smaller installations for the variable, it is possible significantly to save
the size of RAM required for Mathematica system. In turn, global variable
$Line1 unlike the standard global variable $Line determines total number
of Out-paragraphs of the current session, including results of calculation of
the user packages loaded into the session from files of formats {"cdf", "nb"}.

In[500]:= $Line1 := Block[{a = "", c = "Out[", k = 1}, For[k, k < Infinity, k++,
 a = ToString[Out[k]]; If[a == c <> ToString[k] <> "]", Return[k]]]; k]
In[501]:= $Line1
Out[501]= 2014
In[502]:= $Line
Out[502]= 502

V.Z. Aladjev, V.A. Vaganov

 14

The above fragment represents source code and examples of application. So,
after loading of the user package the values of variables $Line1 and $Line
can differ rather significantly: the first defines total number of the kept Out–
paragraphs, while the second – number of really received Out–paragraphs in
the current session of the Mathematica.

In a whole series of cases of work with large documents there is expediency
of deleting from the current session of earlier used Out-paragraphs with the
results unnecessary in the future. This operation is provided by the simple
ClearOut procedure, whose call ClearOut[x] returns nothing and at the same
time deletes Out-paragraphs with numbers determined by a whole positive
number or their list x. The following fragment represents source code of the
procedure with a typical example of its application. This procedure in some
cases also provides allocation of additional memory in work area of system
which in case of large documents is quite significant.

In[2520]:= ClearOut[x_ /; PosIntQ[x] || PosIntListQ[x]] :=
 Module[{a = Flatten[{x}], k = 1}, Unprotect[Out];
 For[k, k <= Length[a], k++, Out[a[[k]]] =.]; Protect[Out];]

In[2521]:= {Out[1508], Out[1510], Out[1511], Out[1515]}
Out[2521]= {42, 78, 2014, 480}
In[2522]:= ClearOut[{1508, 1510, 1511, 1515}]
In[2523]:= {Out[1508], Out[1510], Out[1511], Out[1515]}
Out[2523]= {%1508, %1510, %1511, %1515}

At that, call of used function PosIntQ[x] or PosIntListQ[x] returns True if x –
a positive number or a list positive numbers accordingly; otherwise, False is
returned. These functions are located in our package AVZ_Package [48]; at
that, many means represented below also use means of this package.

On the other hand, in certain cases of work in the interactive mode a need of
replacement of Out-paragraphs onto other contents arises that rather simple
ReplaceOut procedure implements, whose successful call ReplaceOut[x, y]
returns nothing, at the same time carrying out replacement of contents of the
existing Out–paragraphs which are determined by a whole positive or their
list x, by new expressions defined by a y–argument. The call assumes parity
of factual arguments of x and y; otherwise, call ReplaceOut[x, y] is returned
unevaluated. The following fragment represents source code of ReplaceOut

Extension of Mathematica system functionality

 15

procedure with typical examples of its usage.

In[2025]:= AgnAvzVsv = 80
Out[2025]= 80

In[2026]:= ReplaceOut[x_ /; PosIntQ[x] || PosIntListQ[x], y___] :=
 Module[{a = Flatten[{x}], b = Flatten[{y}], k = 1}, If[b != {},
 If[Length[a] != Length[b], Defer[ReplaceOut[x, y]], Unprotect[Out];
 For[k, k <= Length[a], k++, Out[a[[k]]] = b[[k]]]; Protect[Out]]; ,
 ClearOut[x]]]
In[2027]:= ReplaceOut[2025, 480]
In[2028]:= Out[2025]
Out[2028]= 480
In[2029]:= ReplaceOut[2025]
In[2030]:= Out[2025]
Out[2030]= %2025

Moreover, the call ReplaceOut[x] deletes contents of Out–paragraphs that
are defined by argument x, generalizing the previous ClearOut procedure.

Definition of variables in Mathematica. Like the majority of programming
languages in Mathematica system for expressions the names (identifiers) are
used, giving possibility in the future to address to such named expressions
on their names. So, on the operator "=" the immediate assignment to one or
several names of the demanded expression is made whereas on the operator
"x:=" – the postponed assignment. Distinction of both types of assignment is
supposed well known to the reader. For definition of assignment type that
has been applied to a name a simple enough procedure DefOp can be used
whose call DefOp[x] returns the type in string format of assignment applied
to the name x coded also in string format, namely: (1) "Undefined" – a name
x isn't defined, (2) "=" – the immediate assignment has been applied to a name
x, (3) ":=" – the postponed assignment has been applied to a name x.

In[2040]:= DefOp[x_ /; StringQ[x] && SymbolQ[x] ||
 SymbolQ[ToExpression[x]], y___] :=
 Module[{a = ToString[Definition[x]], b = {y}, c, d}, If[a == "Null",
 Return["Undefined"],
 c[h_] := StringTake[a, {Flatten[StringPosition[a, h]][[2]] + 1, –1}]];
 If[SuffPref[a, x <> " = ", 1], d = "=", d = ":="];

V.Z. Aladjev, V.A. Vaganov

 16

 If[b != {} && ! HowAct[y], y = c[d]]; d]

In[2041]:= v = 78; g = 66; s := 46; Kr = 18; Art := 25; Res := a + b + c;
In[2042]:= Map[DefOp, {"v", "g", "s", "Kr", "Art", "Res", "Avz"}]
Out[2042]= {"=", "=", ":=", "=", ":=", ":=", "Undefined"}
In[2043]:= Clear[y]; {DefOp["Art", y], y}
Out[2043]= {":=", "25"}
In[2044]:= Clear[y]; {DefOp["Res", y], y}
Out[2044]= {":=", "a + b + c"}
In[2945]:= Map[DefOpt, {"Kr", "Res"}]
Out[2045]= {"Kr = 18", "Res := a + b + c"}

While call DefOp[x, y] through optional second argument y – an undefined
variable – returns an expression appropriated to a name x. The value which
has been assigned to a variable x remains associated with it until its removal
on "x = . ", or on the functions Clear, ClearAll, Remove, or its redefinition.
The fragment above represents source code of the procedure with examples.

For evaluation of assignments the Math–language has Definition function
whose call Definition[x] returns all definitions ascribed to a name x along
with our DefOpt procedure (see fragment above) which is considered in the
present book below. Along with this procedure also other means of return
of definitions are considered.

In a number of cases arises a necessity of cleaning of variables of the current
session from the values received as a result of dynamic generation. For this
purpose it is possible to use the mechanism consisting in accumulation in a
list of values of variables which should be removed from the current session
subsequently, or be cleared from the values and attributes. For this purpose
can be used a function whose call ClearValues[w] returns the empty list, at
the same time deleting all variables having values from the list w from the
current session; whereas the call ClearValues[w, y] with the second optional
argument y – any expression – returns the empty list, however such variables
are only cleared of values and attributes without removal from the current
session. The following fragment represents source code of the ClearValues
function along with typical examples of its usage.

In[2070]:= ClearValues[x_ /; ListQ[x], y___] := Select[Map[If[{y} == {},
 Remove, ClearAll], Select[Names["`*"],

Extension of Mathematica system functionality

 17

 MemberQ[x, ToExpression[#]] &]], # != "Null" &]

In[2071]:= {a = 42, b = 80, c := 75, d = 480, h5 := 67, Kr = 18, Art = x + Sin[y]}
Out[2071]= {42, 78, Null, 460, Null, 17, 78 + Sin[2013]}
In[2072]:= ClearValues[{42, 78, 75, 480, 67, 18, x + Sin[y]}]
Out[2072]= {}
In[2073]:= Names["`*"]
Out[2073]= {"ClearValues", "Avz", "g", "Res", "s"}
In[2075]:= {a = 42, b = 78, c := 75, d = 460, h5 := 66, Kr = 17, Art = x + Sin[y]}
Out[2075]= {42, 75, Null, 450, Null, 16, x + Sin[y]}
In[2076]:= ClearValues[{42, 78, 75, 460, 66, 17, x + Sin[y]}, 78]
Out[2076]= {}
In[2077]:= Names["`*"]
Out[2077]= {"a", "Art", "b", "c", "ClearValues", "d", "h5", "Kr"}

In[2210]:= VarsValues[x_ /; ListQ[x]] := Select[Names["`*"],
 MemberQ[x, ToExpression[#]] &]
In[2211]:= {a = 42, b = 78, c := 75, d = 480, h5 := 67, Kr = 18, Art = x + Sin[y]}:
In[2212]:= VarsValues[{42, 78, 75, 480, 67, 18, x + Sin[y]}]
Out[2212]= {"a", "Art", "b", "c", "d", "h5", "Kr"}

In the second part of the fragment the VarsValues function is represented,
whose call VarsValues[x] returns the list of variables in string format which
have values from a list x. Both functions represent a certain interest during
the work in interactive mode of the current session. The recommendations
about use of these functions can be found in our book [33].

In some cases on the basis of a certain value is required to determine names
to which in the current session this value was ascribed. The given problem
is solved by the procedure whose call Nvalue[x] returns the list of names in
string format with a preset value x. At that, the procedure gives only those
global variables whose values have been received in the current session in
In-paragraphs. In the absence of such names the procedure call returns the
empty list, i.e. {}. The following fragment presents source code and example
of usage of the Nvalue procedure.

In[2725]:= Nvalue[x_] := Module[{a = {}, b = Names["`*"], k = 1},
 For[k, k <= Length[b], k++, If[ToExpression[b[[k]]] == x,
 AppendTo[a, b[[k]]], Next[]]]; Select[a, ! SuffPref[#, "Global`", 1] &]

V.Z. Aladjev, V.A. Vaganov

 18

In[2726]:= {Ag, Av, Art, Kr, V, $Ar, Vs, $Kr, G} = {72, 67, 18, 25, 78, 480, Null,
 2014, a*b}; Map[Nvalue, {72, 67, 18, 25, 78, 480, Null, 2014, a*b}]
Out[2726]= {{"Ag"}, {"Av"}, {"Art"}, {"Kr"}, {"V"}, {"$Ar"}, {"Vs"}, {"$Kr"}, {"G"}}

The Nvalue1 procedure is an extension of functionality of the above Nvalue
procedure. The call Nvalue1[x] returns the list of names of variables in the
string format to which in the current session a value x has been ascribed. In
the next fragment the source code of Nvalue1 with examples are presented.

In[4334]:= Nvalue1[x_] := Module[{a = {}, b = Select[Names["*"],
 StringFreeQ[#, "$"] &], c, k = 1}, While[k <= Length[b],
 c = ToExpression["Attributes[" <> ToString1[b[[k]]] <> "]"];
 If[! MemberQ[c, Protected], AppendTo[a, b[[k]]], Null]; k++];
 Select[a, ToExpression[#] === x &]]

In[4335]:= {x, y, z, t, h, g, w, s} = {45, 78, 25, 18, 18, 18, 18, 18}; Nvalue1[18]
Out[4335]= {"Art", "g", "h", "s", "t", "u", "w"}

Meanwhile, the Nvalue1 has not quite satisfactory time characteristics as its
algorithm is based on the analysis of all active objects of both the user ones,
and the system ones.

For definition of the values ascribed to variables, the procedure WhatValue
is quite useful whose call WhatValue[x] returns value ascribed to a variable
x; on an undefined variable x the list of format {"Undefined", x} is returned
while on a system variable x the list of format {"System", x}, and on a local
variable x the list of format {"Local", x}, is returned. The following fragment
represents source code of the WhatValue along with examples of its usage.

In[2844]:= WhatValue[x_] := If[SystemQ[x], {"System", x},
 If[! SameQ[Definition2[ToString[x]][[1]], ToString[x]],
 {"Local", x}, {"Undefined", x}]]

In[2845]:= Ag[x_]:= Module[{}, x^2]; Sv[x_]:= Block[{a}, a+x]; F[x_, y_]:= x*y
In[2846]:= Map[WhatValue, {480 + 78*# &, hg, Sin, Ag, Sv, 78, a*b, F, Gs}]
Out[2846]= {{"Undefined", 480 + 78 #1 &}, {"Undefined", hg}, {"System", Sin},
 {"Local", Ag}, {"Local", Sv}, {"Undefined", 78}, {"Undefined", a*b},
 {"Local", F}, {"Undefined", Gs}}
In[2847]:= M = Module[{avz}, avz]; WhatValue[M]
Out[2847]= {"Local", avz$50551}

Extension of Mathematica system functionality

 19

The call Clear[x1, …, xn] of the standard function clears symbols {x1, …, xn},
excepting symbols with Protected-attribute. As a useful generalization of the
functions Clear and ClearAll the procedure Clear1 can be considered whose
call Clear1[h, "x1", …, "xn"] returns Null, i.e. nothing, clearing at condition
h=1 the symbols {x1, x2, …, xn} with saving of all their attributes and options
while at h = 2, clearing symbols {x1, x2, …, xn} as from expressions ascribed
to them, and from all attributes and options. The fragment below represents
source code of Clear1 along with examples of its usage.

In[2958]:= Clear1[x_ /; MemberQ[{1, 2}, x], y___] := Module[{a = {y}, b, c, d,
 k = 1}, If[y === {}, Null, For[k, k <= Length[a], k++, b = a[[k]];
 d = Quiet[ToExpression["Attributes[" <> ToString1[b] <> "]"]];
 ToExpression["Quiet[ClearAttributes[" <> ToString1[b] <> ", " <>
 ToString[d] <> "]" <> "; Clear" <> If[x == 1, "", "All"] <> "[" <>
 ToString1[b] <> "]]"]]; If[x == 2, Null, Quiet[Check[ToExpression[
 "SetAttributes[" <> ToString1[b] <> ", " <> ToString[d] <> "]"],
 $Failed]]]]]
In[2959]:= S[x_] := x^2; SetAttributes[S, {Listable, Protected}]; Clear["S"];
 Clear::wrsym: Symbol S is Protected. >>
In[2960]:= Clear1[1, S]
In[2961]:= Definition[S]
Out[2961]= Attributes[S] = {Listable, Protected}
In[2962]:= Clear1[2, S]
In[2963]:= Definition[S]
Out[2963]= Null

As a rather simple and useful tool the UnDef procedure serves, whose call
UnDef[x] returns True if a symbol x isn't defined, and False otherwise. While
call UnDef[x, y] with the second optional argument – an undefined variable –
returns Head1[x] value through y, where Head1 is an useful generalization
of standard function Head considered below. At that, in a number of cases
of procedural programming the UnDef appears as a quite useful tool also.
The fragment represents source code of UnDef with examples of its usage.

In[2490]:= UnDef[x_, y___] := Module[{a = {y}, b = Quiet[Check[Head1[x],
 True]]}, If[a != {} && ! HowAct[y], y = b];
 If[b === "SetDelayed || TagSetDelayed", True, False]]

V.Z. Aladjev, V.A. Vaganov

 20

In[2491]:= x = 78; y = {a, b}; z = a + b; Map[UnDef, {t, h, x, y, z, 760}]
Out[2491]= {True, True, False, False, False, False}
In[2492]:= A[x_ /; UnDef[x]] := Block[{a}, a = 480; a]; y := 2014; {A[y], A[78]}
Out[2492]= {A[2014], A[78]}
In[2493]:= L = {a, b, c, d, h, g, p, v, w}; Select[L, UnDef[#] &]
Out[2493]= {a, b, c, d, p, v, w}
In[2494]:= M[x_] := x; {UnDef[M, t], t}
Out[2494]= {False, "Function"}

Right there it is appropriate to note that on examples of UnDef1, UnDef2,
UnDef3 – the UnDef procedure modifications – basic distinction between
procedures of the types "Module" and "Block" is illustrated [28-33]. Therefore
the type of procedure should be chosen rather circumspectly, giving a certain
priority to procedures of Module-type. In addition, as the enclosed procedures
the procedures of Module–type are used, as a rule.

In a number of cases exists a need of definition of a context of an arbitrary
symbol. This problem is solved by a simple enough procedure, whose call
Affiliate[x] returns the context for an arbitrary symbol x given in the string
format whereas "Undefined" is returned on a symbol, completely undefinite
for the current session. At that, under "completely undefinite" is understood
as a concrete expression, and a symbol for the first time used in the current
session. The fragment below represents source code of the given procedure
and examples of its usage, including examples explaining the essence of the
concept "completely undefinite".

In[80]:= Affiliate[x_ /; StringQ[x]] := Module[{a = Quiet[Context[x]]},
 If[ToString[a] === "Context[" <> x <> "]", "Undefined",
 If[MemberQ[Contexts[], a] && ToString[Quiet[DefFunc[x]]]] ==
 "Null" || Attributes[x] === {Temporary}, "Undefined", a]]]

In[81]:= G = 67; Map[Affiliate, {"ProcQ1", "Sin", "G", "Z", "Affiliate"}]
Out[81]= {"AladjevProcedures`", "System`", "Global`", "Undefined",
 "AladjevProcedures`"}
In[82]:= {V, G = 72, 67}; Map[Affiliate, {"V", "G", "80", "Sin[18]", "Q", "Map"}]
Out[82]= {"Undefined", "Global`", "Undefined", "Undefined", "Undefined",
 "System`"}

The call WhatObj[x] of a quite simple procedure returns value depending

Extension of Mathematica system functionality

 21

on location of a x-symbol activated in the current session, namely: "System" -
a system function; "CS" – a symbol whose definition has been defined in the
current session; "Undefined" – an undefinite symbol; "Context'" – a context
defining a package loaded into the current session and containing definition
of x-symbol; if x has a type other than Symbol, the procedure call is returned
as unevaluated. The following fragment represents source code of WhatObj
procedure along with examples of its usage.

In[2139]:= WhatObj[x_ /; SymbolQ[x]] := Module[{a = Quiet[Context[x]], t},
 If[a === "System`", "System", If[a === "Global`",
 If[MemberQ[{$Failed, "Undefined"},
 PureDefinition[x]], "Undefined", "CS"], a]]]

In[2140]:= w[x_] := Block[{}, x]; Map[WhatObj, {Sin, a/b, ProcQ, t78, h6, w}]
Out[2140]= {"System", WhatObj[a/b], "AladjevProcedures`", "Undefined",
 "Undefined", "CS"}

For testing of symbols to which expressions are ascribed, 2 simple functions
HowAct and SymbolQ are defined. The first of them correctly tests the fact
of definiteness of a variable in the current session, however on local variables
of procedures the call of HowAct returns True irrespective of existence for
them of values. On the other hand, on undefinite local variables of blocks the
HowAct returns False. The call SymbolQ[x] of simple though rather useful
function returns True if x is a symbol, and False otherwise. Function is used
in a number of tools presented in the present book. The following fragment
represents source codes of both functions with examples of their usage.

In[2020]:= HowAct[x_] := If[Quiet[Check[ToString[Definition[x]], True]]
 === "Null", False, If[Quiet[ToString[Definition[x]]] ===
 "Attributes[" <> ToString[x] <> "] = {Temporary}", False, True]]

In[2021]:= SymbolQ[x_] := ! SameQ[Quiet[Check[ToExpression[
 "Attributes[" <> ToString[x] <> "]"], $Failed]], $Failed]

In[2022]:= Map[HowAct, {80, IAN, "RANS", Cos, Args, TestArgsTypes,
 Label, HowAct, a + b, Agn}]
Out[2022]= {True, False, True, True, True, True, True, True, True, False}
In[2023]:= Map[SymbolQ, {80, IAN, "RANS", Cos, Args, Label, HowAct}]
Out[2023]= {False, True, True, True, True, True, True, True}

V.Z. Aladjev, V.A. Vaganov

 22

In certain cases the SymbolQ1 function, being of a modification of function
SymbolQ can be useful, whose call SymbolQ1[x] returns True if x is a single
symbol, and False otherwise [33]. In [33] certain features of usage of HowAct
for testing of definiteness of local variables of procedures can be found.

In a number of cases exists a need of removal from the current session of a
certain active object having the appropriated value with possibility of its
subsequent restoration in the current or other session. The given problem is
solved by the function whose call ActRemObj[x, y] depending on a value
{"Act", "Rem"} of the second actual argument deletes an object given by his
name in string format from the current session or activates it in the current
or other session respectively. The fragment below represents source code of
the ActRemObj procedure along with examples of its usage.

In[647]:= ActRemObj[x_ /; StringQ[x], y_ /; MemberQ[{"Act", "Rem"}, y]] :=
 Module[{a = $HomeDirectory <> "\\" <> x <> ".$ArtKr$", b,
 c = ToString[Definition4[x]]}, If[c === "$Failed", $Failed,
 If[HowAct[x] && y == "Rem", b = OpenWrite[a]; WriteString[b, c];
 Close[b]; ClearAllAttributes[x]; Remove[x]; "Remove",
 If[! HowAct[x] && y == "Act", If[FileExistsQ[a],
 b = OpenRead[a]; Read[b]; Close[b]; DeleteFile[a]; "Activate",
 Return[Defer[ActRemObj[x, y]]]]]]]]

In[648]:= F := {72, 67, 47, 18, 25}; SetAttributes[F, Protected]; Definition[F]
Out[648]= Attributes[F] = {Protected}
 F := {72, 67, 47, 18, 25}
In[649]:= ActRemObj["F", "Rem"];
Out[649]= "Remove"
In[650]= Definition[F]
Out[650]= Null
In[651]:= ActRemObj["F", "Act"];
Out[651]= "Activate"
In[652]= Definition[F]
Out[652]= Attributes[F] = {Protected}
 F := {72, 67, 47, 18, 25}

In[653]:= A[x_] := Module[{a=480}, x+a]; A[x_, y_] := Module[{a=80}, x+y+a]
In[654]:= {A[100], A[100, 200]}

Extension of Mathematica system functionality

 23

Out[654]= {580, 380}

In[655]:= ActRemObj["A", "Rem"]; Definition[A]
Out[655]= Null

In[656]:= ActRemObj["A", "Act"]; {A[100], A[100, 200]}
Out[656]= {590, 380}

Successful removal of an object from the current session returns "Remove"
whereas its restoration in the current session returns "Activate". If a datafile
containing definition of a removed object x, wasn't found in system catalog
$HomeDirectory, the call of ActRemObj procedure is returned unevaluated;
on an inadmissible argument x the call ActRemObj[x, y] returns $Failed.

System Maple has a rather useful restart command which causes the Maple
kernel to clear its internal memory so that system Maple acts almost as if just
started. While the Mathematica system has no similar means in interactive
mode. The next procedure to a certain extent compensates for this deficiency.
The call Restart[] returns nothing, deleting from the current session all objects
defined in it. Moreover, from the given list are excluded the objects whose
definitions are in the downloaded packages. While the call Restart[x] with
optional argument x – a context or their list defining the user packages that
have been loaded in the current session – also returns nothing, additionally
deleting from the current session all objects whose definitions are contained
in the mentioned user packages. The following fragment represents source
code of the Restart procedure along with examples of its application.

In[2450]:= Restart[x___] := Module[{}, Map[{Quiet[ClearAttributes[#,
 Protected]], Quiet[Remove[#]]} &, Names["`*"]];
 If[{x} != {}, Quiet[Map[Remove[# <> "*"] &, Flatten[{x}]]]]]

In[2451]:= F := {72, 67, 47, 18, 25}; SetAttributes[F, Protected]; Sv = 47; a := 6;
 A[x_] := Module[{a = 480}, x+a]; A[x_, y_] := Module[{a = 80}, x*y*a];
In[2452]:= Restart["AladjevProcedures`"]
In[2453]:= Map[Definition, {F, A, Map13, HowAct, Sv, a, ActUcontexts}]
Out[2453]= {Null, Null, Null, Null, Null, Null, Null]}

Moreover, the system objects are not affected by the Restart. In a number of
cases the function seems a rather useful, allowing to substantially restore an
initial state of the current session and to save internal memory of system too.

V.Z. Aladjev, V.A. Vaganov

 24

Means of work with sequential structures. Sequences of expressions (simply
sequences) in the environment of many languages are formed on the basis of
the comma operator "," and form a certain base for definition of many types
of data (inquiries of procedures, lists, sets, indexes, etc.). At that, in Mathematica
system the given structure as an independent one is absent, and instead of
it the list structure protrudes; some programming languages adhere to the
same concept. In this context a number of simple enough means has been
created that ensure operating with the object Seq[x] defining a sequence of
elements x. So, the procedure call SeqToList[x] provides converting of Seq–
object x into the list, the procedure call ListToSeq[x] provides converting of
a list x into Seq–object, the procedure call SeqIns[x, y, z] returns the result of
inserting in Seq–object x of an arbitrary element y (list, Seq–object, expression,
etc.) according to the given position z (z <= 0 – before x, z >= Length[x] – after
x, differently – after a z–position in x), the procedure call SeqToString[a, b, …]
returns the list of arguments in string format, whereas the call SeqUnion[x,

y,…] returns result of merge of an arbitrary number of sequences. Means for
manipulating with Seq-objects can be rather widely expanded, providing the
user with rather useful program tools. In a certain relation these tools allow
to solve the problem of compatibility with other tools, for example, with the
Maple system [28-33].

Meanwhile, the Mathematica system provides the function Sequence[a, …]
that defines a sequence of arguments which are automatically transferred to
a block, function or module. In this context the call SequenceQ[s] provides
testing of the objects that are created on the basis of the Sequence function
returning True if a s–object is defined by this function, and False otherwise;
moreover, the name of s–object is coded in string format [33]. On the basis
of the standard Sequence function it is possible to create quite simple tools
ensuring working with sequential structures similarly to the Maple system;
these functions along with the considered ones in [28-33] are rather useful
in work with objects of type "sequence", whose structure isn't supported by
the Mathematica and for work with which system has no standard means.

The call Sequence[x1, x2, …, xn] of the standard function defines a sequence
of actual arguments xj (j=1..n), transferred to a function. Meanwhile, with
objects of type "sequence" the Mathematica system can work mediately, in
particular, on the basis of the list structures. In this regard for expansion of

Extension of Mathematica system functionality

 25

standard Sequence function onto list structures the Sequences procedure is
defined, whose call Sequences[x] provides insert in a function of arguments
x given by a sequence or a list; as a simplified variant of Sequences the Sq
function serves. The following fragment represents source codes of function
Sq along with the Sequences procedure, including their applications.

In[3495]:= Sequences[x__] := Module[{a = Flatten[{x}], b, c},
 b = "Sequence[" <> ToString[a] <> "]";
 a = Flatten[StringPosition[b, {"{", "}"}]];
 ToExpression[StringReplace[b, {StringTake[b, {a[[1]], a[[1]]}] –> "",
 StringTake[b, {a[[–1]], a[[–1]]}] –> ""}]]]

In[3496]:= {F[Sequence[{x,y,z}]], F[Sequences[{x,y,z}]], F[Sequences[x,y,z]]}
Out[3496]= {F[{x, y, z}], F[x, y, z], F[x, y, z]}

In[3497]:= Sq[x_List] := ToExpression["Sequence[" <>
 StringTake[ToString1[x], {2, –2}] <> "]"]
In[3498]:= Plus[Sq[{72, 66, 56, 47, 25, 18}]]
Out[3498]= 284
In[3499]:= G[a, b, c, Sequences[x, y, z]]
Out[3499]= G[a, b, c, x, y, z]

At work with sequential structures a rather useful is a procedure, providing
converting of strings of a special format into lists, and vice versa. The call
ListStrList[x] on a list x = {a, b, …} returns a string s of the format "ahbh …",
while x = ListStrList[s] where h = FromCharacterCode[2]. In case of absence
in a s-string of h-symbol the call ListStrList[s] returns the string s. Fragment
represents source code of the procedure along with examples its usage.

In[2604]:= ListStrList[x_ /; StringQ[x] || ListQ[x]] :=
 Module[{a = FromCharacterCode[2]},
 If[StringQ[x] && ! StringFreeQ[x, a], Map[ToExpression,
 StringSplit[x, a]], If[ListQ[x], StringTake[StringJoin[
 Mapp[StringJoin, Map[ToString1, x], a]], {1, –2}], x]]]

In[2605]:= L = ListStrList[{Avz, 72, Agn, 67, Art, 25, Kr, 18, Vsv, 47}]
Out[2605]= "Avz����72����Agn����67����Art����25����Kr����18����Vsv����47"
In[2606]:= ListStrList[ListStrList[{Avz, 72, Agn, 67, Art, 25, Kr, 18, Vsv, 47}]]
Out[2606]= {Avz, 72, Agn, 67, Art, 25, Kr, 18, Vsv, 47}

V.Z. Aladjev, V.A. Vaganov

 26

Chapter 2. Additional means of processing of
expressions in the Mathematica software

A number of useful means of processing of the expressions supplementing
standard means of Mathematica system is presented in the present chapter.
Analogously to the most software systems the Mathematica understands
everything with what it manipulates as "expression" (graphics, lists, formulas,
strings, modules, functions, numbers of various type, etc.). And although all these
expressions at first sight rather significantly differ, Mathematica represents
them in so–called full format. And only the postponed assignment ":=" has
no full format. For the purpose of definition of heading (the type defining it)
of an expression the standard Head function is used, whose call Head[expr]
returns the heading of an expression expr, for example:

In[6]:= Map[Head, {Map, Sin, 80, a+b, Function[{x}, x], G[x], S[6], x*y, x^y}]
Out[6]= {Symbol, Symbol, Integer, Plus, Function, G, S, Times, Power}

For more exact definition of headings we created an useful modification of
the standard Head function in the form of the Head1 procedure expanding
its opportunities, for example, it concerns testing of operations of postponed
calculations when on them the values SetDelayed||TagSetDelayed, blocks,
functions, modules are returned. The call Head1[x] returns the heading of
an expression x in the context {Block, Function, Module, PureFunction, System,
SetDelayed||TagSetDelayed, Symbol, Head[x]}. The fragment represents source
code of the Head1 procedure with examples of its application comparatively
with the Head function as it is illustrated by examples of the next fragment,
on which functional distinctions of both means are rather evident.

In[2160]:= Head1[x_] := Module[{a, b, c = Quiet[Check[Attributes[x], {}]]},
 If[Quiet[SystemQ[x]], OptRes[Head1, System],
 If[c != {}, ClearAllAttributes[x]];
 b = Quiet[StringSplit[ToString[Definition[x]], "\n \n"]];
 a = If[! SameQ[b, {}] && b[[–1]] == "Null", If[Head[x] == Symbol,
 Symbol, SetDelayed||TagSetDelayed], If[PureFuncQ[x], PureFunction,
 If[Quiet[Check[FunctionQ[x], False]], Function,
 If[BlockQ[x], Block, If[BlockModQ[x], Module,
 Head[x]]]]]]; {OptRes[Head1, a], Quiet[SetAttributes[x, c]]}[[1]]]]

Extension of Mathematica system functionality

 27

In[2161]:= G := S; Z[x_] := Block[{}, x]; F[x_] := x; Map[Head, {ProcQ, Sin, 6,
 a+b, # &, G, Z, Function[{x}, x], x*y, x^y, F}]
Out[2161]= {Symbol, Symbol, Integer, Plus, Function, Symbol, Symbol,
 Function, Times, Power, Symbol}
In[2162]:= Map[Head1, {ProcQ, Sin, 6, a + b, # &, G, Z, Function[{x}, x], x*y,
 x^y, F}]
Out[2162]= {Module, System, Integer, Plus, PureFunction, Symbol, Block,
 PureFunction, Times, Power, Function}

So, the Head1 procedure has a quite certain meaning for more exact (relative
to system standard) classification of expressions according to their headings.
On many expressions the calls of Head1 procedure and Head function are
identical whereas on a number their calls significantly differ. The concept of
expression is the important unifying principle in the system having identical
internal structure that allows to confine a rather small amount of the basic
operations. Meanwhile, despite identical basic structure of expressions, the
Mathematica system provides a set of various functions for work both with
an expression in general, and with its separate components.

Means of testing of correctness of expressions. Mathematica has a number
of the means providing testing of correctness of syntax of expressions among
which only two functions are available to the user, namely:
SyntaxQ["x"] – returns True, if x – a syntactic correct expression; otherwise False
is returned;
SyntaxLength ["x"] – returns the number p of symbols, since the beginning of a
string "x" that defines syntactic correct expression StringTake["x",{1,p}]; at that,
in case p > StringLength["x"] the system declares that whole string "x" is correct,
demanding continuation.

In our opinion, it isn't very conveniently in event of software processing of
expressions. Therefore extensions in the form of the SyntaxQ1 function and
SyntaxLength1 procedure whose source codes along with examples of their
application are represented below.

In[2029]:= SyntaxQ1[x_ /; StringQ[x]] := If[Quiet[ToExpression[x]] ===
 $Failed, False, True]

In[2030]:= Map[SyntaxQ1, {"(a+b/", "d[a[1]] + b[2]"}]
Out[2030]= {False, True}

V.Z. Aladjev, V.A. Vaganov

 28

In[2031]:= SyntaxLength1[x_ /; StringQ[x], y___] := Module[{a = "", b = 1,
 d, h = {}, c = StringLength[x]},
 While[b <= c, d = Quiet[ToExpression[a = a <>
 StringTake[x, {b, b}]]];
 If[! SameQ[d, $Failed], h = Append[h, StringTrim[a]]]; b++];
 h = DeleteDuplicates[h];
 If[{y} != {} && ! HowAct[{y}[[1]]], {y} = {h}];
 If[h == {}, 0, StringLength[h[[–1]]]]]

In[2437]:= {SyntaxLength1["d[a[1]] + b[2]", g], g}
Out[2437]= {14, {"d", "d[a[1]]", "d[a[1]] + b", "d[a[1]] + b[2]"}}
In[2438]:= SyntaxLength1["d[a[1]] + b[2]"]
Out[2438]= 14

The call SyntaxLength1[x] returns the maximum number p of position in a
string x such that ToExpression[StringTake [x, {1, p}]] – a syntactic correct
expression, otherwise 0 is returned; the call SyntaxLength1[x, y] through the
second optional argument y – an undefinite variable – additionally returns the
list of substrings of a string x representing correct expressions.

Means of processing of expressions at the level of their components. Means
of this group provide quite effective differentiated processing of expressions.
The combined symbolical architecture of Mathematica gives the possibility
of direct generalization of the element-oriented list operations onto arbitrary
expressions, supporting operations both on separate terms, and on sets of
terms at the given levels in trees of expressions. Without going into details
into all means supporting work with components of expressions, we will
give only the main from them that have been complemented by our means.
Whereas with more detailed description of standard means of this group,
including admissible formats of coding, it is possible to get acquainted or in
the Help, or in the corresponding literature on the Mathematica system, for
example, in works [51,52,60,66,71].

The call Variables[p] of standard function returns the list of all independent
variables of a polynomial p, while its application to an arbitrary expression
has certain limitations. Meanwhile for receiving all independent variables
of an expression x it is quite possible to use quite simple function whose call
UnDefVars[x] returns the list of all independent variables of an expression

Extension of Mathematica system functionality

 29

x. Unlike the UnDefVars function, the call UnDefVars1[x] returns the list of
all independent variables in string format of an expression x. Source codes
of both functions with examples of their application are given below in the
comparative context with Variables function. In some cases the mentioned
functions have certain preferences relative to standard Variables function.

In[2024]:= UnDefVars[x_] := Select[OP[x], Quiet[ToString[Definition[#]]]
 == "Null" &]
In[2025]:= UnDefVars[(x^2–y^2)/(Sin[x] + Cos[y]) + a*Log[x+y+z – G[h, t]]]
Out[2025]= {a, G, h, t, x, y, z}
In[2026]:= Variables[(x^2 – y^2)/(Sin[x] + Cos[y]) + a*Log[x + y + z – G[h, t]]]
Out[2026]= {a, x, y, Cos[y], Log[x + y + z – G[h, t]], Sin[x]}

In[2027]:= UnDefVars1[x_] := Select[ExtrVarsOfStr[ToString[x], 2],
 ! SystemQ[#] &]
In[2028]:= Map[UnDefVars1, {a+b, a*Sin[x]*Cos[y], {a, b}, a*F[h, g, s] + H}]
Out[2028]= {{"a", "b"}, {"a", "x", "y"}, {"a", "b"}, {"a", "F", "g", "h", "s"}}

The call Replace[x, r {, w}] of standard function returns result of application
of a rule r of the form a → b or the list of such rules for transformation of an
expression x as a whole; application of the 3rd optional argument w defines
application of rules r to parts of w–level of an expression x. Meanwhile, the
standard Replace function has a number of restrictions some from which
the procedure considerably obviates, whose call Replace1[x, r] returns the
result of application of rules r to all or selective independent variables of an
expression x. In case of detection by the procedure Replace1 of empty rules
the appropriate message is printed with the indication of the list of those
rules r which were empty, i.e. whose left parts aren't entered into the list of
independent variables of an expression x. Fragment below represents source
code of Replace1 with examples of its application; at that, comparison with
result of application of the Replace function on the same expression is given.

In[2052]:= Replace1[x_, y_ /; ListQ[y] && DeleteDuplicates[Map[Head, y]]
 == {Rule} || Head[y] == Rule] :=
 Module[{a = x//FullForm//ToString, b = UnDefVars[x], c, p, l, h = {}, r, k = 1,
 d = ToStringRule[DeleteDuplicates[Flatten[{y}]]]},
 p = Mapp[RhsLhs, d, "Lhs"];
 c = Select[p, ! MemberQ[Map[ToString, b], #] &];

V.Z. Aladjev, V.A. Vaganov

 30

 If[c != {}, Print["Rules " <> ToString[Flatten[Select[d,
 MemberQ[c, RhsLhs[#, "Lhs"]] &]]] <> " are vacuous"]];
 While[k <= Length[d], l = RhsLhs[d[[k]], "Lhs"];
 r = RhsLhs[d[[k]], "Rhs"]; h = Append[h,
 {"[" <> l –> "[" <> r, " " <> l –> " " <> r, l <> "]" –> r <> "]"}]; k++];
 Simplify[ToExpression[StringReplace[a, Flatten[h]]]]]

In[2053]:= X = (x^2 – y^2)/(Sin[x] + Cos[y]) + a*Log[x + y]; Replace[X, {x –>
 a + b, a –> 80, y –> Cos[a], z –> Log[t]}]
Out[2053]= a Log[x + y] + (x^2 – y^2)/(Cos[y] + Sin[x])
In[2054]:= Replace1[X, {x –> a+b, a –> 80, y –> Cos[a], z –> Log[t], t –> c+d}];
 Rules {z –> (Log[t]), t –> (c + d)} are vacuous
Out[2054]= 80 Log[a + b + Cos[a]] + ((a + b)^2 – Cos[a]^2)/(Cos[Cos[a]] +
 Sin[a + b])
In[2055]:= Replace1[X, {x –> a + b, a –> 80, y –> Cos[a]}]
Out[2055]= 80 Log[a + b + Cos[a]] + ((a + b)^2 – Cos[a]^2)/(Cos[Cos[a]] +
 Sin[a + b])

In certain cases at conversions of expressions by means of substitutions the
necessity of converting into string format of the left and right parts of rules
"a → b" arises. The given problem is solved by rather simple ToStringRule
procedure, whose call ToStringRule[x] returns the rule or the list of rules x,
whose left and right parts have string format; at that, its right part is taken
in parentheses. So, this procedure is used by the above–presented Replace1
procedure. The procedure ToStringRule1 is similar to ToStringRule, but
the right parts of the result is not taken into parentheses. The next fragment
represents source code of the ToStringRule with examples of its usage.

In[2723]:= ToStringRule[x_ /; ListQ[x] && DeleteDuplicates[Map[Head, x]]
 == {Rule} || Head[x] == Rule] :=
 Module[{a = Flatten[{x}], b = {}, c, k = 1},
 While[k <= Length[a], c = a[[k]];
 b = Append[b, ToString[RhsLhs[c, "Lhs"]] –>
 "(" <> ToString[RhsLhs[c, "Rhs"]] <> ")"]; k++];
 If[ListQ[x], b, b[[1]]]]

In[2724]:= {ToStringRule[a –> b], ToStringRule[{a –> b, c –> d, m –> n}]}
Out[2724]= {"a" –> "(b)", {"a" –> "(b)", "c" –> "(d)", "m" –> "(n)"}}

Extension of Mathematica system functionality

 31

The call Level[x, n] of standard function returns list of all subexpressions of
an expression x at levels from 1 to n. As an useful generalization of function
is procedure whose call Levels[x, h] returns the list of all subexpressions for
an expression x at all its possible levels while through the second argument
h – an independent variable – the maximum number of levels of expression
x is returned. Generally speaking, the following defining relation takes place
Levels[x, h] ≡ Level[x, Infinity], however in case of the Levels the procedure
additionally returns maximum level of an expression x. While the procedure
call ExprOnLevels[x] returns the enclosed list, whose elements are the lists
of subexpressions of an expression x which are located on each of its levels
from the first to the last. The fragment below represents source codes of both
procedures with examples of their application in a comparative context with
the Level function with the second Infinity–argument.

In[2868]:= Levels[x_, h_ /; ToString[Definition[h]] == "Null"] :=
 Module[{a = {}, b, k = 1}, While[k < Infinity, b = Level[x, k];
 If[a == b, Break[], a = b]; k++]; h = k – 1; a]

In[2869]:= {Levels[(x^2 – y^2)/(Sin[x]+Cos[y])+a*Log[x+y+z–G[h, t]], g], g}
Out[2869]= {{a, x, y, z, –1, h, 7, G[h, 7], –G[h, 7], x + y + z – G[h, 7], Log[x + y +

z – G[h, 7]], a Log[x + y + z – G[h, 7]], x, 2, x^2, –1, y, 2, y^2, –y^2, x^2 –
y^2, y, Cos[y], x, Sin[x], Cos[y] + Sin[x], –1, 1/(Cos[y] + Sin[x]), (x^2 – y^2)/
(Cos[y] + Sin[x])}, 6}
In[2870]:= Level[(x^2–y^2)/(Sin[x]+Cos[y])+a*Log[x+y+z–G[h, t]], Infinity]
Out[2870]= {a, x, y, z, –1, h, 7, G[h, 7], –G[h, 7], x + y + z – G[h, 7], Log[x + y +
z – G[h, 7]], a Log[x + y + z – G[h, 7]], x, 2, x^2, –1, y, 2, y^2, –y^2, x^2 –
y^2, y, Cos[y], x, Sin[x], Cos[y] + Sin[x], –1, 1/(Cos[y] + Sin[x]), (x^2 – y^2)/
(Cos[y] + Sin[x])}

In[2879]:= ExprOnLevels[x_] := Module[{a = {}, k = 1}, While[k <= Depth[x],
 a = Append[a, MinusList[Level[x, k], Level[x, k–1]]]; k++]; a[[1 ;; –2]]]

In[2880]:= X = (x^2 – y^2)/(Sin[x] + Cos[y]) + a*Log[x + y + z – G[h, t]];
In[2880]:= ExprOnLevels[X]
Out[2880]= {{a Log[x + y + z – G[h, t]], (x^2 – y^2)/(Cos[y] + Sin[x])}, {a,
Log[x + y + z – G[h, t]], x^2 – y^2, 1/(Cos[y] + Sin[x])}, {x + y + z – G[h, t],
x^2, –y^2, Cos[y] + Sin[x], –1}, {x, y, z, x, 2, –1, y^2, Cos[y], Sin[x], –1}, {G[h,
t], y, 2, y, x, –1}, {h, t}}

V.Z. Aladjev, V.A. Vaganov

 32

Relative to the above Levels procedure the standard Depth function defines
on the same expression the maximum number of levels more on 1, namely:

In[3790]:= Clear[t]; {Levels[a + b + c^2, t], t, Depth[a + b + c^2]}
Out[3790]= {{a, b, c, 2, c^2}, 2, 3}

The standard FreeQ function provides testing of entries into an expression
of subexpressions while a simple FreeQ1 procedure significantly expands
the FreeQ function, providing broader testing of entries into an expression of
subexpressions. The call FreeQ1[x, y] returns True if an expression x doesn't
contain subexpressions y, otherwise False is returned. The FreeQ2 function
expands the FreeQ function additionally onto the list as the 2nd argument.
At that, the call FreeQ2[x, p] returns True if an expression x doesn't contain
subexpression p or subexpressions from a list p, otherwise False is returned.
The fragment represents source codes of FreeQ1 and FreeQ1 with examples
of their application in a comparative context with the FreeQ function.

In[2202]:= FreeQ1[x_, y_] := Module[{h}, Quiet[FreeQ[Subs[x, y,
 h = Unique["ArtKr"]], h]]]
In[2203]:= {FreeQ1[a/Sqrt[x], Sqrt[x]], FreeQ[a/Sqrt[x], Sqrt[x]]}
Out[2203]= {False, True}
In[2204]:= {FreeQ1[{Sqrt[x], 18, 25}, Sqrt[x]], FreeQ[{Sqrt[x], 18, 25}, Sqrt[x]]}
Out[2204]= {False, False}

In[2250]:= FreeQ2[x_, p_] := If[ListQ[p], If[DeleteDuplicates[Map10[FreeQ,
 x, p]] === {True}, True, False], FreeQ[x, p]]
In[2251]:= L = {a, b, c, d, f, g, h}; {FreeQ[L, {a, d, h}], FreeQ2[L, {a, d, h}]}
Out[2251]= {True, False}
In[2252]:= {FreeQ[Cos[x]*Ln[x], {Sin, Ln}], FreeQ2[Cos[x]*Ln[x], {Sin, Ln}]}
Out[2252]= {True, False}

Using the FullForm function providing representation of expressions in the
full form can be received a rather useful procedure solving the replacement
problem in expressions of the given subexpressions. The call Replace3[x,y,z]
returns the result of replacement in an arbitrary expression x of all entries
of subexpressions y into it onto expressions z; as procedure arguments {y, z}
separate expressions or their lists can be used. At that, in case of arguments
{y, z} in the form of the list, for them the common length determined by the
relation Min[Map[Length, {y, z}]] is chosen, allowing to avoid the possible

Extension of Mathematica system functionality

 33

especial and erroneous situations, but with the printing of the appropriate
diagnostic information as illustrates an example below. The next fragment
represents source code of the procedure with examples of its usage.

In[2062]:= Replace3[x_, y_, z_] := Module[{a = Flatten[{y}], b = Flatten[{z}],
 c, t = x, k = 1}, c = Min[Map[Length, {a, b}]];
 If[c < Length[a], Print["Subexpressions " <>
 ToString1[a[[c + 1 ;; –1]]] <> " were not replaced"]];
 For[k, k <= c, k++, t = Subs[t, a[[k]], b[[k]]]]; t]

In[2063]:= Replace3[x^2 + Sqrt[1/a^2 + 1/a – Sin[1/a]], 1/a, Cos[h]]
Out[2063]= x^2 + Sqrt[1/a^2 + Cos[h] – Sin[Cos[h]]]
In[2064]:= Replace3[1/(1 + 1/a) + Cos[1/a + Sin[1/a]]*(c + 1/a)^2, 1/a, F[h] + d]
Out[2064]= 1/(1 + d + F[h]) + Cos[d + F[h] + Sin[d + F[h]]] (c + d + F[h])^2
In[2065]:= Replace3[x^2 + Sqrt[1/a^2 + 1/a – Sin[1/a]], {1/a, 1/b, 1/c}, Cos[h]]
 Subexpressions {b^(–1), c^(–1)} were not replaced
Out[2065]= x^2 + Sqrt[1/a^2 + Cos[h] – Sin[Cos[h]]]

In some cases exists necessity to execute the exchange of values of variables
with the corresponding exchange of all them attributes. So, variables x and
y having values 72 and 67 should receive values 42 and 47 accordingly with
the corresponding exchange of all their attributes. The procedure VarExch
solves the given problem, returning Null, i.e. nothing. The list of two names
of variables in string format which exchange by values and attributes or the
nested list of ListList–type acts as the actual argument; anyway all elements
of pairs have to be definite, otherwise the call returns Null with print of the
corresponding diagnostic message.

On the other hand, the call Rename[x, y] in the regular mode returns Null,
i.e. nothing, providing replacement of a name x of some defined object onto
a name y with preservation of all attributes of this object. At that, the name
x is removed from the current session by means of function Remove. But if
y–argument defines a name of a defined object or an undefined name with
attributes, the procedure call is returned unevaluated. If the first argument
x is illegal for renaming, the procedure call returns Null, i.e. nothing; at that,
the Rename procedure successfully processes also objects of the same name
of the type "Block", "Function" or "Module". The Rename1 procedure is a
quite useful modification of the above procedure, being based on procedure

V.Z. Aladjev, V.A. Vaganov

 34

Definition2 [33]. The call Rename1[x, y] is similar to the call Rename[x, y]
whereas the call Rename1[x, y, z] with the third optional z–argument – an
arbitrary expression – performs the same functions as the call Rename1[x, y]
without change of an initial object x.

The VarExch1 procedure is a version of the above procedure VarExch and
is based on usage of the Rename procedure and global variables; it admits
the same type of the actual argument, but unlike the second procedure the
call VarExch1[L] in case of detection of undefinite elements of a list L or its
sublists is returned unevaluated without print of any diagnostic message. In
the fragment below, the source codes of the procedures Rename, Rename1,
VarExch and VarExch1 along with examples of their usage are represented.

In[2545]:= VarExch[L_List /; Length[L] == 2 || ListListQ[L] &&
 Length[L[[1]]] == 2] := Module[{Kr, k=1},
 Kr[p_List] := Module[{a = Map[Attributes, p], b, c, m, n},
 ToExpression[{"ClearAttributes[" <> StrStr[p[[1]]] <> "," <>
 ToString[a[[1]]] <> "]", "ClearAttributes[" <> StrStr[p[[2]]] <> "," <>
 ToString[a[[2]]] <> "]"}] ;
 {b, c} = ToExpression[{"ToString[Definition[" <> StrStr[p[[1]]] <> "]]",
 "ToString[Definition[" <> StrStr[p[[2]]] <> "]]"}];
 If[MemberQ[{b, c}, "Null"], Print[VarExch::"Both arguments should be
 defined but uncertainty had been detected: ", p]; Return[], Null];
 {m, n} = Map4[StringPosition, Map[StrStr, {b, c}], {" := ", " = "}];
 {n, m} = {StringTake[b, {1, m[[1]][[1]] – 1}] <>
 StringTake[c, {n[[1]][[1]], –1}], StringTake[c, {1, n[[1]][[1]] – 1}] <>
 StringTake[b, {m[[1]][[1]], –1}]}; ToExpression[{n, m}];
 Map[ToExpression, {"SetAttributes[" <> StrStr[p[[1]]] <> "," <>
 ToString[a[[2]]] <> "]", "SetAttributes[" <> StrStr[p[[2]]] <> "," <>
 ToString[a[[1]]] <> "]"}]]; If[! ListListQ[L], Kr[L],
 For[k, k <= Length[L], k++, Kr[L[[k]]]]];]

In[2546]:= Agn = 67; Avz := 72; Art := 25; Kr = 18; SetAttributes["Agn",
 Protected]; SetAttributes["Art", {Protected, Listable}]
In[2547]:= Map[Attributes, {"Agn", "Avz", "x", "y", "Art", "Kr"}]
Out[2547]= {{Protected}, {}, {}, {}, {Listable, Protected}, {}}
In[2548]:= VarExch[{{"Avz", "Agn"}, {"x", "y"}, {"Art", "Kr"}}]

Extension of Mathematica system functionality

 35

 VarExch::Both arguments should be defined but uncertainty
 had been detected: {x, y}
In[2549]:= {Avz, Agn, Art, Kr}
Out[2549]= {67, 72, 18, 25}
In[2550]:= Map[Attributes, {"Agn", "Avz", "Art", "Kr"}]
Out[2550]= {{}, {Protected}, {}, {Listable, Protected}}

In[2551]:= Rename[x_String /; HowAct[x], y_ /; ! HowAct[y]] :=
 Module[{a, c, d, b = Flatten[{PureDefinition[x]}]},
 If[! SameQ[b, {$Failed}], a = Attributes[x];
 c = ClearAllAttributes[x]; d = StringLength[x];
 c = Map[ToString[y] <> StringTake[#, {d + 1, –1}] &, b];
 Map[ToExpression, c]; Clear[x]; SetAttributes[y, a]]]

In[2552]:= fm = "Art_Kr"; SetAttributes[fm, {Protected, Listable}];
 {fm, Attributes[fm]}
Out[2552]= {"Art_Kr", {Listable, Protected}}
In[2553]:= Rename["fm", Tampere]
In[2554]:= {Tampere, Attributes[Tampere], fm}
Out[2554]= {"Art_Kr", {Listable, Protected}, fm}

In[2557]:= VarExch1[L_List /; Length[L] == 2 || ListListQ[L] &&
 Length[L[[1]]] == 2] := Module[{Art, k = 1, d},
 Art[p_List] := Module[{a = Quiet[Check[Map[Attributes, p],
 $Aborted]], b, c, m, n},
 If[a == $Aborted, Return[Defer[VarExch1[L]]], Null];
 If[HowAct[Art], b = Art; Clear[Art]; m = 1, Null];
 If[HowAct[Kr], c = Kr; Clear[Kr]; n = 1, Null];
 ToExpression[{"ClearAttributes[" <> StrStr[p[[1]]] <> "," <>
 ToString[a[[1]]] <> "]", "ClearAttributes[" <> StrStr[p[[2]]] <>
 ", " <> ToString[a[[2]]] <> "]"}];
 ToExpression[{"Rename[" <> StrStr[p[[1]]] <> "," <> "Art" <> "]",
 "Rename[" <> StrStr[p[[2]]] <> "," <> "Kr" <> "]"}];
 ToExpression["Clear[" <> StrStr[p[[1]]] <> "," <> StrStr[p[[2]]] <> "]"];
 ToExpression[{"Rename[" <> StrStr["Kr"] <> "," <> p[[1]] <> "]",
 "Rename[" <> StrStr["Art"] <> "," <> p[[2]] <> "]"}];
 Map[ToExpression, {"SetAttributes[" <> StrStr[p[[1]]] <> "," <>

V.Z. Aladjev, V.A. Vaganov

 36

 ToString[a[[2]]] <> "]", "SetAttributes[" <> StrStr[p[[2]]] <> "," <>
 ToString[a[[1]]] <> "]"}];
 If[m == 1, Art = b, Null]; If[n == 1, Kr = c, Null];];
 If[! ListListQ[L], Art[L], For[k, k <= Length[L], k++, Art[L[[k]]]]]]

In[2558]:= Agn = 67; Avz := 72; Art := 25; Kr = 18; SetAttributes["Agn",
 Protected]; SetAttributes["Art", {Protected, Listable}];
In[2559]:= Map[Attributes, {"Agn", "Avz", "Art", "Kr"}]
Out[2559]= {{Protected}, {}, {Listable, Protected}, {}}
In[2560]:= {Art, Kr} = {80, 480}; VarExch1[{{"Agn", "Avz"}, {"x", "y"},
 {"Art", "Kr"}}]
In[2561]:= {{Agn, Avz, Art, Kr}, Map[Attributes, {"Agn", "Avz", "Art", "Kr"}]}
Out[2561]= {{480, 80, 18, 25}, {{}, {Protected}, {}, {Listable, Protected}}}
In[2562]:= {x, y, Art, Kr}
Out[2562]= {x, y, Art, Kr}

In[2572]:= Rename1[x_String /; HowAct[x], y_ /; ! HowAct[y], z___] :=
 Module[{a = Attributes[x], b = Definition2[x][[1 ;; –2]], c = ToString[y]},
 b = Map[StringReplacePart[#, c, {1, StringLength[x]}] &, b];
 ToExpression[b];
 ToExpression["SetAttributes[" <> c <> ", " <> ToString[a] <> "]"];
 If[{z} == {}, ToExpression["ClearAttributes[" <> x <> ", " <>
 ToString[a] <> "]; Remove[" <> x <> "]"], Null]]

In[2574]:= x := 480; y = 480; SetAttributes[x, {Listable, Protected}]
In[2575]:= Rename1["x", Trg42]
In[2576]:= {x, Trg42, Attributes["Trg42"]}
Out[2576]= {x, 480, {Listable, Protected}}
In[2577]:= Rename1["y", Trg47, 80]
In[2578]:= {y, Trg47, Attributes["Trg47"]}
Out[2578]= {480, 480, {}}

Usage in procedures of global variables, in a number of cases will allow to
simplify programming, sometimes, significantly. This mechanism sufficient
in detail is considered in [33]. Meantime, the mechanism of global variables
in Mathematica isn't universal, quite correctly working in case of evaluation
of definitions of procedures containing global variables in the current session
in the Input–paragraph; whereas in general case it isn't supported when the

Extension of Mathematica system functionality

 37

loading in the current session of the procedures containing global variables,
in particular, from nb–files with the subsequent activation of their contents.

For elimination of a similar situation the procedure has been offered, whose
call NbCallProc[x] reactivates a block, function or module x in the current
session, whose definition was in a nb–file loaded into the current session,
with return of Null, i.e. nothing. So, the call NbCallProc[x] reactivates in the
current session all definitions of blocks, functions, modules with the same
name x and with various headings. All these definitions have to be loaded
previously from some nb-file into the current session and activated by the
function "Evaluate Notebook" of the GUI. The fragment below represents
source code of the NbCallProc procedure with example of its usage for the
above VarExch1 procedure which uses the global variables.

In[2415]:= NbCallProc[x_ /; BlockFuncModQ[x]] := Module[{a =
 SubsDel[StringReplace[ToString1[DefFunc[x]], "\n \n" –> ";"],
 "`" <> ToString[x] <> "`", {"[", ","}, –1]}, Clear[x]; ToExpression[a]]

In[2416]:= NbCallProc[VarExch1]

The performed verification convincingly demonstrates that the VarExch1
procedure containing the global variables and loaded from the nb–file with
subsequent its activation (by "Evaluate Notebook"), is carried out absolutely
correctly and with correct functioning of the mechanism of global variables
restoring the values after an exit from the VarExch1 procedure. NbCallProc
has a number of rather interesting appendices, above all, if necessary of use
of the procedures activated in the Input–paragraph of the current session.

In certain cases before updating of definitions of objects (procedure, function,
variable, etc.) it is necessary to check existence for them of Protected-attribute
that simple function provides; the call ProtectedQ[x] returns True if an object
x has Protected-attribute, and False otherwise. A correct expression can act as
argument; source code of ProtectedQ with examples are presented below.

In[2430]:= ProtectedQ[x_] := If[MemberQ[Attributes1[x], Protected], True,
 False]

In[2431]:= g = 80; Protect[g]; Map[ProtectedQ, {Sin, Protect, AVZ, HowAct,
 480, Map, "g"}]
Out[2431]= {True, True, False, False, False, True, True}

V.Z. Aladjev, V.A. Vaganov

 38

The list structure is one of basic in Mathematica in even bigger degree, than
at Maple. And Maple, and in even bigger degree of the Mathematica have a
quite developed set of means of processing of the list structures. One of such
important enough tools is the converting of expressions into lists; for Maple
such means has the form convert(Exp, list) whereas Mathematica of similar
means has no, and procedure ToList can be in this quality. The procedure
call ToList[Exp] returns the result of converting of an expression Exp into
the list. At that, in case of a string Exp the Exp is converted into the symbol–
by–symbol list, in case of a list Exp the list Exp is returned whereas in other
cases the converting is based on the standard Map function. The following
fragment represents source code of the ToList with examples of its usage.

In[2370]:= ToList[expr_] := Module[{a, b, c = {}, d, k = 1, n},
 If[StringQ[expr], Characters[expr], If[ListQ[expr], expr,
 a = ToString[InputForm[Map[b, expr]]];
 d = StringSplit[a, ToString[b] <> "["];
 For[k, k <= Length[d], k++, n = d[[k]];
 c = Append[c, StringTake[n, {1, Flatten[StringPosition[n, "]"]][[–1]] – 1}]]];
 ToExpression[c]]]]

In[2371]:= ToList[(a*Sin[x] + g[b])/(c + d) + (d + c)/(Cos[y] + h)]
Out[2371]= {(c + d)/(h + Cos[y]), (g[b] + a Sin[x])/(c + d)}
In[2372]:= ToList["qwertyuiopasdfgh"]
Out[2372]= {"q", "w", "e", "r", "t", "y", "u", "i", "o", "p", "a", "s", "d", "f", "g", "h"}
In[2373]:= ToList[{a, b, c, d, e, f, g, h, a, v, z, a, g, n, A, r, t, K, r}]
Out[2373]= {a, b, c, d, e, f, g, h, a, v, z, a, g, n, A, r, t, K, r}

Maple has two useful means of manipulation with expressions of the type
{range, equation, inequality, relation}, whose calls lhs(Exp) and rhs(Exp) return
the left and the right parts of an expression Exp respectively. More precisely,
the call lhs(Exp), rhs(Exp) returns the value op(1,Exp), op(2,Exp) respectively.
Whereas Mathematica has no similar useful means. The given deficiency is
compensated by the RhsLhs procedure, whose source code with examples
of use are given below. The call RhsLhs[x,y] depending on a value {"Rhs",
"Lhs"} of the second argument y returns right or left part of an expressions
x respectively relatively to the operator Head[x], while the call RhsLhs[x,y,

t] in addition through an undefined variable t returns the operator Head[x]

Extension of Mathematica system functionality

 39

concerning whom splitting of the expression x onto left and right parts was
made. The RhsLhs procedure can be a rather easily modified in the light of
expansion of the analyzed operators Head[x].

In[2700]:= RhsLhs[x_, y__] := Module[{a = Head[x], b = {x, y}, d,
 c = {{Greater, ">"}, {GreaterEqual, ">="}, {And, "&&"},
 {Or, "||"}, {LessEqual, "<="}, {Unequal, "!="}, {Rule, "–>"},
 {Less, "<"}, {Plus, {"+", "–"}}, {Power, "^"}, {Equal, "=="}, {Span, ";;"},
 {NonCommutativeMultiply, "**"}, {Times, {"*", "/"}}}},
 If[! MemberQ[Flatten[c], a], Return[Defer[RhsLhs1[x, y]]],
 d = Level[x, 1]];
 If[Length[b] > 2 && ! HowAct[b[[3]]], ToExpression[ToString[b[[3]]] <>
 " = " <> ToString1[Flatten[Select[c, #[[1]] === a &]]]], Null];
 If[b[[2]] == "Lhs", d[[1]], If[b[[2]] == "Rhs", d[[2]], Defer[RhsLhs1[x, y]]]]]

In[2701]:= Mapp[RhsLhs, {a > b, a+b, a^b, a*b, a –> b, a <= b, a||b, a && b},
 "Rhs"]
Out[2701]= {b, b, b, b, b, b, b, b}
In[2702]:= {RhsLhs[a || b, "Rhs", w], w}
Out[2702]= {b, {Or, "||"}}
In[2703]:= {RhsLhs[(a + b)*d -> c, "Lhs", x], x}
Out[2703]= {(a + b) d, Rule}
In[2704]:= {RhsLhs[80 ;; 480, "Rhs", s], s}
Out[2704]= {480, Span}

Maple has means of testing of expressions for the following types, namely:

{`!`, `*`, `+`, `.`, `::`, `<`, `<=`, `<>`, `=`, `@`, `@@`, `^`, `||`, `and`, `or`, `xor`,
`implies`, `not`}

In Mathematica the means of such quite wide range are absent and in this
connexion the procedure, whose the call TwoHandQ[x] returns True if an
expression x has one of the following types

{"+", ">=", "<=", "&&", "||", "–", "^", "**", "<", "==", "!=", ">", "–>"}

and False otherwise, is given below; moreover, if the call TwoHandQ[x, y]
returns True, through the 2nd optional argument y – an undefinite variable –
the type of an expression x is returned. The following fragment represents
source code of the TwoHandQ procedure along with examples of its usage.

V.Z. Aladjev, V.A. Vaganov

 40

In[2937]:= TwoHandQ[x__] := Module[{a = ToString[InputForm[{x}[[1]]]],
 b = {"+", ">=", "<=", "&&", "||", "–", "^", "**", "<", "==", "!=", ">",
 "–>"}, c, d = {x}}, c = StringPosition[a, b];
 If[StringFreeQ[a, "–>"] && StringFreeQ[a, ">="] &&
 Length[c] > 2||Length[c] == 0, False, If[Length[d] > 1 &&
 ! HowAct[d[[2]]] && ! ProtectedQ[d[[2]]],
 ToExpression[ToString[d[[2]]] <> "=" <> ToString[Head[{x}[[1]]]]],
 Return[Defer[TwoHandQ[x]]]]; True]]

In[2938]:= {TwoHandQ[a3 <= w, h], h}
Out[2938]= {True, LessEqual}
In[2939]:= {TwoHandQ[a –> b, t], t}
Out[2939]= {True, Rule}
In[2940]:= {TwoHandQ[a != b, p], p}
Out[2940]= {True, Unequal}
In[2941]:= Clear[z]; {TwoHandQ[a < b && c, z], z}
Out[2941]= {True, And}
In[2942]:= Clear[p]; {TwoHandQ[a || b + c, p], p}
Out[2942]= {True, Or}

In Maple the type of indexed expressions is defined while in Mathematica
similar means are absent. For elimination of this drawback we represented
a number of procedures eliminating this defect. Among them it is possible
to note such procedures as ArrayInd, Ind, Index, IndexedQ, IndexQ and
Indices [30-33,48]. In particular, the call IndexQ[x] returns True, if x – any
indexed expression, and False otherwise; at that, the argument x is given in
string format where under the indexed is understood an arbitrary expression
whose the reduced form completed by the index bracket "]]". At that, the call
Indices[x] returns the index component of an indexed expression x given in
string format, otherwise the call is returned unevaluated. In the same place
rather in details the questions of processing of the indexed expressions are
considered. In some cases these means simplify programming. In particular,
on the basis of the previous procedures ToList and Ind the OP procedure is
programmed whose call OP[x] returns the list of atomic elements composing
an expression x. The following fragment represents source code of the OP
along with typical examples of its usage.

Extension of Mathematica system functionality

 41

In[2620]:= OP[exp_] := Module[{a = ToString[InputForm[expr]], b = {}, c, d,
 k, h}, If[StringTake[a, {–1, –1}] == "]", a = Flatten[Ind[expr]],
 a = DeleteDuplicates[Quiet[ToList[expr]]]];
 Label[ArtKr]; d = Length[a];
 For[k = 1, k <= Length[a], k++, h = a[[k]]; c = Quiet[ToList[h]];
 If[MemberQ[DeleteDuplicates[c], $Failed], AppendTo[b, Ind[h]],
 AppendTo[b, c]]]; a = DeleteDuplicates[Flatten[b]];
 If[d == Length[a], Sort[a], b = {}; Goto[ArtKr]]]

In[2621]:= OP[Sqrt[(a + b)/(c + d)] + Sin[x]*Cos[y]]
Out[2621]= {–1, 1/2, a, b, c, Cos, d, Sin, x, y}
In[2622]:= OP[(Log[(a + b)/(c + d)] + Sin[x]*Cos[y])/(G[h, g, t] – w^2)]
Out[2622]= {–1, 2, a, b, c, Cos, d, g, G, h, Log, Sin, t, w, x, y}
In[2623]:= Map[OP, {{Sin[x]}, G[h, g, t], A[m, p]/G[t, q]}]
Out[2623]= {{Sin, x}, {g, G, h, t}, {–1, A, G, m, p, q, t}}

In Mathematica there is no direct equivalent of op–function of Maple, but it
can be defined within axiomatics of the systems by the next procedure that
in a number of cases is rather convenient at programming of appendices:

In[2672]:= Op[x_] := Module[{a, b}, a = {}; If[ListQ[x], a = x,
 Do[a = Insert[a, Part[x][[b]], –1], {b, Length[x]}]]; a]

In[2673]:= Op[Sin[x] + Cos[x]]
Out[2673]= {Cos[x], Sin[x]}
In[2674]:= Op[{1, 2, 3, 4, 5, 6, 7, 8, 9}]
Out[2674]= {1, 2, 3, 4, 5, 6, 7, 8, 9}
In[2675]:= Op[Sqrt[a + b] + Sin[x] – c/d]
Out[2675]= {Sqrt[1 + a], –(c/d), Sin[x]}
In[2676]:= Op[(x + y*Cos[x])/(y + x*Sin[y])]
Out[2676]= {x + y Cos[x], 1/(y + x Sin[y])}
In[2677]:= Map[Op, {Sin[x], Cos[a + b], 1/(a + b)}]
Out[2677]= {{x}, {a + b}, {a + b, –1}}

It is simple to be convinced that the received results of calls of Op procedure

are identical to similar calls of op-function in Maple, taking into account that
Mathematica doesn't support structure of type "sequence" which is replaced
with the list. The Op procedure is a rather useful in programming.

V.Z. Aladjev, V.A. Vaganov

 42

In a number of appendices the undoubted interest presents a certain analog
of Maple–процедуры whattype(x) that returns the type of an expression x
which is one of basic Maple–types. The procedure of the same name acts as
a similar analog in Mathematica whose call WhatType[x] returns type of an
object x of one of basic types {"Module", "DynamicModule", "Block", "Real",
"Complex", "Integer", "Rational", "Times", "Rule", "Power", "Alternatives",
"And", "List", "Plus", "Condition", "StringJoin", "UndirectedEdge", …}. The
following fragment represents source code of the procedure with examples
of its application for identification of types of various objects.

In[2869]:= WhatType[x_ /; StringQ[x]] := Module[{b = t, d, c = $Packages,
 a = Quiet[Head[ToExpression[x]]]},
 If[a === Symbol, Clear[t]; d = Context[x];
 If[d == "Global`", d = Quiet[ProcFuncBlQ[x, t]];
 If[d === True, Return[{t, t = b}[[1]]],
 Return[{"Undefined", t = b}[[1]]]],
 If[d == "System`", Return[{d, t = b}[[1]]], Null]],
 Return[{ToString[a], t = b}[[1]]]];
 If[Quiet[ProcFuncBlQ[x, t]],
 If[MemberQ[{"Module", "DynamicModule", "Block"}, t],
 Return[{t, t = b}[[1]]], t = b;
 ToString[Quiet[Head[ToExpression[x]]]]], t = b; "Undefined"]]

In[2870]:= t = 480; x = 80; y := 42.47; z = a + b; J[x_]:=x; Map[WhatType,
 {"Kr", "x", "y", "z", "ProcQ", "Sin", "F[r]", "WhatType", "J"}]
Out[2870]= {"Undefined", "Integer", "Real", "Plus", "Module", "System`",
 "F", "Module", "Function"}
In[2871]:= Map[WhatType, {"a^b", "a**b", "3 + 5*I", "{42, 47}", "a&&b"}]
Out[2871]= {"Power","NonCommutativeMultiply","Complex","List", "And"}
In[2872]:= Map[WhatType, {"a_/; b", "a <> b", "a <–> b", "a|b"}]
Out[2872]= {"Condition", "StringJoin", "UndirectedEdge", "Alternatives"}

However, it should be noted that the WhatType procedure doesn't support
exhaustive testing of types, meantime on its basis it is simple to expand the
class of the tested types.

The ReplaceAll function of Mathematica has very essential restrictions in
relation to replacement of subexpressions relatively already of very simple

Extension of Mathematica system functionality

 43

expressions as it is illustrated below. As an alternative for this function can
be offered the Subs procedure which is functionally equivalent to the above
standard ReplaceAll function, however which is relieved of a number of its
shortcomings. The procedure call Subs[x, y, z] returns result of substitutions
in an expression x of entries of subexpressions y onto expressions z. At that,
if x – an arbitrary correct expression, then as the second and third arguments
defining substitutions of the format y –> z, an unary substitution or their list
coded in the form y≡{y1, y2, …, yn} and z≡{z1, z2, …, zn} appear, determining
a list of substitutions {y1 –> z1, y2 –> z2, …, yn –> zn} which are carried out
consistently in the order defined at the Subs procedure call. The following
fragment represents and source code of the Subs procedure, and a number
of bright examples of its usage on those expressions and with those types of
substitutions where the Subs procedure surpasses the standard ReplaceAll
function of Mathematica. These examples very clearly illustrate advantages
of the Subs procedure before the similar system means.

In[2968]:= Subs[x_, y_, z_] := Module[{d, k = 2, subs}, subs[m_, n_, p_] :=
 Module[{a, b, c, h, t}, If[! HowAct[n], m /. n –> p, {a, b, c, h} =
 First[{Map[ToString, Map[InputForm, {m, n, p, 1/n}]]}];
 t = Simplify[ToExpression[StringReplace[StringReplace[
 a, b –> "(" <> c <> ")"], h –> "1/" <> "(" <> c <> ")"]]];
 If[t === m, m /. n –> p, t]]];
 ! ListQ[y] && ! ListQ[z], subs[x, y, z], If[ListQ[y] && ListQ[z] &&
 Length[y] == Length[z], d = subs[x, y[[1]], z[[1]]];
 For[k, k <= Length[y], k++, d = subs[d, y[[k]], z[[k]]]];
 d, Defer[Subs[x, y, z]]]]]]
In[2969]:= (c + x^2)/x^2 /. x^2 –> a
Out[2969]= (a + c)/x^2
In[2970]:= Subs[(c + x^2)/x^2, x^2, a]
Out[2970]= (a + c)/a
In[2971]:= (c + b^2)/x^2 /. x^2 –> Sqrt[z]
Out[2971]= (b^2 + c)/x^2
In[2972]:= Subs[(c + b^2)/x^2, x^2, Sqrt[z]]
Out[2972]= (b^2 + c)/Sqrt[z]
In[2973]:= (a + x^2)/(b + a/x^2) /. x^2 –> Sqrt[a + b]
Out[2973]= (a + Sqrt[a + b])/(b + a/x^2)

V.Z. Aladjev, V.A. Vaganov

 44

In[2974]:= Subs[(a + x^2)/(b + a/x^2), x^2, Sqrt[a + b]]
Out[2974]= (a + Sqrt[a + b])/(b + a/Sqrt[a + b])
In[2975]:= (a + x^2)/(b + 1/x^2) /. x^2 –> Sqrt[a + b]
Out[2975]= (a + Sqrt[a + b])/(b + 1/x^2)
In[2976]:= Subs[(a + x^2)/(b + 1/x^2), x^2, Sqrt[a + b]]
Out[2976]= (a + Sqrt[a + b])/(b + 1/Sqrt[a + b])
In[2977]:= Replace[1/x^2 + 1/y^3, {{x^2 –> a + b}, {y^3 –> c + d}}]
Out[2977]= {1/x^2 + 1/y^3, 1/x^2 + 1/y^3}
In[2978]:= Subs[1/x^2 + 1/y^3, {x^2, y^3}, {a + b, c + d}]
Out[2978]= 1/(a + b) + 1/(c + d)
In[2979]:= Replace[Sqrt[Sin[1/x^2]+Cos[1/y^3]], {{x^2 –> a*b}, {y^3 –> c*d}}]
Out[2979]= {Sqrt[Cos[1/y^3] + Sin[1/x^2]], Sqrt[Cos[1/y^3] + Sin[1/x^2]]}
In[2980]:= Subs[Sqrt[Sin[1/x^2] + Cos[1/y^3]], {x^2, y^3}, {a*b, c*d}]
Out[2980]= Sqrt[Cos[1/(c d)] + Sin[1/(a b)]]
In[2981]:= With[{x = a + c, y = b}, Module[{}, x^2 + y]]
Out[2981]= b + (a + c)^2
In[2982]:= With[{x^2 = a + c, y = b}, Module[{}, x^2 + y]]
 With::lvset: Local variable specification {x^2=a+c, y=b} contains …
Out[2982]= With[{x^2 = a + c, y = b}, Module[{}, x^2 + y]]
In[2983]:= Subs[Module[{}, x^2 + y], {x, y}, {a + c, b}]
Out[2983]= b + (a + c)^2
In[2984]:= Subs[Module[{}, x^2 + y], {x^2, y}, {a + c, b}]
Out[2984]= a + b + c
In[2985]:= Replace[(a + x^2/y^3)/(b + y^3/x^2), {{y^3 –> m}, {x^2 –> n}}]
Out[2985]= {(a + x^2/y^3)/(b + y^3/x^2), (a + x^2/y^3)/(b + y^3/x^2)}
In[2986]:= Subs[(a + x^2/y^3)/(b + y^3/x^2), {y^3, x^2}, {m, n}]
Out[2986]= n (a m + n)/(m (m + b n))

In[2987]:= Df[x_, y_] := Module[{a}, If[! HowAct[y], D[x, y],
 Simplify[Subs[D[Subs[x, y, a], a], a, y]]]]

In[2988]:= Df[(a + x^2)/(b + a/x^2), x^2]
Out[2988]= (a^2 + 2 a x^2 + b x^4)/(a + b x^2)^2
In[2989]:= Df[(x + Sqrt[y])/(y + 2*Sqrt[y])^2, Sqrt[y]]
Out[2989]= (–4 x – 2 Sqrt[y] + y)/((2 + Sqrt[y])^3 y^(3/2))
In[2990]:= D[(x + Sqrt[y])/(y + 2*Sqrt[y])^2, Sqrt[y]]
 General::ivar: Sqrt[y] is not a valid variable. >>

Extension of Mathematica system functionality

 45

Out[2990]= ∂√y ((x + Sqrt[y])/(y + 2 Sqrt[y])^2)
In[2991]:= Df[(x + Sqrt[a + Sqrt[x]])/(d + 2*Sqrt[x])^2, Sqrt[x]]
Out[2991]= ((d + 2 Sqrt[x])/Sqrt[a + Sqrt[x]] – 8 (Sqrt[a + Sqrt[x]] + x))/(2 (d +
 2 Sqrt[x])^3)
In[2992]:= Df[(x + Sqrt[x + b])/(d + 2*Sqrt[x + b])^2, Sqrt[x + b]]
Out[2992]= (d – 2 (2 x + Sqrt[b + x]))/(d + 2 Sqrt[b + x])^3

In[2993]:= ReplaceAll1[x_, y_, z_]:= Module[{a,b,c}, If[! HowAct[y], x /. y–>z,
 c = If[MemberQ[{Plus, Times, Power}, Head[z]], "(" <>
 ToString[InputForm[z]] <> ")", ToString[z]];
 {a, b} = Map[ToString, Map[InputForm, {x, y}]];
 If[StringLength[b] == 1, ReplaceAll[x, y –> z],
 ToExpression[StringReplace[a, b –> c]]]]]

In[2994]:= {ReplaceAll[c/x^2+x^2, x^2 –> t], ReplaceAll[(1+c/x^2)/(b+x^2),
 x^2 –> t]}
Out[2994]= {t + c/x^2, (1 + c/x^2)/(b + t)}
In[2995]:= {ReplaceAll1[c/x^2+x^2, x^2, a+b], ReplaceAll1[(1 + c/x^2)/(b +
 x^2), x^2, c+d]}
Out[2995]= {a + b + c/(a + b), (1 + c/(c + d))/(b + c + d)}

In[2996]:= Df1[x_, y_] := Module[{a, b, c = "$$Sart25$$Kr18$$"},
 If[! HowAct[y], D[x, y],
 {a, b} = Map[ToString, Map[InputForm, {x, y}]];
 Simplify[ToExpression[StringReplace[ToString[InputForm[
 D[ToExpression[StringReplace[a, b –> c]], ToExpression[c]]]], c –> b]]]]]

In[2997]:= Df2[x_, y_] := Module[{a}, If[! HowAct[y], D[x, y],
 Simplify[ReplaceAll1[D[ReplaceAll1[x, y, a], a], a, y]]]]

In[2998]:= Df1[(x + Sqrt[a + Sqrt[x]])/(d + 2*Sqrt[x])^2, Sqrt[x]]
Out[2998]= ((d + 2 Sqrt[x])/Sqrt[a + Sqrt[x]] – 8 (Sqrt[a + Sqrt[x]] + x))/(2 (d +
 2 Sqrt[x])^3)
In[2999]:= Df2[(x + Sqrt[a + Sqrt[x]])/(d + 2*Sqrt[x])^2, Sqrt[x]]
Out[2999]= ((d + 2 Sqrt[x])/Sqrt[a + Sqrt[x]] – 8 (Sqrt[a + Sqrt[x]] + x))/(2 (d +
 2 Sqrt[x])^3)
In[3000]:= Df2[(a/x^2 + 1/x^2)/(c/x^2 + 1/x^2), 1/x^2]
Out[3000]= –(((a – c) x^2)/(1 + c)^2)

V.Z. Aladjev, V.A. Vaganov

 46

In[3001]:= Df1[(a/x^2 + 1/x^2)/(c/x^2 + 1/x^2), 1/x^2]
Out[3001]= –(((a – c) x^2)/(1 + c)^2)
In[3002]:= Df[(a/x^2 + 1/x^2)/(c/x^2 + 1/x^2), 1/x^2]
Out[3002]= –((2 (a – c) x^6)/(1 + c x^4)^2)
In[3003]:= Df2[(a + b)/(Sin[x] + Cos[x]), Sin[x] + Cos[x]]
Out[3003]= –((a + b)/(Cos[x] + Sin[x])^2)
In[3004]:= Df2[Cos[x]/(Sin[x] + Cos[x]), Cos[x]]
Out[3004]= Sin[x]/(Cos[x] + Sin[x])^2

A simple enough example of the previous fragment illustrates application
of the Subs procedure in realization of the Df procedure whose call Df[x, y]
provides differentiation of an expression x on any its subexpression y, and
rather significantly expands the standard D function; the examples illustrate
some opportunities of the Df procedure. At the end of the above fragment
the ReplaceAll1 procedure functionally equivalent to standard ReplaceAll
function is presented, which relieves a number of shortages of the second.
Then on the basis of the procedures ReplaceAll1 and StringReplace some
variants of the Df procedure, namely the procedures Df1 and Df2 that use
a number of useful methods of programming are represented. At the same
time, they in some cases are more useful than the Df procedure what rather
visually illustrate the examples given above. At that, the procedures Df, Df1
and Df2 rather significantly expand the standard function D. The fragment
represents source codes of the above procedures and certain examples of
their application where they surpass the standard functions D, ReplaceAll,
Rule and With of the Mathematica system.

Receiving of similar expansion as well for the standard Integrate function
which has rather essential restrictions on usage of arbitrary expressions as
integration variables is represented quite natural to us. Two variants of such
expansion in the form of the simple procedures Int and Int1 that are based
on the previous Subs procedure have been proposed for the given purpose,
whose source codes and examples of application are represented below.

In[2841]:= Int[x_, y_] := Module[{a}, If[! HowAct[y], Integrate[x, y],
 Simplify[Subs[Integrate[Subs[x, y, a], a], a, y]]]]

In[2842]:= Int1[x_, y_] := Module[{a}, If[! HowAct[y], Integrate[x, y],
 Simplify[ReplaceAll1[Integrate[ReplaceAll1[x, y, a], a], a, y]]]]

Extension of Mathematica system functionality

 47

In[2843]:= {Int[Sin[a+1/x^2]+c/x^2, 1/x^2], Int1[Sin[a+1/x^2]+c/x^2, 1/x^2]}
Out[2843]= {–Cos[a + 1/x^2] + c Log[1/x^2], c/x^4 – Cos[a + 1/x^2]}
In[2844]:= {Int[Sin[n/x^2] + m/x^2, x^2], Int1[Sin[n/x^2] + m/x^2, x^2]}
Out[2844]= {–n CosIntegral[n/x^2] + m Log[x^2] + x^2 Sin[n/x^2],
 –n CosIntegral[n/x^2] + m Log[x^2] + x^2 Sin[n/x^2]}
In[2845]:= Int1[(a*x^2+b/x^2)/(c*x^2+d/x^2), x^2]
Out[2845]= (a x^2)/c + ((b c – a d) ArcTan[(Sqrt[c] x^2)/Sqrt[d]])/(c^(3/2)
 Sqrt[d])
In[2846]:= Integrate[(a*x^2 + b/x^2)/(c*x^2 + d/x^2), x^2]
 Integrate::ilim: Invalid integration variable or limit(s) in x^2. >>
Out[2846]= Integrate[(b/x^2 + a*x^2)/(d/x^2 + c*x^2), x^2]

Meanwhile, a simple enough Subs1 function can be considered as a certain
extension and complement of the previous Subs procedure. The function
call Subs1[x, {y, z}] returns the result of replacement of all occurrences of an
subexpression y of an expression x onto an expression z; at that, the function
call qua of the second argument allows both the simple 2–element list, and
the list of ListList–type. The function call Subs1Q[x, y] returns True if a call
Subs1[x, y] is allowable, and False otherwise. The fragment below represents
source codes of functions Subs1 and Subs1Q with examples of their usage.

In[2700]:= Subs1[x_, y_ /; ListQ[y] && Length[y] == 2 || ListListQ[y]] :=
 ToExpression[StringReplace[ToString[FullForm[x]],
 Map[ToString[FullForm[#[[1]]]] –> ToString[FullForm[#[[2]]]] &,
 If[ListListQ[y], y, {y}]]]]

In[2703]:= Subs1[(a/b + d)/(c/b + h/b), {{1/b, t^2}, {d, 590}}]
Out[2703]= (590 + a t^2)/(c t^2 + h t^2)

In[2718]:= Subs1Q[x_, y_] := SameQ[x, Subs1[Subs1[x, y], If[ListListQ[y],
 Map[Reverse, y], Reverse[y]]]]

In[2719]:= Subs1Q[(a/b + d)/(c/b + h/b), {{1/b, t^2}, {d, 90}}]
Out[2719]= True

In[2732]:= Integrate2[x_, y__] := Module[{a, b, d, c = Map[Unique["gs"] &,
 Range[1, Length[{y}]]]},
 a = Riffle[{y}, c]; a = If[Length[{y}] == 1, a, Partition[a, 2]];

V.Z. Aladjev, V.A. Vaganov

 48

 d = Integrate[Subs1[x, a], Sequences[c]];
 {Simplify[Subs1[d, If[ListListQ[a], Map[Reverse, a], Reverse[a]]]],
 Map[Remove, c]}[[1]]]

In[2733]:= Integrate2[(a/b + d)/(c/b + h/b), 1/b, d]
Out[2733]= (d ((2 a)/b + d Log[1/b]))/(2 (c + h))
In[2734]:= Integrate2[x^2*y, x, y]
Out[2734]= (x^3 y^2)/6
In[2735]:= Integrate2[1/b, 1/b]
Out[2735]= 1/(2 b^2)
In[2736]:= Integrate2[(a/b + d)/(c/b + h/t), 1/b, 1/t]
Out[2736]= –((c t (–2 a b h + a c t + 4 b c d t) + 2 (b h + c t) (a b h – a c t – 2 b c d t)*
 Log[c/b + h/t])/(4 b^2 c^2 h t^2))
In[2737]:= Integrate2[Sqrt[a + Sqrt[c + d]*b], Sqrt[c + d]]
Out[2737]= (2 (a + b Sqrt[c + d])^(3/2))/(3 b)
In[2738]:= Integrate2[(a/b + d^2)/(c/b + h/b), 1/b, d^2]
Out[2738]= (2 a d^2 + b d^4 Log[1/b])/(2 b c + 2 b h)
In[2739]:= Integrate2[(a*x^2 + b/x^2)/(c*x^2 + d/x^2), x^2, d/x^2]
Out[2739]= (–c x^4 (4 b c – 2 a d + a c x^4) + 2 (d + c x^4) (2 b c – a d + a c x^4)*
 Log[(d + c x^4)/x^2])/(4 c^2 x^4)

In[2743]:= Diff1[x_, y__] := Module[{a, b, d, c = Map[Unique["gs"] &,
 Range[1, Length[{y}]]]},
 a = Riffle[{y}, c]; a = If[Length[{y}] == 1, a, Partition[a, 2]];
 d = D[Subs1[x, a], Sequences[c]];
 {Simplify[Subs1[d, If[ListListQ[a], Map[Reverse, a], Reverse[a]]]],
 Map[Remove, c]}[[1]]]

In[2744]:= Diff1[(a*x^2 + b/x^2)/(c*x^2 + d/x^2), x^2, d/x^2]
Out[2744]= (x^4 (2 b c – a d + a c x^4))/(d + c x^4)^3
In[2745]:= Diff1[c + a/b, c + a/b]
Out[2745]= 1
In[2746]:= Diff1[(c + a/b)*Sin[b + 1/x^2], a/b, 1/x^2]
Out[2746]= Cos[b + 1/x^2]
In[2747]:= Diff1[(c + a/b)*Sin[d/c + 1/x^2], 1/c, a/b, 1/x^2]
Out[2747]= –d Sin[d/c + 1/x^2]

Extension of Mathematica system functionality

 49

On the basis of the previous Subs1 function an useful enough procedure has
been realized, whose call Integrate2[x, y] provides integrating of an arbitrary
expression x on the subexpressions determined by a sequence y. At that, the
procedure with the returned result by means of Simplify function performs
a sequence of algebraic and other transformations and returns the simplest
form it finds. The previous fragment presents source code of the Integrate2
procedure along with typical examples of its usage. While the procedure call
Diff1[x, y] that is also realized on the basis of the Subs1 function returns the
differentiation result of an arbitrary expression x on the generalized {y,z, ...}
variables which can be an arbitrary expressions. The result is returned in the
simplified form on the basis of the Simplify function. The previous fragment
represents source code of the Diff1 procedure with examples of its usage.

The represented variants of realization of the tools Df, Df1, Df2, Diff1, Int,
Int1, Integrate2, ReplaceAll1, Subs and Subs1 illustrate various receptions
rather useful in a number of problems of programming in the Mathematica

system and, first of all, in problems of the system character. Moreover, the
above means rather essentially extend the appropriate system means.

The next fragment represents the means having both independent value,
and a number of useful appendices in programming. Two useful functions
used in the subsequent procedures of the fragment preface this fragment.
The call ListRulesQ[x] returns True if x is the list of rules of the form a –> b,
and False otherwise. Whereas the Map17 function generalizes the standard
Map function onto case of the list of rules as its second actual argument. The
call Map17[F, {{a –> b, c –> d, …}] where F – the symbol returns the result of
the format {F[a] –> F[b], F[c] –> F[d], …} without demanding any additional
explanations in view of its transparency.

Whereas the procedure call Diff[x, y, z, …] returns result of differentiation
of an expression x on the generalized variables {x, y, z, …} that are arbitrary
expressions. The result is returned in the simplified view on the basis of the
Simplify function. The procedure call Integral1[x, y, z, …] returns result of
integrating of an expression x on the generalized variables {x, y, z, …} which
are arbitrary expressions. The result is returned in the simplified view on
the basis of the standard Simplify function. The next fragment represents
the source codes of the above means ListRulesQ, Map17, Diff and Integral1
along with typical examples of their application.

V.Z. Aladjev, V.A. Vaganov

 50

In[3321]:= ListRulesQ[x_List] := DeleteDuplicates[Map[RuleQ[#] &,
 Flatten[x]]] === {True}

In[3322]:= ListRulesQ[{a –> b, c –> d, t –> g, w –> v, h}]
Out[3322]= False
In[3323]:= ListRulesQ[{a –> b, c –> d, t –> g, w –> v, h –> 90}]
Out[3323]= True

In[3324]:= Map17[x_, y_ /; RuleQ[y] || ListRulesQ[y]] :=
 If[RuleQ[y], Map[x, y], Map[Map[x, #] &, y]]

In[3325]:= Map17[F, a –> b]
Out[3325]= F[a] –> F[b]
In[3326]:= Map17[F, {a –> b, c –> d, t –> g, w –> v, h –> 90}]
Out[3326]= {F[a] –> F[b], F[c] –> F[d], F[t] –> F[g], F[w] –> F[v], F[h] –> F[90]}

In[3432]:= Diff[x_, y__] := Module[{c = {}, d = {}, b = Length[{y}], t = {}, k = 1,
 h = x, n = g, a = Map[ToString, Map[InputForm, {y}]]},
 Clear[g];
 While[k <= b, AppendTo[c, Unique[g]]; AppendTo[d, ToString[c[[k]]]];
 AppendTo[t, a[[k]] –> d[[k]]];
 h = ToExpression[StringReplace[ToString[h // InputForm], t[[k]]]];
 h = D[h, c[[k]]];
 h = ReplaceAll[h, Map[ToExpression, Part[t[[k]], 2] –>
 Part[t[[k]], 1]]]; k++]; g = n; Map[Clear, c]; Simplify[h]]

In[3433]:= Diff[Sin[x^2]*Cos[1/b^3], 1/b^3, x^2]
Out[3433]= –Cos[x^2]*Sin[1/b^3]
In[3434]:= Diff[(a + b)/(c + d), a + b, c + d]
Out[3434]= –(1/(c + d)^2)
In[3435]:= Diff[(a + b) + m/(c + d), a + b, 1/(c + d)]
Out[3435]= 0
In[3436]:= Diff[1/Sqrt[a + b]*(a + b) + Tan[Sqrt[a + b] + c], Sqrt[a+b], a+b]
Out[3436]= (Sec[Sqrt[a + b] + c]^2*Tan[Sqrt[a + b] + c])/Sqrt[a + b]

In[2257]:= Integral1[x_, y__] := Module[{d = {}, t = {}, k = 1, h = x, n = g,
 a = Map[ToString, Map[InputForm, {y}]], c = {}, b = Length[{y}]},
 Clear[g];
 While[k <= b, AppendTo[c, Unique[g]]; AppendTo[d, ToString[c[[k]]]];

Extension of Mathematica system functionality

 51

 AppendTo[t, a[[k]] –> d[[k]]];
 h = ToExpression[StringReplace[ToString[h // InputForm], t[[k]]]];
 h = Integrate[h, c[[k]]];
 h = ReplaceAll[h, Map[ToExpression, Part[t[[k]], 2] –>
 Part[t[[k]], 1]]]; k++]; g = n; Map[Clear, c]; Simplify[h]]

In[2258]:= g = 90; Integral1[Sin[x^2] + Cos[1/b^3], 1/b^3, x^2]
Out[2258]= –(Cos[x^2]/b^3) + x^2*Sin[1/b^3]

In[2259]:= Integral1[Sin[x] + Cos[x], x]
Out[2259]= –Cos[x] + Sin[x]

In[2260]:= Integral1[(Sin[x] + Cos[y])*z, x, y, z]
Out[2260]= (–(1/2))*z^2*(y*Cos[x] – x*Sin[y])

In[2261]:= Integral1[(a + b)/(c + d), a + b, c + d]
Out[2261]= (1/2)*(a + b)^2*Log[c + d]

In[2262]:= Integral1[(a + b) + m/(c + d), a + b, 1/(c + d)]
Out[2262]= (1/2 (a + b)^2 + ((a + b) m)/(c + d))/(c + d)

In[2263]:= Integral1[(a + b)/(c + d), a + b, c + d, c + d]
Out[2263]= 1/2 (a + b)^2 (c + d) (–1 + Log[c + d])

Thus, the procedures Diff and Integral1 have the certain limitations that at
usage demand the corresponding wariness; some idea of such restrictions is
illustrated by the following very simple example, namely:

In[3322]:= Diff[(a + b*m)/(c + d*n), a + b, c + d]
Out[3322]= –(m/((c + d)^2*n))

In[3323]:= Integral1[(a + b*m)/(c + d*n), a + b, c + d]
Out[3323]= ((a + b)^2*m*Log[c + d])/(2*n)

With the view of elimination of these shortcomings two modifications of the
functions Replace and ReplaceAll in the form of the procedures Replace4
and ReplaceAll2 have been created respectively. These procedures expand
standard means and allow to code the previous two procedures Integral1
and Diff with wider range of correct appendices in the context of use of the
generalized variables of differentiation and integration. The procedure call
Replace4[x, a –> b] returns the result of application to an expression x of a
substitution a –> b, when as its left part an arbitrary expression is allowed.
At absence in the expression x of occurrences of subexpression a the initial

V.Z. Aladjev, V.A. Vaganov

 52

expression x is returned. Unlike previous, the call ReplaceAll2[x, r] returns
result of application to an expression x of a rule r or consecutive application
of rules from the list r; as the left parts of rules any expressions are allowed.
In the following fragment the source codes of the procedures ReplaceAll2
and Replace4 along with typical examples of their usage are presented.

In[2445]:= Replace4[x_, r_ /; RuleQ[r]] := Module[{a, b, c, h},
 {a, b} = {ToString[x //InputForm], Map[ToString, Map[InputForm, r]]};
 c = StringPosition[a, Part[b, 1]];
 If[c == {}, x, If[Head[Part[r, 1]] === Plus, h = Map[If[(#[[1]] === 1||
 MemberQ[{" ", "(", "[", "{"}, StringTake[a, {#[[1]] – 1, #[[1]] – 1}]]) &&
 (#[[2]] === StringLength[a] || MemberQ[{" ", ")", "]", "}", ","},
 StringTake[a, {#[[2]] + 1, #[[2]] + 1}]]), #] &, c],
 h = Map[If[(#[[1]] === 1 || ! Quiet[SymbolQ[StringTake[a, {#[[1]] – 1,
 #[[1]] – 1}]]]) && (#[[2]] === StringLength[a]||
 ! Quiet[SymbolQ[StringTake[a, {#[[2]] + 1, #[[2]] + 1}]]]), #] &, c]];
 h = Select[h, ! SameQ[#, Null] &];
 ToExpression[StringReplacePart[a, "(" <> Part[b, 2] <> ")", h]]]]

In[2446]:= Replace4[(c + d*x)/(c + d + x), c + d –> a + b]
Out[2446]= (c + d*x)/(a + b + x)
In[2447]:= Replace[Sqrt[a + b*x^2*d + c], x^2 –> a + b]
Out[2447]= Sqrt[a + c + b*d*x^2]
In[2448]:= Replace4[Sqrt[a + b*x^2 *d + c], x^2 –> a + b]
Out[2448]= Sqrt[a + c + b*(a + b)*d]

In[2458]:= ReplaceAll2[x_, r_ /; RuleQ[r] || ListRulesQ[r]] :=
 Module[{a = x, k = 1}, If[RuleQ[r], Replace4[x, r],
 While[k <= Length[r], a = Replace4[a, r[[k]]]; k++]; a]]

In[2459]:= ReplaceAll[Sqrt[a + b*x^2*d + c], {x^2 –> a + b, a + c –> avz}]
Out[2459]= Sqrt[avz + b*d*x^2]
In[2460]:= ReplaceAll2[Sqrt[a + b*x^2 *d + c], {x^2 –> a + b, a + c –> avz}]
Out[2460]= Sqrt[avz + b*(a + b)*d]
In[2461]:= ReplaceAll2[x*y*z, {x –> 42, y –> 90, z –> 500}]
Out[2461]= 1 890 000
In[2462]:= ReplaceAll2[Sin[a + b*x^2*d + c*x^2], x^2 –> a + b]
Out[2462]= Sin[a + (a + b)*c + b*(a + b)*d]

Extension of Mathematica system functionality

 53

In[2488]:= Difff[x_, y__] := Module[{a=x, a1, a2, a3, b = Length[{y}], c={}, d,
 k = 1, n = g}, Clear[g]; While[k <= b, d = {y}[[k]];
 AppendTo[c, Unique[g]]; a1 = Replace4[a, d –> c[[k]]];
 a2 = D[a1, c[[k]]]; a3 = Replace4[a2, c[[k]] –> d];
 a = a3; k++]; g = n; Simplify[a3]]

In[2489]:= Difff[(a + b)/(c + d + x), a + b, c + d]
Out[2489]= –(1/(c + d + x)^2)
In[2490]:= Difff[(a + b*m)/(c + d*n), a + b, c + d]
Out[2490]= 0

In[2588]:= Integral2[x_, y__] := Module[{a = x, a1, a2, a3, b = Length[{y}],
 c = {}, d, k = 1, n = g}, Clear[g];
 While[k <= b, d = {y}[[k]]; AppendTo[c, Unique[g]];
 a1 = Replace4[a, d –> c[[k]]]; a2 = Integrate[a1, c[[k]]];
 a3 = Replace4[a2, c[[k]] –> d]; a = a3; k++]; g = n; Simplify[a3]]

In[2589]:= Integral2[(a + b*m)/(c + d*n), a + b, c + d]
Out[2589]= ((a + b)*(c + d)*(a + b*m))/(c + d*n)
In[2590]:= Integral2[Sqrt[a + c + b*(a + b)*d], a + c, a + b]
Out[2590]= (2/3)*(a + b)*(a + c + a*b*d + b^2*d)^(3/2)
In[2591]:= Integral2[Sqrt[a + c + h*g + b*d], c + h, b*d]
Out[2591]= (2/3)*(c + h)*(a + c + b*d + g*h)^(3/2)
In[2592]:= Integral2[(a + c + h*g + b*d)/(c + h), c + h, b*d]
Out[2592]= (1/2)*b*d*(2*a + 2*c + b*d + 2*g*h)*Log[c + h]
In[2593]:= Integral2[(c + h*m)/(c + h), c + h*m]
Out[2593]= (c + h*m)^2/(2*(c + h))

On the basis of the procedure Replace4 the procedures Diff and Integral1
can be expanded the procedures Diff and Integral1. The call Difff[x,y,z,…]
returns result of differentiation of an arbitrary expression x on the generalized
variables {y, z, h, t, …} that are any expressions. The result is returned in the
simplified form on the basis of the standard Simplify function. Whereas the
call Integral2[x,y,z,…] returns result of integration of an expression x on the
generalized variables {y, z, h, t, …} that are arbitrary expressions. The result
is returned in the simplified form on the basis of the Simplify function. In
the following fragment the source codes of the above means with examples
of application are represented. The means given above are rather useful in

V.Z. Aladjev, V.A. Vaganov

 54

many cases of manipulations with algebraic expressions that are based on a
system of rules, including their symbolical differentiation and integration on
the generalized variables that are arbitrary algebraic expressions.

The SEQ procedure serves as some analog of the built-in seq function of the
same name of the Maple system, generating sequences of values. The call
SEQ[x, y, z] returns the list of values x[y] where y changes within z=m;;n, or
within z=m;;n;;p with p step; at that, values {m, n, p} can accept only positive
numerical values; at m <= n a value p is considered positive value, otherwise
negative. Of examples of the next fragment the principle of formation of the
list of values depending on the format of the 3rd argument is well visually
looked through. In case of zero or negative value of the 3rd argument a call
SEQ[x, y, z] is returned unevaluated. The next fragment represents source
code of the SEQ procedure along with typical examples of its usage.

In[2334]:= SEQ[x_, y_ /; SymbolQ[y], z_ /; Head[z] == Span] :=
 Module[{a = ToString[z], b = {}, c, d = ToString[y], p},
 c = ToExpression[StringSplit[a, " ;; "]];
 If[DeleteDuplicates[Map[NumberQ, c]] != {True} ||
 DeleteDuplicates[Map[Positive, c]] != {True}, Return[Defer[Seq[x, y, z]]],
 If[Length[c] > 2 && c[[3]] == 0, Return[Defer[Seq[x, y, z]]],
 If[c[[1]] <= c[[2]], p = 1, p = 2]]]; For[y = c[[1]], If[p == 1, y <= c[[2]],
 y >= c[[2]] – If[p == 1 && Length[c] == 2 || p == 2 &&
 Length[c] == 2, 0, c[[3]] – 1]], If[Length[c] == 2, If[p == 1, y++, y––],
 If[p == 1, y += c[[3]], y –= c[[3]]]], b = Append[b, x]];
 {ToExpression["Clear[" <> d <> "]"], b}[[2]]]

In[2335]:= SEQ[F[k], k, 18 ;; 25]
Out[2335]= {F[18], F[19], F[20], F[21], F[22], F[23], F[24], F[25]}
In[2336]:= SEQ[F[t], t, 1 ;; 75 ;; 8]
Out[2336]= {F[1], F[9], F[17], F[25], F[33], F[41], F[49], F[57], F[65], F[73]}
In[2337]:= SEQ[F[t], t, 100 ;; 95]
Out[2337]= {F[100], F[99], F[98], F[97], F[96], F[95]}
In[2338]:= SEQ[F[t], t, 42.71 ;; 80 ;; 6.47]
Out[2338]= {F[42.71], F[49.18], F[55.65], F[62.12], F[68.59], F[75.06]}
In[2339]:= SEQ[F[k], k, 42 ;; 71 ;; –6]
Out[2339]= SEQ[F[k], k, 42 ;; 71 ;; –6]

Extension of Mathematica system functionality

 55

The call ExprsInStrQ[x, y] of an useful procedure returns True if a string x
contains correct expressions, and False otherwise. While through the second
optional argument y – an undefinite variable – a list of expressions that are in
x is returned. The next fragment represents source code of the ExprsInStrQ
procedure along with typical examples of its usage.

In[2360]:= ExprsInStrQ[x_ /; StringQ[x], y___] := Module[{a = {}, c = 1, d, j,
 b = StringLength[x], k = 1},
 For[k = c, k <= b, k++, For[j = k, j <= b, j++, d = StringTake[x, {k, j}];
 If[! SymbolQ[d] && ! SameQ[Quiet[Check[ToExpression[d],
 $Failed]], $Failed], a = Append[a, d]]]; c++];
 a = Mapp[StringTrim1, Mapp[StringTrim1,
 Map[StringTrim, a], "+", ""], "–", ""];
 a = DeleteDuplicates[Map[StringTrim, Select[a,
 ! SymbolQ[ToExpression[#]] && ! NumericQ[ToExpression[#]] &]]];
 If[a == {}, False, If[{y} != {} && ! HowAct[{y}[[1]]], {y} = {a}]; True]]

In[2361]:= ExprsInStrQ["a (c + d) – b^2 = Sin[x] h"]
Out[2361]= True
In[2362]:= {ExprsInStrQ["a (c + d) – b^2 = Sin[x] h", t], t}
Out[2362]= {True, {"a*(c + d)", "a*(c + d) – b", "a*(c + d) – b^2", "(c + d)",
 "(c + d) – b", "(c + d) – b^2", "c + d", "b^2", "Sin[x]", "Sin[x] h",
 "in[x]", "in[x] h", "n[x]", "n[x] h"}}
In[2363]:= {ExprsInStrQ["n*(a+c)/c ", h1], h1}
Out[2363]= {True, {"n*(a+c)", "n*(a+c)/c", "(a+c)", "(a+c)/c", "a+c"}}

In a whole series of problems of manipulation with expressions, including
differentiation and integration on the generalized variables, the question of
definition of structure of an expression through subexpressions entering in
it including any variables is topical enough. The given problem is solved by
the ExprComp procedure, whose the call ExprComp[x] returns the set of all
subexpressions composing expression x, whereas the call ExprComp[x, z],
where the second optional argument z – an undefined variable – through z in
addition returns the nested list of subexpressions of an arbitrary expression
x on levels, since the first level. The next fragment represents source code of
the ExprComp procedure with examples of its use. The code contains means
from [48] such as HowAct, Mapp, StringTrim1 and SymbolQ.

V.Z. Aladjev, V.A. Vaganov

 56

In[3329]:= ExprComp[x_, z___] := Module[{a = {x}, b, h = {}, F, q, t = 1},
 F[y_List] := Module[{c = {}, d, p, k, j = 1},
 For[j = 1, j <= Length[y], j++, k = 1;
 While[k < Infinity, p = y[[j]]; a = Quiet[Check[Part[p, k], $Failed]];
 If[a === $Failed, Break[], If[! SameQ[a, {}], AppendTo[c, a]]]; k++]]; c];
 q = F[a]; While[q != {}, AppendTo[h, q]; q = Flatten[Map[F[{#}] &, q]]];
 If[{z} != {} && ! HowAct[z], z = Map[Select[#, ! NumberQ[#] &] &, h]];
 Sort[Select[DeleteDuplicates[Flatten[h],
 Abs[#1] === Abs[#2] &], ! NumberQ[#] &]]]

In[3330]:= ExprComp[(1/b + Cos[a + Sqrt[c + d]])/(Tan[1/b] – 1/c^2)]
Out[3330]= {a, 1/b, b, –(1/c^2), c, d, Sqrt[c + d], c + d, a + Sqrt[c + d],
 Cos[a + Sqrt[c + d]], 1/b + Cos[a + Sqrt[c + d]], Tan[1/b],
 1/(–(1/c^2) + Tan[1/b]), –(1/c^2) + Tan[1/b]}
In[3331]:= ExprComp[(1/b + Cos[a + Sqrt[c + d]])/(Tan[1/b] – 1/c^2), g]
Out[3331]= {a, 1/b, b, –(1/c^2), c, d, Sqrt[c + d], c + d, a + Sqrt[c + d],
 Cos[a + Sqrt[c + d]], 1/b + Cos[a + Sqrt[c + d]], Tan[1/b],
 1/(–(1/c^2) + Tan[1/b]), –(1/c^2) + Tan[1/b]}

In[3332]:= g

Out[3332]= {{1/b + Cos[a + Sqrt[c + d]], 1/(–(1/c^2) + Tan[1/b])},
 {1/b, Cos[a + Sqrt[c + d]], –(1/c^2) + Tan[1/b]},
 {b, a + Sqrt[c + d], –(1/c^2), Tan[1/b]}, {a, Sqrt[c + d],
 1/c^2, 1/b}, {c + d, c, b}, {c, d}}

An arbitrary expression can be formed by means of arithmetic operators of
types: Plus ('+', '–'), Times ('*', /), Power ('^'), Indexed (indexes) or Function
(function). At that, expression a – b has type "+" with operands {a, –b}; while
expression a/b – the type "*" with operands {a, b^(–1)}; expression a^b has
type "^" with operands {a, b}; expression a[b] has the "Function" type while
expression a[[b]] has the "Indexed" type. In this sense it is possible to use a
certain indicator Cost for estimation of complexity of calculation of arbitrary
expressions. The Cost is defined as a polynomial from variables which are
names of the above three operators, Indexed and Function with non–negative
integer coefficients. The Cost procedure provides calculation of indicator;
its source code with examples of use represents the following fragment. At
creation of the source code the function Sequences from [48] has been used.

Extension of Mathematica system functionality

 57

In[2455]:= Cost[x_] := Module[{f = {Plus, Times, Power, Indexed, Function},
 a = ToString[InputForm[x]], b = {{"+", "–"},
 {"*", "/"}, "^"}, c, d = {}, h, k = 1, j, t},
 If[StringFreeQ[a, Flatten[{b, "["}]], 0, c = Map[StringCount[a, #] &, b];
 While[k <= 3, h = c[[k]]; If[h != 0, AppendTo[d, {f[[k]], h}]]; k++];
 If[Set[b, StringCount[a, "[["]] > 0, AppendTo[d, {f[[4]], b}]];
 t = StringPosition[a, "["]; If[t != {}, t = Map[#[[1]] &, t];
 t = Select[Map[If[StringTake[a, {# – 1, # – 1}] != "[" &&
 StringTake[a, {# + 1, # + 1}] != "[", #] &, t], ! SameQ[#, Null] &]];
 If[t != {}, AppendTo[d, {f[[5]], Length[t]}]];
 b = StringPosition[a, "(–"];
 {t, b, h} = {0, Map[#[[1]] &, b], StringLength[a]};
 For[k = 1, k <= Length[b], k++, c = "";
 For[j = b[[k]], j <= h, j++, c = c <> StringTake[a, {j, j}];
 If[StringCount[c, "{"] === StringCount[c, "}"],
 f = Quiet[Check[ToExpression[c], $Failed]];
 If[f === $Failed, Continue[], If [NumberQ[f], t = t + 1]]; Break[]]]];
 d = If[t != 0 && d[[1]][[1]] === Plus, d[[1]][[2]] = d[[1]][[2]] – t; d, d];
 Plus[Sequences[Map[#[[2]]*#[[1]] &, d]]]]]

In[2456]:= Cost[z^(h*n – 2) + t^3]
Out[2456]= 3*Plus + 2*Power + Times
In[2457]:= Cost[(z^(h*n – 2) + t^3)/(x*y + c)]
Out[2457]= 4*Plus + 2*Power + 3*Times
In[2458]:= Map[Cost, {42.47, 80*d + p^g, AvzAgnVsv}]
Out[2458]= {0, Plus + Power + Times, 0}
In[2459]:= Cost[(z^(h*n[80] – 2) + t^3)/(x*y + c[480])]
Out[2459]= 2*Function + 4*Plus + 2*Power + 3*Times
In[2460]:= Cost[(a + Sin[–a + v] + x[b[[–80 ;; 480]]]) // Quiet]
Out[2460]= 2*Function + Indexed + 4*Plus

The procedure call Cost[x] returns an indicator Cost of the above format for
an arbitrary algebraic expression x; at absence for x of operators is returned
zero. At that, the procedure is a rather simply disaggregated relative to the
calculation of number of operators Plus. Means of the present chapter are
rather useful and are located in our package AVZ_Package [48].

V.Z. Aladjev, V.A. Vaganov

 58

Chapter 3. Additional means of processing of symbols
and string structures in the Mathematica system

Without taking into account the fact that Mathematica has rather large set
of means for work with string structures, necessity of means that are absent
in the system arises. Some of such means are presented in the given chapter;
among them are available both simple, and more difficult which appeared
in the course of programming of problems of different purpose as additional
functions and procedures simplifying or facilitating the programming.

Examples of the present chapter illustrate formalization of procedures in the
Mathematica which reflects its basic elements and principles, allowing by
taking into account this material to directly start creation, at the beginning,
of simple procedures of different purpose which are based on processing of
string structures. Here only the procedures of so–called "system" character
intended for processing of string structures are considered which, however,
represent also the most direct applied interest for programming of various
appendices. Moreover, procedures and functions that have quite foreseeable
volume of source code that allows to carry out their rather simple analysis
are presented here. Their analysis can serve as rather useful exercise for the
reader both who is beginning programming in Mathematica, and already
having rather serious experience in this direction. Later we will understand
under "system" means the actually system means, and our means oriented
on mass application. At that, it should be noted that string structures are of
special interest not only as basic structures with which the system and the
user operate, but also as a base, in particular, of dynamic generation of the
objects in Mathematica, including procedures and functions. The mechanism
of such dynamic generation is quite simple and rather in details is considered
in [28-33], whereas examples of its application can be found in examples of
source codes of means of the present book. Below we will present a number
of useful means for processing of strings in the Mathematica system.

So, the call SuffPref[S, s, n] provides testing of a string S regarding to begin
(n = 1), to finish (n = 2) by a substring or substrings from the list s, or (n = 3)
be limited from both ends by substrings from s. At establishment of this fact
the SuffPref procedure returns True, otherwise False is returned. While the
call StrStr[x] of simple function provides return of an expression x different

Extension of Mathematica system functionality

 59

from string, in string format, and a double string otherwise. In a number of
cases the StrStr function is useful enough in work with strings, in particular,
with the standard StringReplace function. The fragment below represents
source codes of the above means along with examples of their application.

In[2510]:= StrStr[x_] := If[StringQ[x], "\"" <> x <> "\"", ToString[x]]

In[2511]:= Map[StrStr, {"RANS", a + b, IAN, {72, 67, 47}, F[x,y]}]
Out[2511]= {"\"RANS\"", "a + b", "IAN", "{72, 67, 47}", "F[x, y]"}

In[2512]:= SuffPref[S_String, s_ /; StringQ[s] || ListQ[s] &&
DeleteDuplicates[Map[StringQ, s]] == {True}, n_ /; MemberQ[{1, 2, 3}, n]] :=
 Module[{a, b, c, k = 1}, If[StringFreeQ[S, s], False, b = StringLength[S];
 c = Flatten[StringPosition[S, s]];
 If[n == 3 && c[[1]] == 1 && c[[–1]] == b, True,
 If[n == 1 && c[[1]] == 1, True,
 If[n == 2 && c[[–1]] == b, True, False]]]]]

In[2513]:= SuffPref["IAN_RANS_RAC_REA_90_500", "90_500", 2]
Out[2513]= True
In[2514]:= SuffPref["IAN_RANS_RAC_REA", {"IAN_RANS", "IAN_"}, 1]
Out[2514]= True
In[2515]:= SuffPref["IAN_RANS_R_REAIAN", {"IAN_RANS", "IAN"}, 3]
Out[2515]= True

The call Spos[x, y, p, d] calculates number of position of the first entrance of
a symbol y into a string x to the left (d=0) or to the right (d=1) from the given
position p. If substring y doesn't enter into string x in the specified direction
concerning position p, the call of the Spos returns zero. Otherwise, the call
Spos[x, y, p, dir] returns number of a position of the first entrance of y into x
string to the left (dir = 0) or to the right (dir = 1) from the given position p; in
addition, number of position is counted from the beginning of string x. The
Spos processes the main erroneous situations, returning on them False. The
following fragment represents source code of the Spos with examples of its
application. A number of means of AVZ_Package [48] use this procedure.

In[820]:= Spos[x_String, y_String, p_Integer, d_Integer] := Module[{a, b, c},
 If[StringFreeQ[x, y], Return[0],
 If[StringLength[y] > 1 || dir != 0 && dir != 1, Return[False],

V.Z. Aladjev, V.A. Vaganov

 60

 b = StringLength[x]]];
 If[p < 1||p > b, False, If[p == 1 && dir == 0, c = 0,
 If[p == b && dir == 1, c = 0,
 If[dir == 0, For[a = p, a >= 1, a –= 1,
 If[StringTake[x, {a}] == y, Return[a], c]],
 For[a = p, a <= b, a += 1, If[StringTake[x, {a}] == y, Return[a], c]]]]]];
 If[a == 0 || a == b + 1, 0, a]]

In[821]:= Q:= "AV80RAN480IN2014"; {Spos[Q, "A", 10, 0], Spos[Q, "4", 3, 1],
 Spos[Q, "0", 1, 1], Spos[Q, "Z", 19, 0], Spos[Q, "W", 19, 0], Spos[Q, "P", 1, 1]}
Out[821]= {6, 8, 4, 0, 0, 0}

In a number of cases the possibilities of the standard functions Replace and
StringReplace are insufficient. In this connection the procedure, whose call
StringReplace2[S, s, E] returns the result of replacement of all entries into a
string S of its substrings s onto an expression E has been created; at that, the
replaced substrings s shouldn't be limited by letters. If the string S doesn't
contain occurrences of s, the procedure call returns the initial string S while
on the empty string S the empty string is returned. In a sense the procedure
StringReplace2 combines possibilities of the above system functions. The
following fragment represents source code of the StringReplace2 procedure
along with typical examples of its usage.

In[2267]:= StringReplace2[S_ /; StringQ[S], s_ /; StringQ[s], Exp_] :=
 Module[{b, c, d, k = 1, a = Join[CharacterRange["A", "Z"],
 CharacterRange["a", "z"]]},
 b = Quiet[Select[StringPosition[S, s],
 ! MemberQ[a, StringTake[S, {#[[1]] – 1, #[[1]] – 1}]] &&
 ! MemberQ[a, StringTake[S, {#[[2]] + 1, #[[2]] + 1}]] &]];
 StringReplacePart[S, ToString[Exp], b]]

In[2268]:= StringReplace2["Length[\"abSin[x]\"] + Sin[x] + ab – Sin[x]*6",
 "Sin[x]", "a^b"]
Out[2268]= "Length[\"abSin[x]\"] + a^b + ab – a^b*6"
In[2269]:= StringReplace2["Length[\"abSin[x]\"] + Cos[x] + ab – Cos[x]*6",
 "abSin[x], "a^b"]
Out[2269]= "Length[\"a^b\"] + Cos[x] + ab – Cos[x]*6"

Extension of Mathematica system functionality

 61

In addition to the standard StringReplace function and the StringReplace2
procedure in a number of cases the procedure StringReplace1 is provided

as useful. The call StringReplace1[S, L, P] returns result of substitution in a
string S of substrings from the list P instead of its substrings determined by
positions of the nested list L of ListList–type. The next fragment represents
source code of the StringReplace1 procedure with examples of its usage.

In[2331]:= StringReplace1[S_ /; StringQ[S], L_ /; ListListQ[L] &&
 Length[L[[1]]] == 2 && MatrixQ[L, IntegerQ] &&
 Sort[Map[Min, L]][[1]] >= 1, P_ /; ListQ[P]] :=
 Module[{a = {}, b, k = 1},
 If[Sort[Map[Max, L]][[–1]] <= StringLength[S] &&
 Length[P] == Length[L], Null,
 Return[Defer[StringReplace1[S, L, P]]]];
 For[k, k <= Length[L], k++, b = L[[k]];
 a = Append[a, StringTake[S, {b[[1]], b[[2]]}] –> ToString[P[[k]]]]];
 StringReplace[S, a]]

In[2332]:= StringReplace1["avz123456789agn", {{4, 7}, {8, 10}, {11, 12}},
 {" RANS ", Tampere, Sqrt[(a + b)*(c + d)]}]
Out[2332]= "avz RANS TampereSqrt[(a + b) (c + d)]agn"

For operating with strings the SubsDel procedure represents a quite certain
interest whose call SubsDel[S, x, y, p] returns result of removal from a string
S of all substrings which are limited on the right (at the left) by a substring x
and at the left (on the right) by the first met symbol in string format from the
list y; moreover, search of y-symbol is done to the left (p = –1) or to the right
(p = 1). In addition, the deleted substrings will contain a substring x since
one end and the first symbol met from y since other end. Moreover, if in the
course of search the symbols from the list y weren't found until end of the
string S, the rest of the initial string S is removed. The fragment represents
source code of the SubsDel procedure with examples of its use. Procedure
is used by a number of means from our AVZ_Package package [48].

In[2321]:= SubsDel[S_ /; StringQ[S], x_ /; StringQ[x], y_ /; ListQ[y] &&
 DeleteDuplicates[Map[StringQ, y]] == {True} &&
 Plus[Sequences[Map[StringLength, y]]] == Length[y],
 p_ /; MemberQ[{–1, 1}, p]] :=

V.Z. Aladjev, V.A. Vaganov

 62

 Module[{b, c = x, d, h = StringLength[S], k},
 If[StringFreeQ[S, x], Return[S], b = StringPosition[S, x][[1]]];
 For[k = If[p == 1, b[[2]] + 1, b[[1]] – 1],
 If[p == 1, k <= h, k >= 1], If[p == 1, k++, k––],
 d = StringTake[S, {k, k}];
 If[MemberQ[y, d] || If[p == 1, k == 1, k == h], Break[],
 If[p == 1, c = c <> d, c = d <> c]; Continue[]]];
 StringReplace[S, c –> ""]]

In[2322]:= SubsDel["12345avz6789", "avz", {"8"}, 1]
Out[2322]= "1234589"

In[2323]:= SubsDel["12345avz6789", "avz", {"8", 9}, 1]
Out[2323]= SubsDel["12345avz6789", "avz", {"8", 9}, 1]

In[2324]:= SubsDel["123456789avz6789", "avz", {"5"}, 1]
Out[2324]= "123456789"

While the procedure call SubDelStr[x, L] provides removal from a string x
of all substrings which are limited by numbers of the positions given by the
list L of ListList–type from two–element sublists. On incorrect tuples of the
actual arguments the procedure call is returned unevaluated. The following
fragment represents source code of the procedure with examples of its use.

In[2826]:= SubDelStr[x_ /; StringQ[x], L_ /; ListListQ[L]] :=
 Module[{k = 1, a = {}},
 If[! L == Select[L, ListQ[#] && Length[#] == 2 &] ||
 L[[–1]][[2]] > StringLength[x] || L[[1]][[1]] < 1,
 Return[Defer[SubDelStr[x, L]]],
 For[k, k <= Length[L], k++, a = Append[a, StringTake[x, L[[k]]] –> ""]];
 StringReplace[x, a]]]

In[2827]:= SubDelStr["123456789abcdfdh", {{3, 5}, {7, 8}, {10, 12}}]
Out[2827]= "1269dfdh"

In[2828]:= SubDelStr["123456789abcdfdh", {{3, 5}, {7, 8}, {10, 12}, {40, 42}}]
Out[2828]= SubDelStr["123456789abcdfdh", {{3, 5}, {7, 8}, {10, 12}, {40, 42}}]

For receiving of substrings of a string which are given by their positions of
end and beginning, Mathematica possesses the StringTake function having
6 formats. However, in a number of cases is more convenient a receiving the

Extension of Mathematica system functionality

 63

sublines limited not by positions, but the list of substrings. For this purpose
two functionally identical procedures StringTake1 and StringTake2 serve
[48]. The call StringTake{1|2}[x, y] returns the list of substrings of a string x
that are limited by their substrings y; as the second argument can be both an
expression, and their list. The following fragment represents source code of
the StringTake2 procedure along with typical examples of its usage.

In[2751]:= StringTake2[x_ /; StringQ[x], y_] := Module[{b = {}, k = 1,
 a = Map[ToString, Map[InputForm, y]]},
 For[k, k <= Length[a], k++,
 b = Append[b, ToString1[a[[k]]] <> "–>" <> "\",\""]];
 StringSplit[StringReplace[x, ToExpression[b]], ","]]

In[2752]:= StringTake2["ransianavzagnvsvartkr", {ian, agn, art}]
Out[2752]= {"rans", "avz", "vsv", "kr"}
In[2753]:= StringTake2["ransianavzagnvsvartkr", {ian, 480, art, 80}]
Out[2753]= {"rans", "avzagnvsv", "kr"}
In[2754]:= StringTake2["ransianavzagnvsvartkr", {ran, ian, agn, art, kr}]
Out[2754]= {"s", "avz", "vsv"}

For work with strings the following procedure is rather useful, whose call
InsertN[S, L, n] returns result of inserting into a string S after its positions
from a list n of substrings from a list L; in case n = {< 1|≥ StringLength[S]} a
substring is located before string S or in its end respectively. It is supposed
that the actual arguments L and n may contain various number of elements,
in this case the excess elements n are ignored. At that, processing of a string
S is carried out concerning the list of positions for insertions m determined
according to the following relation m = DeleteDuplicates[Sort[n]]. The call
with inadmissible arguments is returned unevaluated. The next fragment
represents source code of the InsertN procedure with examples of its usage.

In[2583]:= InsertN[S_String, L_ /; ListQ[L], n_ /; ListQ[n] && Length[n] ==
 Length[Select[n, IntegerQ[#] &]]] :=
 Module[{a = Map[ToString, L], d = Characters[S], p, b, k = 1,
 c = FromCharacterCode[2], m = DeleteDuplicates[Sort[n]]},
 b = Map[c <> ToString[#] &, Range[1, Length[d]]];
 b = Riffle[d, b]; p = Min[Length[a], Length[m]];
 While[k <= p, If[m[[k]] < 1, PrependTo[b, a[[k]]],

V.Z. Aladjev, V.A. Vaganov

 64

 If[m[[k]] > Length[d], AppendTo[b, a[[k]]],
 b = ReplaceAll[b, c <> ToString[m[[k]]] –> a[[k]]]]]; k++];
 StringJoin[Select[b, ! SuffPref[#, c, 1] &]]]

In[2584]:= InsertN["123456789Rans_Ian", {Ag, Vs, Art, Kr}, {6, 9, 3, 0, 3, 17}]
Out[2584]= "Ag123Vs456Art789KrRans_Ian"
In[2585]:= InsertN["123456789", {a, b, c, d, e, f, g, h, n, m}, {4, 2, 3, 0, 17, 9, 18}]
Out[2585]= "a12b3c4d56789efg"

Contrary to the previous procedure the procedure DelSubStr[S, L] provides
removal from a string S of substrings, whose positions are given by the list
L; the list L has nesting 0 or 1, for example, {{3, 4}, {7}, {9}} or {1, 3, 5, 7, 9} [48].

Earlier it was already noted that certain functional facilities of Mathematica
need to be reworked both for purpose of expansion of scope of application,
and elimination of shortcomings. It to the full extent concerns such a rather
important function as ToString[x] that returns the result of converting of an
arbitrary expression x into string format. This standard procedure incorrectly
converts expressions into string format, that contain string subexpressions
if to code them in the standard way. By this reason we defined ToString1[x]
procedure returning result of correct converting of an arbitrary expression x
into string format. The next fragment presents source code of the ToString1
procedure with examples of its application. In a number of appendices this
procedure is popular enough.

In[2720]:= ToString1[x_] := Module[{a = "$Art25Kr18$.txt", b = "", c, k = 1},
 Write[a, x]; Close[a]; For[k, k < Infinity, k++, c = Read[a, String];
 If[SameQ[c, EndOfFile], Return[DeleteFile[Close[a]]; b],
 b = b <> StrDelEnds[c, " ", 1]]]]

In[2721]:= Kr[x_] := Module[{a = "ArtKr", b = " = "}, a <> b <> ToString[x]]
In[2722]:= ToString[Definition[Kr]]
Out[2722]= "Kr[x_] := Module[{a = ArtKr, b = = }, a<>b<>ToString[x]]"
In[2723]:= ToExpression[%]
 ToExpression::sntx: Invalid syntax in or before "Kr[x_] := Module[{a = …".
Out[2723]= $Failed
In[2724]:= ToString1[Definition[Kr]]
Out[2724]= "Kr[x_] := Module[{a = \"Art_Kr\", b = \" = \"},
 StringJoin[a, b, ToString[x]]]"

Extension of Mathematica system functionality

 65

In[2725]:= ToExpression[%]; Kr[80]
Out[2725]= "Art_Kr = 80"

In[2748]:= ToString2[x_] := Module[{a}, If[ListQ[x],
 SetAttributes[ToString1, Listable]; a = ToString1[x];
 ClearAttributes[ToString1, Listable]; a, ToString1[x]]]

In[2749]:= ToString2[a + b/72 – Sin[480.80]]
Out[2749]= "0.13590214677436363 + a + b/72"
In[2750]:= ToString2[{{72, 67}, {47, {a, b, {x, y}, c}, 52}, {25, 18}}]
Out[2750]= {{"72", "67"}, {"47", {"a", "b", {"x", "y"}, "c"}, "52"}, {"25", "18"}}

Immediate application of the ToString1 procedure allows to simplify rather
significantly the programming of a number of problems. At that, examples
of the previous fragment visually illustrate application of both means on
the concrete example, emphasizing advantages of our procedure. Whereas
the ToString2 procedure expands the previous procedure onto lists of any
level of nesting. So, the call ToString2[x] on an argument x, different from
the list, is equivalent to the call ToString1[x], while on a list x is equivalent
to the call ToString1[x] that is endowed with Listable–attribute. Source code
of the ToString2 with examples of its usage ended the given fragment.

The next fragment represents rather useful procedure, whose call SubStr[S,
p, a, b, r] returns a substring of a string S which is limited at the left by the
first symbol other than symbol a or other than symbols from the list a, and
on the right is limited by symbol other than b or other than symbols from a
list b. Meanwhile, through argument r in case of a erroneous situation the
corresponding message diagnosing the arisen error situation is returned. A
value of argument p must be in interval 1 .. StringLength[S]. The following
fragment represents source code and examples of usage of this procedure.

In[2379]:= SubStr[S_/; StringQ[S], p_/; IntegerQ[p], a_ /; CharacterQ[a] ||
 ListQ[a] && DeleteDuplicates[Map[CharacterQ, a]] == {True},
 b_ /; CharacterQ[b] || ListQ[b] &&
 DeleteDuplicates[Map[CharacterQ, b]] == {True}, r_ /; ! HowAct[r]] :=
 Module[{c = Quiet[StringTake[S, {p, p}]], k, t},
 If[p >= 1 && p <= StringLength[S],
 For[k = p + 1, k <= StringLength[S], k++, t = StringTake[S, {k, k}];

V.Z. Aladjev, V.A. Vaganov

 66

 If[If[CharacterQ[b], t != b, ! MemberQ[b, t]],
 c = c <> t; Continue[], Break[]]];
 For[k = p – 1, k >= 1, k––, t = StringTake[S, {k, k}];
 If[If[CharacterQ[a], t != a, ! MemberQ[a, t]],
 c = t <> c; Continue[], Break[]]]; c,
 r = "Argument p should be in range 1.." <>
 ToString[StringLength[S]] <> " but received " <>
 ToString[p]; $Failed]]

In[2380]:= SubStr["12345abcd480e80fg6789sewrt", 14, "3", "r", Error]
Out[2380]= "45abcd480e80fg6789sew"
In[2382]:= SubStr["12345abcdefg6789sewrt", 25, "0", "x", Error]
Out[2382]= $Failed
In[2383]:= Error
Out[2383]= "Argument p should be in range 1..21 but received 25"
In[2384]:= SubStr["12345ab3c480def80gr6789sewrt", 7, "3", "r", Err]
Out[2384]= "45ab3c480def80g"

In a number of cases of processing of expressions the problem of excretion
of one or the other type of expressions from strings is quite topical. In this
relation a certain interest the procedure ExprOfStr represents whose source
code with examples of its usage represents the following fragment. The call
ExprOfStr[w, n, m, L] returns result of extraction from a string w limited by
its n-th position and the end, of the first correct expression on condition that
search is done on the left (m=–1) / on the right (m=1) from the given position,
furthermore a symbol, next or previous behind the found expression must
belong to the list L. The call is returned in string format; in the absence of a
correct expression $Failed is returned, while procedure call on inadmissible
arguments is returned unevaluated.

In[2675]:= ExprOfStr[x_ /; StringQ[x], n_ /; IntegerQ[n] && n > 0,
 m_ /; MemberQ[{–1, 1}, m], L_ /; ListQ[L]] :=
 Module[{a = "", b, k}, If[n >= StringLength[x],
 Return[Defer[ExprOfStr[x, n, m, L]]], Null];
 For[k = n, If[m == –1, k >= 1, k <= StringLength[x]],
 If[m == –1, k––, k++], If[m == –1, a = StringTake[x, {k, k}] <> a,
 a = a <> StringTake[x, {k, k}]]; b = Quiet[ToExpression[a]];

Extension of Mathematica system functionality

 67

 If[b === $Failed, Null, If[If[m == –1, k == 1, k == StringLength[x]]||
 MemberQ[L, Quiet[StringTake[x,
 If[m == –1, {k – 1, k – 1}, {k + 1, k + 1}]]]], Return[a], Null]]]; $Failed]

In[2676]:= P[x_, y_] := Module[{a, P1}, P1[z_, h_] := Module[{n},
 z^2 + h^2]; x*y + P1[x, y]]
In[2677]:= x = ToString1[Definition[P]]; {ExprOfStr[x, 44, 1, {" ", ";", ","}],
 ExprOfStr[x, 39, –1, {" ", ";", ","}]}
Out[2677]= {"Module[{n}, z^2 + h^2]", "P1[z_, h_]"}
In[2679]:= ExprOfStr[x, 10, 1, {" ", ";", ","}]
Out[2679]= $Failed
In[2680]:= ExprOfStr["12345678;F[(a+b)/(c+d)]; AV_2014", 10, 1, {"^", ";"}]
Out[2680]= "F[(a + b)/(c + d)]"

The ExprOfStr1 procedure represents an useful enough modification of the
previous procedure; its call ExprOfStr1[x,n,p] returns a substring of a string
x, that is minimum on length and in which a boundary element is a symbol
in n–th position of string x, containing a correct expression. At that, search
of such substring is done from n–th position to the right and until the end of
string x (p=1), and from the left from n-th position of string to the beginning
of the string (p = –1). In case of lack of such substring the call returns $Failed
while on inadmissible arguments the call is returned unevaluated [48].

In[3148]:= x = "123{a+b}, F[c+d+Sin[a+b]]"; ExprOfStr1[x, 25, –1]
Out[3148]= "F[c+d+Sin[a+b]]"
In[3149]:= x = "123{a+b}, [c+d]"; ExprOfStr1[x, 15, –1]
Out[3149]= $Failed
In[3150]:= x = "123{a+b}, [c+d]"; ExprOfStr1[x, 17, –1]
Out[3150]= ExprOfStr1["123{a+b}, [c+d]", 17, –1]

In a certain relation to the ExprOfStr procedure also the ExtrExpr procedure
adjoins, whose call ExtrExpr[S, N, M] returns a correct expression in string
format which is contained in a substring of a string S limited by positions
with numbers N and M. At lack of a correct expression the empty list, i.e. {}
is returned [48].

In[2622]:= ExtrExpr["z=(Sin[x+y] + Log[x])+G[x,y];", 4, 13]
Out[2622]= "Sin[x + y]"
In[2623]:= ExtrExpr["z=(Sin[x+y] + Log[x])+F[x,y];", 1, 21]

V.Z. Aladjev, V.A. Vaganov

 68

Out[2623]= "Log[x] + Sin[x + y]"
In[2624]:= ExtrExpr["z = (Sin[x + y] + Log[x]) + F[x, y];", 1, 36]
Out[2624]= "F[x, y] + Log[x] + Sin[x + y]"

The ExtrExpr procedure is rather useful in a number of appendices, which
are connected, first of all, with extraction of expressions from strings.

The string structure is one of basic structures in Maple and in Mathematica,
for ensuring work with which both systems have a number of the effective
enough means. However, if Maple along with a rather small set of the built-
in means has an expanded set of means from the StringTools module and a
number of means from our library [47], Mathematica in this regard has less
representative set of means. Meanwhile, the set of its standard means allows
to program enough simply the lacking Maple–analogs, and other means of
processing of strings. Our means of this orientation are represented in [48].

Unlike the StringFreeQ function, the procedure call StringDependQ[x, y]
returns True, if a string x contains entries of a substring y or all substrings
given by the list y, and False otherwise. Whereas the call StringDependQ[x,

y, z] in the presence of the third optional argument – an undefinite variable –
throu it in addition returns the list of substrings that don't have entries into
a string x. The following fragment represents source code of the procedure
StringDependQ along with typical examples of its usage.

In[2611]:= StringDependQ[x_ /; StringQ[x], y_ /; StringQ[y]||ListStrQ[y],
 z___] := Module[{a = Map[StringFreeQ[x, #] &, Flatten[{y}]],
 b = {}, c = Length[y], k = 1},
 If[DeleteDuplicates[a] == {False}, True, If[{z} != {} && ! HowAct[z],
 z = Select[Flatten[y], StringFreeQ[x, #] &]]; False]]

In[2612]:= {StringDependQ["abcd", {"a", "d", "g", "s", "h", "t", "w"}, t], t}
Out[2612]= {False, {"g", "s", "h", "t", "w"}}
In[2613]:= {StringDependQ["abgschtdw", {"a", "d", "g", "s", "h", "t", "w"}, j], j}
Out[2613]= {True, j}

In a number of tasks of strings processing, there is a need of replacement
not simply of substrings but substrings limited by the given substrings. The
procedure solves one of such tasks, its call StringReplaceS[S, s1, s2] returns
the result of substitution into a string S instead of entries into it of substrings
s1 limited by strings "x" on the left and on the right from the specified lists

Extension of Mathematica system functionality

 69

L and R respectively, by substrings s2 (StringLength["x"] = 1); at absence of
such entries the procedure call returns S. The following fragment represents
source code of the StringReplaceS procedure with an example of its usage.

In[2691]:= StringReplaceS[S_ /; StringQ[S], s1_String, s2_String] :=
 Module[{a = StringLength[S], b = StringPosition[S, s1], c = {}, k = 1,
 p, L = Characters["`!@#%^&*(){}:\"\\/|<>?~–=+[];:'., 1234567890"],
 R = Characters["`!@#%^&*(){}:\"\\/|<>?~=[];:'., "]},
 If[b == {}, S, While[k <= Length[b], p = b[[k]];
 If[Quiet[(p[[1]] == 1 && p[[2]] == a) ||
 (p[[1]] == 1 && MemberQ[R, StringTake[S, {p[[2]] + 1, p[[2]] + 1}]])||
 (MemberQ[L, StringTake[S, {p[[1]] – 1, p[[1]] – 1}]] &&
 MemberQ[R, StringTake[S, {p[[2]] + 1, p[[2]] + 1}]])||
 (p[[2]] == a && MemberQ[L, StringTake[S, {p[[1]] – 1, p[[1]] – 1}]])],
 c = Append[c, p]]; k++]; StringReplacePart[S, s2, c]]]

In[2692]:= StringReplaceS["abc& c + bd6abc – abc78*abc", "abc", "xyz"]
Out[2692]= "xyz& c + bd6xyz – abc78*xyz"

The given procedure, in particular, is a rather useful means at processing of
definitions of blocks and modules in respect of operating with their formal
arguments and local variables.

In a number of cases at processing of strings it is necessary to extract from
them the substrings limited by the symbol {"}, i.e. "strings in strings". This
problem is solved by the procedure, whose call StrFromStr[x] returns the
list of such substrings that are in a string x; otherwise, the call StrFromStr[x]
returns the empty list, i.e. {}. The following fragment represents source code
of the procedure along with typical examples of its application.

In[3050]:= StrFromStr[x_ /; StringQ[x]] := Module[{a = "\"", b, c = {}, k = 1},
 b = DeleteDuplicates[Flatten[StringPosition[x, a]]];
 For[k, k <= Length[b] – 1, k++, c = Append[c,
 ToExpression[StringTake[x, {b[[k]], b[[k + 1]]}]]]; k = k + 1]; c]

In[3051]:= StrFromStr["12345\"678abc\"xyz\"48080\"mnph"]
Out[3051]= {"678abc", "910"}
In[3052]:= StrFromStr["123456789"]
Out[3052]= {}

V.Z. Aladjev, V.A. Vaganov

 70

Unlike the standard StringSplit function, the call StringSplit1[x,y] performs
semantic splitting of a string x by a symbol y onto elements of the returned
list. In this case the semantics is reduced to the point that in the returned list
only those substrings of the string x which contain correct expressions are
placed; for lack of such substrings the procedure call returns the empty list.
The StringSplit1 procedure appears as a quite useful means, in particular, at
programming of means of processing of headings of blocks, functions and
modules. The comparative analysis of StringSplit and StringSplit1 speaks
well for the last. The next fragment represents source code of the procedure
StringSplit1 along with typical examples of its application.

In[2950]:= StringSplit1[x_ /; StringQ[x], y_ /; StringQ[y] ||
 StringLength[y] == 1] :=
 Module[{a = StringSplit[x, y], b, c = {}, d, p, k = 1, j = 1},
 d = Length[a]; Label[G]; For[k = j, k <= d, k++, p = a[[k]];
 If[! SameQ[Quiet[ToExpression[p]], $Failed], AppendTo[c, p], b = a[[k]];
 For[j = k, j <= d – 1, j++, b = b <> y <> a[[j + 1]];
 If[! SameQ[Quiet[ToExpression[b]], $Failed], AppendTo[c, b];
 Goto[G], Null]]]]; c]

In[2951]:= StringSplit["x_String, y_Integer, z_/; MemberQ[{1,2,3,4,5}, z]||
 IntegerQ[z], h_, s_String, c_ /; StringQ[c] || StringLength[c] == 1", ","]
Out[2951]= {"x_String", " y_Integer", " z_/; MemberQ[{1"," 2"," 3"," 4"," 5}", " z]
||IntegerQ[z]", " h_", " s_String", " s_ /; StringQ[y]||StringLength[y] == 1"}
In[2952]:= StringSplit1["x_String, y_Integer, z_/; MemberQ[{1,2,3,4,5}, z]||
 IntegerQ[z], h_, s_String, c_ /; StringQ[c] || StringLength[c] == 1", ","]
Out[2952]= {"x_String", " y_Integer", " z_/; MemberQ[{1, 2, 3, 4, 5}, z]||
IntegerQ[z]", " h_", "s_String", "h_ /; StringQ[y] || StringLength[y] == 1"}

A number of the problems dealing with processing of strings do the SubsStr
procedure as a rather useful, whose call SubsStr[x, y, h, t] returns result of
replacement in a string x of all entries of substrings formed by concatenation
(on the right at t=1 or at the left at t=0) of substrings y with strings from a list
h, onto strings from the list h respectively. At impossibility of carrying out
replacement the initial string x is returned. The SubsStr procedure appears
as a useful means, for example, at programming of means of processing of
the body of procedure in string format that contains local variables. Whereas

Extension of Mathematica system functionality

 71

the call SubsBstr[S, x, y] returns the list of all nonintersecting substrings in a
string S that are limited by symbols x and y, otherwise the empty list, i.e. {}
is returned. The following fragment represents source codes of procedures
SubsStr and SubsBstr along with examples of their usage.

In[2209]:= SubsStr[x_ /; StringQ[x], y_ /; StringQ[y], h_ /; ListQ[h],
 t_ /; MemberQ[{0, 1}, t]] := Module[{a = Map[ToString, h], b},
 If[StringFreeQ[x, y], Return[x], b = If[t == 1, Map3[StringJoin, y, a],
 Mapp[StringJoin, a, y]]];

 If[StringFreeQ[x, b], Return[x], StringReplace[x, Map9[Rule, b, h]]]]

In[2210]:= SubsStr["Module[{a$ = $CallProc, b$, c$}, x + StringLength[y] +
 b$*c$; b$ – c$; a$]", "$", {",", "]", "[", "}", " ", ";", "*", "^", "–"}, 1]
Out[2210]= "Module[{a = $CallProc, b, c}, x + StringLength[y] + b*c; b – c; a]"

In[2438]:= SubsBstr[S_ /; StringQ[S], x_ /; CharacterQ[x],
 y_ /; CharacterQ[y]] := Module[{a = {}, c, h, n, m, s = S, p, t},
 c[s_, p_, t_] := DeleteDuplicates[Map10[StringFreeQ, s, {p, t}]] == {False};
 While[c[s, x, y], n = StringPosition[s, x, 1][[1]][[1]];
 s = StringTake[s, {n, –1}]; m = StringPosition[s, y, 1];
 If[m == {}, Return[], m = m[[1]][[1]]];
 AppendTo[a, h = StringTake[s, {1, m}]];
 s = StringReplace[s, h –> ""]; Continue[]]; a]

In[2439]:= SubsBstr["123452333562675243655", "2", "5"]
Out[2439]= {"2345", "23335", "2675", "24365"}
In[2440]:= SubsBstr["123452333562675243655", "9", "5"]
Out[2440]= {}

The following procedure SubStrSymbolParity presents undoubted interest
at processing of definitions of the blocks/functions/modules given in string
format. The call SubStrSymbolParity[x, y, z, d] with four arguments returns
the list of substrings of a string x that are limited by one-character strings y,
z (y ≠ z); at that, search of such substrings in the string x is done from left to
right (d=0), and from right to left (d=1). While call SubStrSymbolParity[x,
y, z, d, t] with the fifth optional argument – a positive number t > 0 – provides
search in substring of x that is limited by a position t and the end of string x
at d=0, and by the beginning of string x and t at d=1. In case of receiving of

V.Z. Aladjev, V.A. Vaganov

 72

inadmissible arguments the procedure call is returned unevaluated, while
at impossibility of extraction of the demanded substrings the procedure call
returns $Failed. This procedure is a rather useful means, in particular, at the
solution of problems of extraction in definitions of procedures of the list of
local variables, headings of procedures, etc. The fragment represents source
code of the SubStrSymbolParity procedure with examples of its application

In[2533]:= SubStrSymbolParity[x_ /; StringQ[x], y_ /; CharacterQ[y],
 z_ /; CharacterQ[z], d_ /; MemberQ[{0, 1}, d], t___ /;
 t == {} || PosIntQ[{t}[[1]]]] :=
 Module[{a, b = {}, c = {y, z}, k = 1, j, f, m = 1, n = 0, p, h},
 If[{t} == {}, f = x, f = StringTake[x, If[d == 0, {t, StringLength[x]}, {1, t}]]];
 If[Map10[StringFreeQ, f, c] != {False, False} || y == z, Return[],
 a = StringPosition[f, If[d == 0, c[[1]], c[[2]]]]];
 For[k, k <= Length[a], k++, j = If[d == 0, a[[k]][[1]] + 1, a[[k]][[2]] – 1];
 h = If[d == 0, y, z];
 While[m != n, p = Quiet[Check[StringTake[f, {j, j}], Return[$Failed]]];
 If[p == y, If[d == 0, m++, n++];
 If[d == 0, h = h <> p, h = p <> h],
 If[p == z, If[d == 0, n++, m++];
 If[d == 0, h = h <> p, h = p <> h],
 If[d == 0, h = h <> p, h = p <> h]]];
 If[d == 0, j++, j––]];
 AppendTo[b, h]; m = 1; n = 0; h = ""]; b]

In[2534]:= SubStrSymbolParity["12345{abcdfgh}67{rans}8{ian}9", "{", "}", 0]
Out[1534]= {"{abcdfgh}", "{rans}", "{ian}"}
In[2535]:= SubStrSymbolParity["12345{abcdfg}67{rans}8{ian}9", "{", "}", 0, 7]
Out[2535]= {"{rans}", "{ian}"}
In[2536]:= SubStrSymbolParity["12345{abcdfgh}67{rans}8{ian}9", "{", "}", 1]
Out[2536]= {"{abcdfgh}", "{rans}", "{ian}"}
In[2537]:= SubStrSymbolParity["12345{abfgh}67{rans}8{ian}9", "{", "}", 1, 25]
Out[2537]= {"{abfgh}", "{rans}"}
In[2538]:= SubStrSymbolParity["12345{abch}67{rans}8{ian}9", "{", "}", 1, –80]
Out[2538]= SubStrSymbolParity["12345{abch}67{rans}8{ian}9", "{", "}", 1, –80]

Extension of Mathematica system functionality

 73

Meanwhile, in many cases it is quite possible to use a simpler and reactive
version of this procedure, whose call SubStrSymbolParity1[x, y, z] with 3
factual arguments returns the list of substrings of a string x that are limited
by one-character strings {y,z} (y≠z); at that, search of such substrings is done
from left to right. In the absence of the desired substrings the procedure call
returns the empty list, i.e. {}. The following fragment represents source code
of the SubStrSymbolParity1 procedure along with examples of its usage.

In[2023]:= SubStrSymbolParity1[x_ /; StringQ[x], y_ /; CharacterQ[y],
 z_ /; CharacterQ[z]] := Module[{c = {}, d, k = 1, j, p,
 a = DeleteDuplicates[Flatten[StringPosition[x, y]]],
 b = DeleteDuplicates[Flatten[StringPosition[x, z]]]},
 If[a == {} || b == {}, {}, For[k, k <= Length[a], k++,
 p = StringTake[x, {a[[k]], a[[k]]}];
 For[j = a[[k]] + 1, j <= StringLength[x], j++, p = p <> StringTake[x, {j, j}];
 If[StringCount[p, y] == StringCount[p, z], AppendTo[c, p]; Break[]]]]; c]]

In[2024]:= SubStrSymbolParity1["Definition2[Function[{x, y}, x*Sin[y]]",
 "{", "}"]
Out[2024]= {"{x, y}"}
In[2025]:= SubStrSymbolParity1["G[x_String, y_, z_/; ListQ[z]]:= Block[{},
 {x,y,z}]", "[", "]"]
Out[2025]= {"[x_String, y_, z_/; ListQ[z]]", "[z]", "[{}, {x, y, z}]"}

The following simple enough procedure is a very useful modification of the
SubStrSymbolParity1 procedure; its call StrSymbParity[S, s, x, y] returns a
list, whose elements are substrings of a string S that have format sw format
on condition of parity of the minimum number of entries into a substring w
of symbols x,y (x≠y). In the absence of such substrings or identity of symbols
x,y, the call returns the empty list, i.e. {}. The following fragment represents
source code of the StrSymbParity procedure with examples of its usage.

In[2175]:= StrSymbParity[S_ /; StringQ[S], S1_ /; StringQ[S1],
 x_ /; StringQ[x] && StringLength[x] == 1,
 y_ /; StringQ[y] && StringLength[y] == 1] :=
 Module[{b = {}, c = S1, d, k = 1, j, a = StringPosition[S, S1]},
 If[x == y ||a == {}, {}, For[k, k <= Length[a], k++,
 For[j = a[[k]][[2]] + 1, j <= StringLength[S], j++,

V.Z. Aladjev, V.A. Vaganov

 74

 c = c <> StringTake[S, {j, j}];
 If[StringCount[c, x] != 0 && StringCount[c, y] != 0 &&
 StringCount[c, x] === StringCount[c, y], AppendTo[b, c];
 c = S1; Break[]]]]]; b]

In[2176]:= StrSymbParity["12345[678]9[abcd]", "34", "[", "]"]
Out[2176]= {"345[678]"}
In[2177]:= StrSymbParity["12345[6[78]9", "34", "[", "]"]
Out[2177]= {}
In[2178]:= StrSymbParity["12345[678]9[ab34cd[x]34[a, b]", "34", "[", "]"]
Out[2178]= {"345[678]", "34cd[x]", "34[a, b]"}

Procedures SubStrSymbolParity, SubStrSymbolParity1 & StrSymbParity
are rather useful tools, in particular, at processing of definitions of modules
and blocks given in string format. These procedures are used by a number
of means of the AVZ_Package package [48].

The SubsStrLim procedure presents a quite certain interest for a number of
appendices which rather significantly use procedure of extraction from the
strings of substrings of a quite certain format. The next fragment represents
source code of the SubsStrLim procedure along with examples of its usage.

In[2542]:= SubsStrLim[x_ /; StringQ[x], y_ /; StringQ[y] &&
 StringLength[y] == 1, z_ /; StringQ[z] && StringLength[z] == 1] :=
 Module[{a, b = x <> FromCharacterCode[6], c = y, d = {}, p, j, k = 1, n, h},
 If[! StringFreeQ[b, y] && ! StringFreeQ[b, z], a = StringPosition[b, y];
 n = Length[a]; For[k, k <= n, k++, p = a[[k]][[1]]; j = p;
 While[h=Quiet[StringTake[b, {j+1, j+1}]]; h != z, c=c <> h; j++]; c=c <> z;
 If[StringFreeQ[StringTake[c, {2, –2}], {y, z}], AppendTo[d, c]]; c = y]];
 Select[d, StringFreeQ[#, FromCharacterCode[6]] &]]

In[2543]:= SubsStrLim["1234363556aaa36", "3", "6"]
Out[2543]= {"36", "3556", "36"}
In[2544]:= SubsStrLim[DefOpt["SubsStrLim"], "{", "}"]
Out[2544]= {"{}", "{j + 1, j + 1}", "{2, –2}", "{y, z}"}
In[2545]:= SubsStrLim["1234363556aaa363", "3", "3"]
Out[2545]= {"343", "363", "3556aaa3", "363"}

The call SubsStrLim[x,y,z] returns the list of substrings of a string x that are

Extension of Mathematica system functionality

 75

limited by symbols {y, z} provided that these symbols don't belong to these
substrings, excepting their ends. In particular, the SubsStrLim procedure is
a quite useful means at need of extracting from of definitions of functions,
blocks and modules given in string format of some components composing
them that are limited by certain symbols, at times, significantly simplifying
a number of procedures of processing of such definitions. Whereas, the call
SubsStrLim1[x, y, z] of the procedure that is an useful modification of the
previous SubsStrLim procedure, returns the list of substrings of a string x
that are limited by symbols {y, z} provided that these symbols or don't enter
into substrings, excepting their ends, or along with their ends have identical
number of entries of pairs {y, z} [48], for example:

In[2215]:= SubsStrLim1["art[kr[xyz]sv][rans]80[[480]]", "[", "]"]
Out[2215]= {"[kr[xyz]sv]", "[xyz]", "[rans]", "[[480]]", "[480]"}

In[2216]:= SubsStrLim1["G[x_] := Block[{a = 80, b = 480, c = 2014},
 (a^2 + b^3 + c^4)*x]", "{", "}"]
Out[2216]= {"{a = 80, b = 480, c = 2014}"}

The mechanism of string patterns is quite often used for extraction of some
structures from text strings. In a certain degree the the given mechanism we
can quite consider as a special programming language of text structures and
strings. The mechanism of string patterns provides a rather serious method
to make various processing of string structures. At that, acquaintance with
special languages of processing of strings in many cases allows to determine
string patterns by the notation of regular expressions which are determined
in the Mathematica system on the basis of the RegularExpression function.
The interested reader is sent to [60,71] or to the reference on the system. In
this light the RedSymbStr procedure is represented as a quite useful means
whose call RedSymbStr[x,y,z] returns result of replacement of all substrings
consisting of a symbol y, of a string x onto a symbol or a string z. In case of
lack of occurrences of y in x, the procedure call returns the initial string x.
The fragment represents source code of the procedure with examples of use.

In[2202]:= RedSymbStr[x_/; StringQ[x], y_ /; SymbolQ1[y], z_String] :=
 Module[{a = StringPosition[x, y], b},
 If[StringFreeQ[x, y], x, b = Map[#[[1]] &, a]];
 b = Sort[DeleteDuplicates[Map[Length,

V.Z. Aladjev, V.A. Vaganov

 76

 Split[b, #2 – #1 == 1 &]]], Greater];
 b = Mapp[Rule, Map3[StringMultiple, y, b], z];
 StringReplace[x, b]]

In[2203]:= RedSymbStr["a b c d ef gh x y z", " ", " "]
Out[2203]= "a b c d ef gh x y z"
In[2204]:= RedSymbStr["a b c d ef gh x y z", " ", ""]
Out[2204]= "abcdefghxyz"
In[2205]:= RedSymbStr["a b c d ef gh x y z", " ", "GGG"]
Out[2205]= "aGGGbGGGcGGGdGGGefGGGghGGGxGGGyGGGz"
In[2206]:= RedSymbStr["a b c d ef gh x y z", "x", "GGG"]
Out[2206]= "a b c d ef gh GGG y z"

So, the strings generated by earlier considered ToString1 procedure can be
called as StringStrings (strings of strings, or the nested strings) as in the case
of lists; a quite simple function can be used for their testing, whose the call
StringStringQ[x] returns True if an expression x represents a string of type
StringStrings, and False otherwise. In a certain sense ToString1 procedure
generates the nested strings analogously to the nested lists, and the level of
nesting of a string x can be determined by the simple procedure whose call
StringLevels[x] returns the nesting level of a string x provided that the zero
level corresponds to the standard string, i.e. a string of the form "hhh … h".
The fragment below represents source codes of function StringStringQ and
procedure StringLevels along with typical examples of their usage.

In[2237]:= StringStringQ[x_] := If[! StringQ[x], False, If[SuffPref[x, "\"", 1]
 && SuffPref[x, "\"", 2], True, False]]

In[2238]:= Map[StringStringQ, {"\"vsvartkr\"", "vsv\\art\\kr", a + b,
 "\"\\\"vsv\\art\\kr\\\"\""}]
Out[2238]= {True, False, False, True}

In[2703]:= StringLevels[x_ /; StringQ[x]] := Module[{a = x, n = –1},
 While[StringQ[a], a = ToExpression[a]; n++; Continue[]]; n]

In[2704]:= Map[StringLevels, {"agn", "\"vsv\"", "\"\\\"art\\\"\"", rans}]
Out[2704]= {0, 1, 2, StringLevels[rans]}

For the purpose of simplification of programming of a number of procedures
proved useful to define the procedure, whose call SubsPosSymb[x, n, y, z]

Extension of Mathematica system functionality

 77

returns a substring of a string x which is limited on the right (at the left) by a
position n, and at the left (on the right) by a symbol from a list y; in addition,
search in string x is done from left to right (z=0) and from right to left (z=1).
The procedure call on inadmissible arguments is returned unevaluated. The
following fragment represents source code of the SubsPosSymb procedure
along with typical examples of its usage.

In[2942]:= SubsPosSymb[x_ /; StringQ[x], n_ /; PosIntQ[n], y_ /; ListQ[y] &&
 DeleteDuplicates[Map[CharacterQ, y]] == {True}, z_ /; z == 0||z == 1] :=
 Module[{a = "", k = n, b}, If[n > StringLength[x],
 Return[Defer[SubsPosSymb[x, n, y, z]]],
 While[If[z == 0, k >= 1, k <= StringLength[x]], b = StringTake[x, {k, k}];
 If[! MemberQ[y, b], If[z == 0, a = b <> a, a = a <> b], Break[]];
 If[z == 0, k––, k++]]; a]]

In[2943]:= SubsPosSymb["123456789abcdfght", 5, {"g"}, 1]
Out[2943]= "56789abcdf"
In[2944]:= SubsPosSymb["123456789abcdfght", 16, {"z"}, 0]
Out[2944]= "123456789abcdfgh"

The rather simple procedure ListStrToStr represents undoubted interest at
processing of lists in string format, more precisely, the call ListStrToStr[x]
where argument x has format {"a", "b", ...} converts x into string of format
"a, b, c, ...", if the procedure call uses only an arbitrary actual argument x; if
the procedure call uses an arbitrary expression as the second argument, the
call returns a string of format "abcde...". The following fragment represents
source code of the ListStrToStr procedure along with examples of its usage.

In[3828]:= ListStrToStr[x_ /; ListQ[x] &&
 DeleteDuplicates[Map[StringQ, x]] == {True}, p___] :=
 Module[{a = ""}, If[{p} == {}, Do[a = a <> x[[k]] <> ", ",
 {k, Length[x]}]; StringTake[a, {1, –3}], StringJoin[x]]]

In[3829]:= ListStrToStr[{"a", "b", "c", "d", "h", "t", "k", "Art", "Kr", "Rans"}]
Out[3829]= "a, b, c, d, h, t, k, Art, Kr, Rans"
In[3830]:= ListStrToStr[{"a*b", "*", "t[x]", " – ", "(c – d)", "*", "j[y]", " == ", "6"}, 6]
Out[3830]= "a*b*t[x] – (c – d)*j[y] == 6"

The following procedure is a rather useful means for ensuring of converting

V.Z. Aladjev, V.A. Vaganov

 78

of strings of a certain structure into lists of strings. In particular, such tasks
arise at processing of formal arguments and local variables. This problem is
solved rather effectively by the StrToList procedure, providing converting
of strings of format "{xxxxxxxx …. x}" into the list of strings received from a
string "xxxxxxxx …. x" parted by comma symbols ",". In absence in an initial
string of both limiting symbols {"{", "}"} the string is converted into the list
of symbols according to the call Characters["xxxxx … x"]. The next fragment
represents source code of the StrToList procedure with examples of its use.

In[2190]:= StrToList[x_/; StringQ[x]] := Module[{a, b = {}, c = {}, d, h, k = 1, j,
 y = If[StringTake[x, {1, 1}] == "{" &&
 StringTake[x, {–1, –1}] == "}", StringTake[x, {2, –2}], x]},
 a = DeleteDuplicates[Flatten[StringPosition[y, "="]] + 2];
 d = StringLength[y];
 If[a == {}, Map[StringTrim, StringSplit[y, ","]],
 While[k <= Length[a], c = ""; j = a[[k]];
 For[j, j <= d, j++, c = c <> StringTake[y, {j, j}];
 If[! SameQ[Quiet[ToExpression[c]], $Failed] &&
 (j == d || StringTake[x, {j + 1, j + 1}] == ","),
 AppendTo[b, c –> ToString[Unique[ArtKr$]]]; Break[]]]; k++];
 h = Map[StringTrim, StringSplit[StringReplace[y, b], ","]];
 Mapp[StringReplace, h, RevRules[b]]]]

In[2191]:= StrToList["Kr, a = 80, b = {x, y, z}, c = {n, m, {42, 47, 67}}"]
Out[2191]= {"Kr", "a = 80", "b = {x, y, z}", "c = {n, m, {42, 47, 67}}"}
In[2192]:= StrToList["{a, b = 80, c = {m, n}}"]
Out[2192]= {"a", "b = 80", "c = {m, n}"}
In[2193]:= Map[StrToList, {"{a, b, c, d}", "a, b, c, d"}]
Out[2193]= {{"a", "b", "c", "d"}, {"a", "b", "c", "d"}}

In[2194]:= RevRules[x_ /; RuleQ[x] || ListQ[x] &&
 DeleteDuplicates[Map[RuleQ, x]] == {True}] :=
 Module[{a = Flatten[{x}], b}, b = Map[#[[2]] –> #[[1]] &, a];
 If[Length[b] == 1, b[[1]], b]]

In[2195]:= RevRules[{x –> a, y –> b, z –> c, h –> g, m –> n}]
Out[2195]= {a –> x, b –> y, c –> z, g –> h, n –> m}

Extension of Mathematica system functionality

 79

The above procedure is intended for converting of strings of format "{x…x}"
or "x…x" into the list of strings received from strings of the specified format
that are parted by symbols "=" and/or comma ",". Fragment examples quite
visually illustrate the principle of performance of the procedure along with
formats of the returned results. Moreover, the fragment is ended by a quite
simple and useful procedure, whose call RevRules[x] returns the rule or list
of rules that are reverse to the rules determined by an argument x – a rule of
format a –> b or their list. The RevRules is essentially used by the StrToList.

The next means are useful at work with string structures. The procedure call
StringPat[x, y] returns the string expression formed by strings of a list x and
objects {"_", "__", "___"}; the call returns x if x – a string. The procedure call
StringCases1[x, y, z] returns the list of the substrings in a string x that match
a string expression, created by the call StringPat[x, y]. Whereas the function
call StringFreeQ1[x, y, z] returns True if no substring in a string x matches a
string expression, created by the call StringPat[x, y], and False otherwise. In
the fragment below, source codes of the above three means with examples of
their usage are represented.

In[2583]:= StringPat[x_ /; StringQ[x] || ListStringQ[x],
 y_ /; MemberQ[{"_", "__", "___"}, y]] := Module[{a = "", b},
If[StringQ[x], x, b = Map[ToString1, x]; ToExpression[StringJoin[Map[# <>
 "~~" <> y <> "~~" &, b[[1 ;; –2]]], b[[–1]]]]]]

In[2584]:= StringPat[{"ab", "df", "k"}, "__"]
Out[2584]= "ab" ~~ __ ~~ "df" ~~ __ ~~ "k"

In[2585]:= StringCases1[x_ /; StringQ[x], y_ /; StringQ[y] || ListStringQ[y],
 z_ /; MemberQ[{"_", "__", "___"}, z]] := Module[{b, c = "", d, k = 1},
 Sort[Flatten[Map[DeleteDuplicates, If[StringQ[y], {StringCases[x, y]},
 {StringCases[x, StringPat[y, z], Overlaps –> All]}]]]]]

In[2587]:= StringCases1["abcdfghkaactabcfgfhkt", {"ab", "df", "k"}, "___"]
Out[2587]= {"abcdfghk", "abcdfghkaactabcfgfhk"}

In[2588]:= StringFreeQ1[x_ /; StringQ[x], y_ /; StringQ[y] || ListStringQ[y],
 z_ /; MemberQ[{"_", "__", "___"}, z]] := If[StringQ[y], StringFreeQ[x, y],

 If[StringCases1[x, y, z] == {}, True, False]]

V.Z. Aladjev, V.A. Vaganov

 80

In[2589]:= StringFreeQ1["abcfghkaactabcfghkt", {"ab", "df", "k"}, "___"]
Out[2589]= True

In[2590]:= StringFreeQ1["abcdfghkaactabcfghkt", {"ab", "df", "k"}, "___"]
Out[2590]= False

The above means are used by a number of means of AVZ_Package package,
enough frequently essentially improving the programming algorithms that
deal with string expressions.

Both the system means, and our means of processing of strings represented
in the present book form effective tools for processing of objects of the given
type. The above means of processing of string structures similar to means of
Maple have been based as on rather widely used standard means of system
Mathematica, and on our means presented in the present book, very clearly
demonstrating relative simplicity of programming in Math–language of the
means similar to means of Maple as its main competitor. At that, existence
in Mathematica of rather developed set of means for operating with string
patterns allows to create effective and developed systems of processing of
string structures which by many important indicators surpass possibilities
of Maple. Furthermore, the means of processing of string structures which
have been programmed in the Math-language not only are more effective at
temporal relation, but also the Mathematica system for their programming
has the advanced functional means, including rather powerful mechanism
of string patterns allowing to speak about a pattern type of programming
and providing developed means of processing of strings on the level which
not significantly yield to specialized languages of text processing.

So, our experience of usage of both systems for programming of means for
operating with string structures showed that standard means of Maple by
many essential indicators yield to the means of the same type of the Math–
language. For problems of this type the Math-language appears simpler not
only in connection with more developed means, but also a procedural and
functional paradigm allowing to use mechanism of pure functions. So, the
present chapter represents a number of the means expanding the standard
facilities of system that are oriented on work with string structures. These
and other means of this type are located in our package [48]. At that, their
correct use assumes that this package is uploaded into the current session.

Extension of Mathematica system functionality

 81

Chapter 4. Additional means of processing of sequences
and lists in the Mathematica software

At programming of many appendices the usage not of separate expressions,
but their sets formed in the form of lists is expedient. At such organization
instead of calculations of separate expressions there is an opportunity to do
the demanded operations as over lists in a whole – unified objects – and over
their separate elements. Lists of various types represent important and one
of the most often used structures in Mathematica. In Mathematica system
many functions have the Listable–attribute saying that an operator or block,
function, module F with this attribute are automatically applicable to each
element of the list used respectively as their operand or argument. The call
ListableQ[x] of simple function returns True if x has Listable–attribute, and
False otherwise [48]. Meanwhile, a number of the operations having Listable-
attribute requires compliance on length of the lists operands, otherwise the
corresponding erroneous situations are initiated. With the view of removal
of this shortcoming the ListOp procedure has been offered whose the call
ListOp[x, y, z] returns the list whose elements are results of application of a
procedure/function z to the corresponding elements of lists x and y; at that,
in case of various lengths of such lists the procedure is applied to both lists
within their common minimum length, without causing faulty situationns.
The ListOp procedure substantially supposes the pure functions as the 3rd
argument what considerably allows to expand a class of functions as the 3rd
argument. In principle, Listable–attribute can be ascribed to any procedure /
function of arity 1, providing its correct call on a list as the actual argument,
as the following simple example illustrates, namely:

In[2450]:= {G[{a, b, c, d, h}], SetAttributes[G, Listable], G[{a, b, c, d, h}]}
Out[2450]= {G[{a, b, c, d, h}], Null, {G[a], G[b], G[c], G[d], G[h]}}

At the formal level for a block, function or module F of arity 1 it is possible
to note the following defining relation, namely:

Map[F, {a, b, c, d, …}] ≡ {F[a], F[b], F[c], F[d], …}

where in the left part the procedure F can be both with Listable attribute, and
without it whereas in the right part the existence of the Listable attribute for
a block, module or a function F is supposed. At that, for blocks, functions or

V.Z. Aladjev, V.A. Vaganov

 82

modules without the Listable attribute for receiving its effect the system Map
function is used. For ensuring existence of the Listable attribute for a block /
function/module the simple ListableC procedure can be rather useful [48].

The Mathematica system at manipulation with the list structures has certain
shortcomings among which impossibility of direct assignment to elements
of a list of expressions is, as the following simple example illustrates:
In[2412]:= {a, b, c, d, h, g, s, x, y, z}[[10]] = 90
 Set::setps: {a, b, c, d, h, g, s, x, y, z} in the part assignment is not a symbol.>>
Out[2412]= 90
In[2413]:= z
Out[2413]= z

In order to simplify the implementation of procedures that use similar direct
assignments to the list elements, the ListAssignP procedure is used, whose
call ListAssignP[x, n, y] returns the updated value of a list x which is based
on results of assignment of a value y or the list of values to elements n of the
list x where n – one position or their list. Moreover, if the lists n and y have
different lengths, their common minimum value is chosen. The ListAssignP
expands functionality of the Mathematica, doing quite correct assignments
to the list elements what the system fully doesn't provide. Fragment below
represents source code of the ListAssignP along with examples of its usage.

In[2693]:= ListAssignP[x_ /; ListQ[x], n_ /; PosIntQ[n]||PosIntListQ[n],
 y_] := Module[{a = DeleteDuplicates[Flatten[{n}]],
 b = Flatten[{y}], c, k = 1},
 If[a[[–1]] > Length[x], Return[Defer[ListAssignP[x, n, y]]],
 c = Min[Length[a], Length[b]]];
 While[k <= c, Quiet[Check[ToExpression[ToString[x[[a[[k]]]]] <>
 " = " <> ToString1[If[ListQ[n], b[[k]], y]]], Null]]; k++];
 If[NestListQ1[x], x[[–1]], x]]

In[2694]:= Clear[x, y, z]; ListAssignP[{x, y, z}, 3, 500]
Out[2694]= {x, y, 500}
In[2695]:= Clear[x, y, z]; ListAssignP[{x, y, z}, {2, 3}, {73, 67}]
Out[2695]= {x, 73, 67}
In[2696]:= Clear[x, y, z]; ListAssignP[{x, y, z}, 3, {42, 72, 2015}]
Out[2696]= {42, 72, 2015}

Extension of Mathematica system functionality

 83

Along with the ListAssignP procedure expediently to in addition determine
simple function whose call ListStrQ[x] returns True if all elements of a list x
– expressions in string format, and False otherwise. The following fragment
represents source code of the ListStrQ function with an example of its use.

In[2599]:= ListStrQ[x_ /; ListQ[x]] := Length[Select[x, StringQ[#] &]] ==
 Length[x] && Length[x] != 0

In[2600]:= Map[ListStrQ, {{"a", "b", "a", "b"}, {"a", "b", a, "a", b}, {"A", "K"}}]
Out[2600]= {True, False, True}

The following procedure is useful enough in procedural programming, its
call ListAssign[x,y] provides assignment of values of a list x to the generated
variables of y$nnn format, returning the nested list, whose the first element
determines list of the generated "y$nnn" variables in string format, whereas
the second defines the list of the values assigned to them from the list x. The
ListAssign procedure is of interest, first of all, in problems of the dynamical
generation of variables with assigning values to them. The fragment below
represents source code of the procedure along with an example of its usage.

In[2221]:= ListAssign[x_ /; ListQ[x], y_ /; SymbolQ[y]] := Module[{a = {}, b},
 Do[a = Append[a, Unique[y]], {k, Length[x]}];
 b = Map[ToString, a];
 ToExpression[ToString[a] <> "=" <> ToString1[x]]; {b, a}]

In[2222]:= ListAssign[{47, 25, 18, 67, 72}, h]
Out[2222]= {{"h$533", "h$534", "h$535", "h$536", "h$537"}, {47, 25, 18, 67, 72}}

In the Mathematica for grouping of expressions along with simple lists also
more complex list structures in the form of the nested lists are used, whose
elements are also lists (sublists). In this connection the lists of ListList–type,
whose elements – sublists of identical length are of special interest. For simple
lists the system has the testing function; whose call ListQ[x] returns True, if
x – a list, and False otherwise. While for testing of the nested lists we defined
the useful enough functions NestListQ, NestListQ1, NestQL, ListListQ [33,
48]. These means are quite often used as a part of the testing components of
headings of procedures and functions both from our AVZ_Package package
[48], and in various blocks, functions and modules, first of all, that are used
in problems of the system character [28-33].

V.Z. Aladjev, V.A. Vaganov

 84

In addition to the above testing functions some useful functions of the same
class that are quite useful in programming of means to processing of the list
structures of any organization have been created [33,48]. Among them can
be noted testing means such as BinaryListQ, IntegerListQ, ListNumericQ,
ListSymbolQ, PosIntQ, PosIntListQ, ListExprHeadQ. In particular, the call
ListExprHeadQ[v, h] returns True if a list v contains only elements meeting
the condition Head[a]=h, and False otherwise. In addition, the testing means
process all elements of the analyzed list, including all its sublists of any level
of nesting. The next fragment represents source code of the ListExprHeadQ
function along with typical examples of its usage.

In[2576]:= ListExprHeadQ[x_/; ListQ[x], h_] :=
 Length[x]==Length[Select[x, Head[#]===h&]]

In[2577]:= {ListExprHeadQ[{a + b, c – d}, Plus], ListExprHeadQ[{a*b, c/d},
 Times], ListExprHeadQ[{a^b, (c+a)^d}, Power]}
Out[2577]= {True, True, True}

The above means are often used at programming of the problems oriented
on processing of list structures. These and other means of the given type are
located in our package [48]. In addition, their correct usage assumes that the
package is uploaded into the current session.

The useful SelectPos function provides the choice from a list of elements by
their given positions. The call SelectPos[x,y,z] returns the list with elements
of a list x, whose numbers of positions are different from elements of a list y
(at z=1) whereas at z=2 the list with elements of the list x whose numbers of
positions coincide with elements of the integer list y is returned. Fragment
below represents source code of the function with examples of its usage.

In[2696]:= SelectPos[x_ /; ListQ[x], y_ /; ListQ[y] &&
 DeleteDuplicates[Map[IntegerQ[#] && # > 0 &, y]] == {True},
 z_ /; MemberQ[{1, 2}, z]] := Select[x, If[If[z == 2, Equal, Unequal]
 [Intersection[Flatten[Position[x, #]], y], {}], False, True] &]

In[2697]:= SelectPos[{a,b,c,d,e,f,g,h,m,n,p}, {1,3,5,7,9,11,13,15,17,19,21}, 2]
Out[2697]= {a, c, e, g, m, p}
In[2698]:= SelectPos[{a,b,c,d,e,f,g,h,m,n,p}, {1,3,5,7,9,11,13,15,17,19,21}, 1]
Out[2698]= {b, d, f, h, n}

Extension of Mathematica system functionality

 85

It must be kept in mind that numbers of positions of the list y outside the
range of positions of elements of the list x are ignored, without initiating an
erroneous situation what is convenient for ensuring continuous execution of
appendices without processing of the situations.

For the solution of a number of the problems dealing with the nested lists,
in certain cases can arise problems which aren't solved by direct standard
means, demanding in similar situations of programming of tasks by means
which are provided by Mathematica. It quite visually illustrates an example
of the task consisting in definition of number of elements different from the
list, at each level of nesting of a list and simple list (level of nesting 0), and the
nested. This problem is solved by procedure whose call of ElemLevelsN[x]
returns the nested list whose elements are the two–element lists whose first
element determines the nesting level while the second – number of elements
of this level with the type different from List. Procedure ElemLevelsL is an
useful modification of the above procedure [33,48]. The following fragment
represents source codes of the both procedures with examples their usage.

In[2733]:= ElemLevelsN[x_ /; ListQ[x]] := Module[{a=x, c={}, m=0, n, k=0},
 While[NestListQ1[a], n = Length[Select[a, ! ListQ[#] &]];
 AppendTo[c, {k++, n – m}]; m = n; a = Flatten[a, 1]; Continue[]];
 Append[c, {k++, Length[a] – m}]]

In[2734]:= L = {a,b,a,{d,c,s},a,b,{b,c,{x,y,{v,g,z,{90,{500,{},72}},a,k,a},z},b},c,b};
In[2735]:= ElemLevelsN[L]
Out[2735]= {{0, 7}, {1, 6}, {2, 3}, {3, 6}, {4, 1}, {5, 2}, {6, 0}}
In[2736]:= Map[ElemLevelsN, {{}, {a,b,c,d,r,t,y,c,s,f,g,h,72,90,500,s,a,q,w}}]
Out[2736]= {{{0, 0}}, {{0, 19}}}

In[2874]:= ElemLevelsL[x_ /; ListQ[x]] := Module[{a=x, c={}, m={}, n, k=0},
 While[NestListQ1[a], n = Select[a, ! ListQ[#] &];
 AppendTo[c, {k++, MinusList[n, m]}]; m = n; a = Flatten[a, 1];
 Continue[]]; Append[c, {k++, MinusList[a, m]}]]
In[2875]:= ElemLevelsL[L]
Out[2875]= {{0, {a, b, a, a, b, c, b}}, {1, {d, s}}, {2, {x, y, z}}, {3, {v, g, k}},
 {4, {90}}, {5, {500, 72}}, {6, {}}}

The following procedure provides return of all possible sublists of a nested
list. The call SubLists[x] returns the list of all possible sublists of the nested

V.Z. Aladjev, V.A. Vaganov

 86

list x, taking into account their nesting. At that, if the list x is simple, the call
SubLists[x] returns the empty list, i.e. {}. The following fragment represents
source code of the SubLists procedure with examples of its application.

In[2339]:= SubLists[x_ /; ListQ[x]] := Module[{a, b, c = {}, k = 1},
 If[! NestListQ1[x], {}, a = ToString[x];
 b = DeleteDuplicates[Flatten[StringPosition[a, "{"]]];
 While[k <= Length[b], AppendTo[c,
 SubStrSymbolParity1[StringTake[a, {b[[k]], –1}], "{", "}"][[1]]]; k++];
 DeleteDuplicates[ToExpression[c[[2 ;; –1]]]]]]

In[2340]:= L = {a,b,a,{d,c,s},a,b,{b,c,{x,y,{v,g,z,{80,{480,{},72}},a,k,a}, },b},c,b};
In[2341]:= SubLists[Flatten[L]]
Out[2341]= {}
In[2342]:= SubLists[L]
Out[2342]= {{d, c, s}, {b, c, {x, y, {v, g, z, {80, {480, {}, 72}}, a, k, a}}, b},
 {x, y, {v, g, z, {80, {480, {}, 72}}, a, k, a}}, {v, g, z, {80, {480, {}, 72}},
 a, k, a}, {80, {480, {}, 72}}, {480, {}, 72}, {}}
In[2343]:= SubLists[{a, b, {c, d, {g, h, {g, s}}, {n, m}}, {80, 480}}]
Out[2343]= {{c, d, {g, h, {g, s}}, {n, m}}, {g, h, {g, s}}, {g, s}, {n, m}, {80, 480}}

Means of operating with levels of a nested list are of special interest. In this
context the following means can be rather useful. As one of such means the
MaxLevel procedure can be considered whose call MaxLevel[x] returns the
maximum nesting level of a list x (in addition, the nesting level of a simple list x
is supposed equal to zero). At that, the MaxNestLevel procedure is a equivalent
version of the previous procedure. While the call ListLevels[x] returns the
list of nesting levels of a list x; in addition, for a simple list or empty list the
procedure call returns zero. The following fragment represents source codes
of the above procedures along with typical examples of their usage.

In[2562]:= MaxLevel[x_ /; ListQ[x]] := Module[{a = x, k = 0},
 While[NestListQ1[a], k++; a = Flatten[a, 1]; Continue[]]; k]

In[2563]:= Map[MaxLevel, {{a,b}, {a, {b,c,d}}, {{{a,b,c}}}, {a, {{c, {d}, {{h,g}}}}}}]
Out[2563]= {0, 1, 2, 4}
In[2564]:= MaxLevel[{a, b, c, d, f, g, h, s, r, t, w, x, y, z}]
Out[2564]= 0

Extension of Mathematica system functionality

 87

In[2581]:= ListLevels[x_ /; ListQ[x]] := Module[{a = x, b, c = {}, k = 1},
 If[! NestListQ1[x], {0}, While[NestListQ1[a], b = Flatten[a, 1];
 If[Length[b] >= Length[a], AppendTo[c, k++], AppendTo[c, k]];
 a = b; Continue[]]; c]]

In[2582]:= ListLevels[{a, b, c, d, f, g, h, s, r, t, w, x, y, z}]
Out[2582]= {0}
In[2583]:= ListLevels[{a,b,c, {d,f, g, {h, s, {z,y,g}, r}, t}, w, {x, {{{a,b,c}}}, y}, z}]
Out[2583]= {1, 2, 3, 4}

In[586]:= MaxNestLevel[L_ /; ListQ[L]] := Module[{a=Flatten[L], b=L, c=0},
 While[! a == b, b = Flatten[b, 1]; c = c + 1]; c]

In[2587]:= L = {{a, {b, {m, {x, y, {p, q, {g, 2014}}}, n}, x}, c, {{{{{{{67, 72}}}}}}}}};
 Map[MaxNestLevel, {L, {a, b, c}}]
Out[2587]= {8, 0}

Moreover, between the above means the following defining relations take
place, namely:

Flatten[x] ≡ Flatten[x, MaxLevel[x]] MaxLevel[x] ≡ ListLevels[x][[–1]]

The next rather useful procedure of work with lists has structural character,
first of all, for the nested lists. Generally speaking, the call ElemOnLevels[x]
returns the nested list whose elements are sublists whose first elements are
levels of a nested list x while the others – elements of these levels. For lack
of elements on level j the sublist has the form {j}; the call ElemOnLevels[x]
on a simple list x returns {0, x}, i.e. the simple list has the nesting level 0. In
the following fragment the source code of the ElemOnLevels procedure and
typical examples of its usage are represented.

In[2736]:= ElemOnLevels[x_List] := Module[{a, b, c, d, p = 0, k, j = 1},
 If[! NestListQ1[x], Flatten[{0, x}], {a, c, d} = {x, {}, {}};
 While[NestListQ1[a], b = {p++}; For[k = 1, k <= Length[a], k++,
 If[! ListQ[a[[k]]], AppendTo[b, a[[k]]]; AppendTo[c, k]]];
 AppendTo[d, b];
 a = Flatten[Delete[a, Map[List, c]], 1]; {b, c} = {{}, {}}; j++];
 AppendTo[d, Flatten[{p++, a}]]]]

In[2737]:= ElemOnLevels[{a, b, {c, d, {f, h, d}, s, {p, w, {n, m, r, u}, t}}, x,y,z}]

V.Z. Aladjev, V.A. Vaganov

 88

Out[2737]= {{0, a, b, x, y, z}, {1, c, d, s}, {2, f, h, d, p, w, t}, {3, n, m, r, u}}
In[2738]:= ElemOnLevels[{a, b, c, d, f, h, d, s, p, w, n, m, r, u, t, x, y, z}]
Out[2738]= {0, a, b, c, d, f, h, d, s, p, w, n, m, r, u, t, x, y, z}
In[2739]:= ElemOnLevels[{{{a, b, c, d, f, h, d, s, p, w, n, m, r, u, t, x, y, z}}}]
Out[2739]= {{0}, {1}, {2, a, b, c, d, f, h, d, s, p, w, n, m, r, u, t, x, y, z}}
In[2740]:= Map[ElemOnLevels, {{{{}}}, {}, {{{{{}}}}}}]
Out[2740]= {{{0}, {1}, {2}}, {0}, {{0}, {1}, {2}, {3}, {4}}}

For assignment of the same value to the variables can be used a very simple
construction x1 = x2 = … = a1, while for assignment to variables of different
values can be used construction {x1, x2, x3, …} = {a1, a2, a3, …} provided that
lengths of both lists are identical, otherwise the erroneous situation arises. In
order to eliminate this shortcoming the procedure call ListsAssign[x, y] can
be used, returning result of assignment of values of a list y to a list x.

In[2766]:= ListsAssign[x_ /; ListQ[x], y_/; ListQ[y]] := Module[{b, c, d = {},
 a = Min[Map[Length, {x, y}]], k = 1},
 If[a == 0, Return[x], Off[Set::setraw]; Off[Set::write]; Off[Set::wrsym]];
 While[k <= a, {b, c} = {x[[k]], y[[k]]}; AppendTo[d, b = c]; k++];
 x = {Sequences[d[[1 ;; a]]], Sequences[x[[a + 1 ;; –1]]]};
 On[Set::setraw]; On[Set::write]; On[Set::wrsym]; x]

In[2767]:= L = {x, 80, a + b, Sin, t, s}; P = {a, b, c, w, 72}; ListsAssign[L, P]
Out[2767]= {a, 80, a + b, Sin, 72, s}
In[2768]:= {x, y, z, h, g, w, t} = {a, b, c}
 Set::shape: Lists {x, y, z, h, g, w, t} and {a, b, c} are not the same shape. >>
Out[2768]= {a, b, c}
In[2769]:= ListsAssign[{x, y, z, h, g, w, t}, {a, b, c}]; {x, y, z}
Out[2769]= {a, b, c}

In[2770]:= ListAppValue[x_List, y_] := Quiet[x = PadLeft[{}, Length[x], y]]

In[2771]:= x = 80; ListAppValue[{x1, y, z, h, g, w, t}, 72]; {x1, y, z, h, g, w, t, x}
Out[2771]= {72, 72, 72, 72, 72, 72, 72, 80}

Thus, the call ListsAssign[x, y] returns the list x updated by assignments; at
that, the procedure processes the erroneous and special situations caused by
the assignments x=y. While the call ListAppValue[x,y] provides assignment
of the same value y to elements of a list x. The previous fragment represents

Extension of Mathematica system functionality

 89

source codes of the above means along with examples of their application.

The next procedure is intended for grouping of elements of a list according
to their multiplicities. The call GroupIdentMult[x] returns the nested list of
the following format, namely:

{{{n1}, {x1, x2, …, xa}}, {{n2}, {y1, y2, …, yb}}, …, {{nk}, {z1, z2, …, zc}}}

where {xi, yj, …, zp} – elements of a list x and {n1, n2, …, nk} – multiplicities

corresponding to them {i = 1..a, j = 1..b, …, p = 1..c}. The following fragment
represents source code of the procedure along with examples of its usage.

In[2997]:= GroupIdentMult[x_List] := Module[{a = Gather[x], b},
 b = Map[{DeleteDuplicates[#][[1]], Length[#]} &, a];
 b = Map[DeleteDuplicates[#] &, Map[Flatten,
 Gather[b, SameQ[#1[[2]], #2[[2]]] &]]];
 b = Map[{{#[[1]]}, Sort[#[[2 ;; –1]]]} &, Map[Reverse,
 Map[If[Length[#] > 2, Delete[Append[#, #[[2]]], 2], #] &, b]]];
 b = Sort[b, #1[[1]][[1]] > #2[[1]][[1]] &];
 If[Length[b] == 1, Flatten[b, 1], b]]

In[2998]:= L = {a, c, b, a, a, c, g, d, a, d, c, a, c, c, h, h, h, h, h};
In[2999]:= GroupIdentMult[L]
Out[2999]= {{{5}, {a, c, h}}, {{1}, {b, g}}, {{2}, {d}}}
In[3000]:= GroupIdentMult[{a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a}]
Out[3000]= {{19}, {a}}
In[3001]:= GroupIdentMult[RandomInteger[42, 72]]
Out[3001]= {{{5}, {15, 19}}, {{4}, {36}}, {{3}, {7, 9, 25, 29, 34, 38, 39, 40}},
 {{2}, {1, 6, 8, 11, 12, 13, 27, 30, 35, 37}},
 {{1}, {0, 2, 3, 4, 5, 14, 16, 17, 18, 20, 22, 24, 33, 41}}}
In[3002]:= GroupIdentMult[{}]
Out[3002]= {}

At that, elements of the returned nested list are sorted in decreasing order
of multiplicities of groups of elements of the initial list x.

At processing of list structures the task of grouping of elements of the nested
lists of ListList–type on the basis of n–th elements of their sublists represents
a quite certain interest. This problem is solved by the following procedure,
whose call ListListGroup[x, n] returns the nested list – result of grouping of

V.Z. Aladjev, V.A. Vaganov

 90

a ListList–list x according to n–th element of its sublists. The next fragment
represents source code of the procedure along with examples of its usage.

In[2369]:= ListListGroup[x_ /; ListListQ[x], n_ /; IntegerQ[n] && n > 0] :=
 Module[{a = {}, b = {}, k = 1},
 If[Length[x[[1]]] < n, Return[Defer[ListListGroup[x, n]]],
 For[k, k <= Length[x], k++, AppendTo[b, x[[k]][[n]]];
 b = DeleteDuplicates[Flatten[b]]]];
For[k=1, k <= Length[b], k++, AppendTo[a, Select[x, #[[n]] == b[[k]] &]]]; a]

In[2370]:= ListListGroup[{{80, 2}, {480, 6}, {18, 2}, {25, 2}, {72, 6}}, 2]
Out[2370]= {{{80, 2}, {18, 2}, {25, 2}}, {{480, 6}, {72, 6}}}
In[2371]:= ListListGroup[{{80, 2}, {480, 6}, {18, 2}, {25, 2}, {72, 67}}, 6]
Out[2371]= ListListGroup[{{80, 2}, {480, 6}, {18, 2}, {25, 2}, {72, 67}}, 6]

Whereas, on inadmissible factual arguments the procedure call is returned
as an unevaluated. The given procedure is quite often used at processing of
the long lists containing the repeating elements.

The following procedure expands the standard MemberQ function onto the
nested lists, its call MemberQ[x,y] returns True if an expression y belongs to
any nesting level of a list x, and False otherwise. Whereas the call with the
third optional argument z – an undefinite variable – in addition through z
returns the list of ListList–type, the first element of each its sublist defines a
level of the list x whereas the second defines quantity of elements y on this
level provided that the main output is True, otherwise z remains undefinite.
The following fragment represents source code of the procedure along with
the most typical examples of its application.

In[2532]:= MemberQL[x_ /; ListQ[x], y_, z___] := Module[{b,
 a = ElemOnLevels[x]}, If[! NestListQ[a], a = {a}, Null];
 b = Map[If[Length[#] == 1, Null, {#[[1]], Count[#[[2 ;; –1]], y]}] &, a];
 b = Select[b, ! SameQ[#, Null] && #[[2]] != 0 &];
 If[b == {}, False, If[{z} != {} && ! HowAct[z], z = b, Null]; True]]

In[2533]:= MemberQL[{a, b, {c, d, {f, h, d}, s, {p, w, {n, m, r, u}, t}}, x, y, z}, d]
Out[2533]= True
In[2534]:= MemberQL[[{a, b, {c, d, {f,h,d}, s, {p, w, {n,m,r,u}, t}}, x, y, z}, d, z]
Out[2534]= True

Extension of Mathematica system functionality

 91

In[2535]:= z
Out[2535]= {{1, 1}, {2, 1}}
In[2536]:= MemberQL[{a, b}, d, z]
Out[2536]= False

The call ListToString[x, y] returns result of converting into an unified string
of all elements of a list x, disregarding its nesting, that are parted by a string
y; whereas a string x is converted into the list of the substrings of a string x
parted by a string y. The following fragment represents source code of the
ListToString procedure along with typical examples of its usage.

In[2813]:= ListToString[x_ /; ListQ[x] || StringQ[x], y_ /; StringQ[y]] :=
 Module[{a, b = {}, c, d, k = 1},
 If[ListQ[x], a = Flatten[x]; For[k, k < Length[a], k++, c = a[[k]];
 AppendTo[b, ToString1[c] <> y]];
 a = StringJoin[Append[b, ToString1[a[[–1]]]]],
 a = FromCharacterCode[14]; d = a <> StringReplace[x, y –> a] <> a;
 c = Sort[DeleteDuplicates[Flatten[StringPosition[d, a]]]];
 For[k = 1, k < Length[c], k++, AppendTo[b, StringTake[d, {c[[k]] + 1,
 c[[k + 1]] – 1}]]]; ToExpression[b]]]

In[2814]:= ListToString[{a + b, {"Agn", 67}, Kr, 18, Art, 25, "RANS",
 {{{Avz||72}}}}, "&"]
Out[2814]= "a + b&\"Agn\"&67&Kr&18&Art&25&\"RANS\"&Avz||72"
In[2815]:= ListToString["a + b&\"Agn\"&67&Kr&18&Art&25&Avz ||
 72", "&"]
Out[2815]= {a + b, "Agn", 67, Kr, 18, Art, 25, Avz || 72}

In a number of cases exists necessity to carry out assignments of expressions,
whose number isn't known in advance and which is defined in the course
of some calculations, for example, of cyclic character, to the variables. The
problem is solved by a rather simple ParVar procedure. The call ParVar[x,y]
provides assignment of elements of a list y to a list of variables generated on
the basis of a symbol x with return of the list of these variables in the string
format. The given procedure is rather widely used in problems dealing with
generating of in advance unknown number of expressions. Fragment below
represents source code of the ParVar procedure with an example of its use.

V.Z. Aladjev, V.A. Vaganov

 92

In[2610]:= ParVar[x_ /; SymbolQ[x], y_ /; ListQ[y]] := Module[{a={}, b, k=1},
 For[k, k <= Length[y], k++, AppendTo[a, Unique[x]]];
 b = ToString[a]; {b, ToExpression[b <> "=" <> ToString1[y]]}[[1]]]

In[2611]:= W = ParVar[GS, {72, 67, 47, 25, 18}]
Out[2611]= "{GS$2660, GS$2661, GS$2662, GS$2663, GS$2664}"
In[2612]:= ToExpression[W]
Out[2612]= {72, 67, 47, 25, 18}

In a number of problems dealing with lists exists necessity of calculation of
difference between 2 lists x and y which is defined as a list, whose elements
are included into a list x, but don't belong to a list y. For solution of the task
the following procedure is used. The call MinusLists[x,y,1] returns result of
subtraction of a list y from a list x that consists in deletion in the list x of all
occurrences of elements from the list y. Whereas the call MinusLists[x, y, 2]
returns result of subtraction of a list y from a list x which consists in parity
removal from the list x of entries of elements from the list y, i.e. the number
of the elements deleted from the list x strictly correspond to their number in
the list y. The following fragment represents source code of the MinusLists
procedure along with typical examples of its usage.

In[2980]:= MinusLists[x_ /; ListQ[x], y_ /; ListQ[y], z_ /; MemberQ[{1,2}, z]] :=
 Module[{a, b, c, k = 1, n}, If[z == 1, Select[x, ! MemberQ[y, #] &],
 a = Intersection[x, y];
 b = Map[Flatten, Map[Flatten[Position[x, #] &], a]];
 c = Map[Count[y, #] &, a];
 n = Length[b]; For[k, k <= n, k++, b[[k]] = b[[k]][[1 ;; c[[k]]]]];
 c = Map[GenRules[#, Null] &, b];
 Select[ReplacePart[x, Flatten[c]], ! SameQ[#, Null] &]]]

In[2981]:= MinusLists[{a, b, c, a, d, a, b, b, a, e, c, c}, {a, n, b, b, b, a, d, c}, 2]
Out[2981]= {a, a, e, c, c}
In[2982]:= MinusLists[{a, b, c, a, d, a, b, b, a, e, c, c}, {a, n, b, b, b, a, d, c}, 1]
Out[2982]= {e}

To the given procedure two means of MinusList and MinusList1 directly
adjoin which are of interest as auxiliary means at realisation of a number of
our procedures [33,48], and also independent interest at processing of lists.

Extension of Mathematica system functionality

 93

At programming of a number of procedures of access to datafiles has been
detected expediency of creation of a certain procedure useful also in other
appendices. So, in this context the procedure PosSubList has been created,
whose call PosSubList[x, y] returns a nested list of initial and final elements
for entry into a simple list x of a tuple of elements specified by a list y. The
following fragment represents source code of the PosSubList procedure and
typical examples of its application.

In[2260]:= PosSubList[x_ /; ListQ[x], y_ /; ListQ[y]] := Module[{d,
 a = ToString1[x], b = ToString1[y], c = FromCharacterCode[16]},
 d = StringTake[b, {2, –2}];
 If[! StringFreeQ[a, d], b = StringReplace[a, d –> c <> "," <>
 StringTake[ToString1[y[[2 ;; –1]]], {2, –2}]];
 Map[{#, # + Length[y] – 1} &,
 Flatten[Position[ToExpression[b], ToExpression[c]]]], {}]]

In[2261]:= PosSubList[{a, a, b, a, a, a, b, a, x, a, b, a, y, z, a, b, a}, {a, b, a}]
Out[2261]= {{2, 4}, {6, 8}, {10, 12}, {15, 17}}
In[2262]:= PosSubList[{a, a, b, a, a, a, b, a, x, y, z, a, b, a}, {a, x, a, b, c}]
Out[2262]= {}

The similar approach once again visually illustrates incentive motives and
prerequisites for programming of the user tools expanding the Mathematica
software. Many of means of our AVZ_Package package appeared exactly in
this way [28-33,48].

The procedures Gather1 and Gather2 a little extend the standard function
Gather1, being rather useful in a number of appendices. The call Gather1[L,
n] returns the nested list formed on the basis of the list L of ListList–type by
means of grouping of sublists of L by its n-th element. While call Gather2[L]
returns either the simple list, or the list of ListList–type which defines only
multiple elements of a list L with their multiplicities. At absence of multiple
elements in L the procedure call returns the empty list, i.e. {} [48].

In[2472]:= L = {{42, V, 1}, {47, G, 2}, {64, S, 1}, {69, V, 2}, {64, G, 3}, {44, S, 2}};
 Gather1[L, 3]
Out[2472]= {{{42, V, 1}, {64, S, 1}}, {{47, G, 2}, {69, V, 2}, {44, S, 2}}, {{64, G, 3}}}
In[2473]:= Gather2[{"a", 480, "a", 80, "y", 80, "d", "h", "c", "d", 80, 480}]
Out[2473]= {{"a", 2}, {480, 2}, {80, 3}, {"d", 2}}

V.Z. Aladjev, V.A. Vaganov

 94

The following group of means serves for ensuring sorting of lists of various
type. Among them can be noted such as SortNL, SortNL1, SortLpos, SortLS,
SortNestList. So, the call SortNL1[x, p, b] returns result of sorting of a list x
of the ListList-type according to elements in a p-position of its sublists on the
basis of their unique decimal codes, and b = {Greater|Less}. Whereas the call
SortNestList[x,p,y] returns result of sorting of a nested numeric or symbolical
list x by a p-th element of its sublists according to the sorting functions Less,
Greater for numerical lists, and SymbolGreater, SymbolLess for symbolical
lists. In both cases a nested list with nesting level 1 as actual argument x is
supposed, otherwise an initial list x is returned. At that, in case of symbolical
lists the comparison of elements is done on the basis of their codes. The next
fragment represents source code of the procedure with examples of its use.

In[2738]:= SortNestList[x_ /; NestListQ[x], p_ /; PosIntQ[p], y_] :=
 Module[{a = DeleteDuplicates[Map[Length, x]], b},
 b = If[SameQ[DeleteDuplicates[Map[ListNumericQ, x]], {True}] &&
 MemberQ[{Greater, Less}, y], y,
 If[SameQ[DeleteDuplicates[Map[ListSymbolQ, x]], {True}] &&
 MemberQ[{SymbolGreater, SymbolLess}, y], y],
 Return[Defer[SortNestList[x, p, y]]]];
 If[Min[a] <= p <= Max[a], Sort[x, b[#1[[p]], #2[[p]]] &],
 Defer[SortNestList[x, p, y]]]]

In[2739]:= SortNestList[{{42, 47, 67}, {72, 67, 47}, {25, 18}}, 2, Greater]
Out[2739]= {{72, 67, 47}, {42, 47, 67}, {25, 18}}
In[2740]:= SortNestList[{{"a", Avz, b}, {x4, Agn67, y3}, {V72, G67}, {R, Ian}},
 2, SymbolGreater]
Out[2740]= {{x4, Agn67, y3}, {"a", Avz, b}, {R, Ian}, {V72, G67}}

At that, at programming of the SortNestList procedure for the purpose of
expansion of its applicability both onto numeric, and symbolical nested lists
it was expedient to define three new functions, namely SymbolGreater and
SymbolLess as analogs of the operations Greater and Less respectively, and
the function whose call ListSymbolQ[x] returning True, if all elements of a
list x, including its sublists of an arbitrary nesting level have the Symbol-type,
otherwise the call of the ListSymbolQ function returns False [28-33,48].

The PartialSums[x] procedure of the same name with the Maple-procedure,

Extension of Mathematica system functionality

 95

similarly returns the list of the partial sums of elements of a list x with one
difference that at coding of symbol x in string format the call PartialSums[x]
updates the initial list x in situ. The fragment represents source code of the
PartialSums procedure along with typical examples of its usage.

In[2317]:= PartialSums[L_ /; ListQ[L] || StringQ[L] &&
 ListQ[ToExpression[L]]] :=
 Module[{a = {}, b = ToExpression[L], k = 1, j},
 For[k, k <= Length[b], k++, AppendTo[a, Sum[b[[j]], {j, k}]]];
 If[StringQ[L], ToExpression[L <> " = " <> ToString[a]], a]]

In[2318]:= PartialSums[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}]
Out[2318]= {1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171}
In[2319]:= GS = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18};
 PartialSums["GS"]; GS
Out[2319]= {1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171}
In[2320]:= SV = {a, b, c, d, e, f}; PartialSums["SV"]; SV
Out[2320]= {a, a + b, a + b + c, a + b + c + d, a + b + c + d + e, a + b + c + d + e + f}

In a number of cases exists a need of generation of the list of variables in the
form Vk (k=1..n), where V – a name and n – a positive integer. The standard
functions CharacterRange and Range of Mathematica don't solve the given
problem therefore for these purposes it is rather successfully possible to use
the procedures Range1, Range2, Range3 and Range3, whose source codes
along with typical examples of their usage can be found in [32,48]. The call
Range1[J1, Jp] returns the list of variables in shape {J1, J2, J3, …, Jp}; at that,
the actual arguments are coded in $xxx_yyyN format (N = {0..p|1..p}) while
the call Range2[J, p] returns a list of variables in standard form, providing
arbitrariness in choice of identifier of a variable J, namely: {J1, J2, J3, …, Jp};
from other party, the call Range3[J, p] returns the list in form {J1_, J2_, J3_,
…, Jp_} where J – an identifier and p – an integer. At last, procedure Range4
combines standard functions Range and CharacterRange with expansion of
opportunities of the second function. More detailed description of the above
procedures of Range type with their source codes can be found in [28-33,48].
Whereas some typical examples of their usage are given below, namely:

In[2420]:= Range1[$Kr_Art1, $Kr_Art6]
Out[2420]= {$Kr_Art1, $Kr_Art2, $Kr_Art3, $Kr_Art4, $Kr_Art5, $Kr_Art6}

V.Z. Aladjev, V.A. Vaganov

 96

In[2421]:= Range2[Kr, 12]
Out[2421]= {Kr1, Kr2, Kr3, Kr4, Kr5, Kr6, Kr7, Kr8, Kr9, Kr10, Kr11, Kr12}

In[2422]:= Range3[h, 12]
Out[2422]= {h1_, h2_, h3_, h4_, h5_, h6_, h7_, h8_, h9_, h10_, h11_, h12}

In[2423]:= Range4[42, 72, 2]
Out[2423]= {42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72}

The next group of facilities serves for expansion of the standard MemberQ
function, and its means are quite useful in work with list structures. So, the
MemberQ1 procedure in a certain degree expands the standard MemberQ
function onto the nested lists while the MemberQ2 procedure expands the
same function, taking into account number of entries of an expression into a
list [33,48]. The call MemberQ1[L, x, y] returns True if x is an element of any
nesting level of a list L (provided that a simple list has nesting level 0); otherwise
False is returned. In case of return of True through, the third argument y the
call returns the list of levels of the list L that contain occurrences of x. While
the call MemberQ2[L,x,y] returns True if x – an element of a list L; otherwise
False is returned. At that, at return of True, through the 3rd argument y the
number of entries of x into the list L is returned. The call MemberQ3[x, y]
returns True if all elements of a list y belong to a list x excluding nesting, and
False otherwise. Whereas the call MemberQ3[x, y, t] with the third optional
argument – an expression – returns True, if the list y – a sublist of the list x at
arbitrary nesting level, and False otherwise. At last, the call MemberQ4[x,y]
returns True if at least one element of a list y or an element y belongs to a list
x, and False otherwise. If there the 3rd optional argument z, True is returned
only in case of number of occurrences of elements y not smaller than z. In
addition to the above means the following 2 simple means represent a quite
certain interest. The call MemberT[L,x] returns total number of occurrences
of an expression x into a list L whereas the call MemberLN[L, x] returns the
list of ListList-type whose each sublist determines number of nesting level of
the list L by its first element, and number of occurrences of an expression x
into this nesting level by its second element. Thus, the facilities MemberQ1,
MemberQ2, MemberQ3 and MemberQ4 along with the means MemberT
and MemberLN are useful enough in processing of lists. In principle, these
means allow a number of interesting modifications significantly broadening
the sphere of their application. Source codes of all mentioned means of so–

Extension of Mathematica system functionality

 97

called Member–group with examples of their use can be found in [28-33,48].

The system considers a list as the object allowing multiple occurrences into
it of elements and keeping the order of elements which has been given at its
definition. For determination of multiplicity of the elements entering a list it
is possible to use the function MultEntryList, whose call MultEntryList[x]
returns the ListList–list; the first element of its sublists defines an element of
a list x, whereas the second element determines its multiplicity in the list x
regardless of its nesting. Source code of the function with typical examples
of its use can be found in [33,48], for example:

In[2720]:= MultEntryList[{"a",b,"a",c,h,72,g, {"a",b,c,g,72}, g, h, {72,g,h,72}}]
Out[2720]= {{"a", 3}, {b, 2}, {c, 2}, {h, 3}, {72, 4}, {g, 4}}

Unlike 2 standard functions Split and SplitBy the procedure call Split1[x,y]
splits a list x into sublists consisting of its elements that are located between
occurrences of an element or elements of a list y. If y don't belong to the list
x, the initial list x is returned. The following fragment represents source code
of the Split1 procedure along with typical examples of its usage.

In[2746]:= Split1[x_List, y_] := Module[{a, b, c = {}, d, h, k = 1},
 If[MemberQ3[x, y] || MemberQ[x, y], a = If[ListQ[y],
 Sort[Flatten[Map[Position[x, #] &, y]]], Flatten[Position[x, y]]];
 h = a; If[a[[1]] != 1, PrependTo[a, 1]];
 If[a[[–1]] != Length[x], AppendTo[a, Length[x]]]; d = Length[a];
 While[k <= d – 1, AppendTo[c, x[[a[[k]] ;; If[k == d – 1, a[[k + 1]],
 a[[k + 1]] – 1]]]]; k++];
 If[h[[–1]] == Length[x], AppendTo[c, {x[[–1]]}]]; c, x]]

In[2747]:= Split1[{a, a, a, b, a, b, c, d, a, b, a, b, c, d, a, b, d}, a]
Out[2747]= {{a}, {a}, {a, b}, {a, b, c, d}, {a, b}, {a, b, c, d}, {a, b, d}}
In[2748]:= Split1[{a, b, a, b, c, d, a, b, a, b, c, d, a, b, d}, {a, c, d}]
Out[2748]= {{a, b}, {a, b}, {c}, {d}, {a, b}, {a, b}, {c}, {d}, {a, b, d}, {d}}
In[2749]:= Split1[{a, b, a, b, c, d, a, b, a, b, c, d, a, b, d}, {x, y, z}]
Out[2749]= {a, b, a, b, c, d, a, b, a, b, c, d, a, b, d}

If during the work in the interactive mode diagnostic messages have a quite
certain sense, in the software mode (continuous) of execution, for example, of
procedures the messages concerning especial situations don't have a sense,

V.Z. Aladjev, V.A. Vaganov

 98

complicating software processing of such situations. In this context it is more
natural to identify a special situation by return of a conveniently processed
expression, for example, $Failed. The following procedure can serve as an
example. The successful call ElemsList[x, y] returns the elements of a list x
depending on list of their positions given by a list y. The list y format in the
general case has the view {n1, …, nt, {m1 ; … ; mp}}, returning elements of a
list x according to a standard relation x[[n1]] … [[nt]][[m1 ; … ; mp]]. At that,
the argument y allows the following formats of the coding {n1, …, nt}, {{m1 ;
… ; mp}}, {}; whose results of use are given in the following fragment along
with source code of the ElemsList procedure.

In[3378]:= ElemsList[x_/; ListQ[x], y_/; ListQ[y]] := Module[{c = "", k = 1,
 a = Select[y, ! ListQ[#] &], b = Select[y, ListQ[#] &]},
 If[a == {} && b == {}, x,
 If[a == {}, Quiet[Check[ToExpression[ToString[x] <> "[[" <>
 StringTake[ToString[b], {3, –3}] <> "]]"], $Failed]],
 If[b == {}, c = ToString[x];
 While[k <= Length[a], c = c <> "[[" <> ToString[a[[k]]] <> "]]"; k++];
 Quiet[Check[ToExpression[c], $Failed]], c = ToString[x];
 While[k <= Length[a], c = c <> "[[" <> ToString[a[[k]]] <> "]]"; k++];
 Quiet[Check[ToExpression[c <> "[[" <>
 StringTake[ToString[b], {3, –3}] <> "]]"], $Failed]]]]]]

In[3379]:= L = {{avz, agn, vsv, art, kr}, {d,e,f,g,h, {18,25,47,52,67,72}}, {g,h,j}};
In[3380]:= ElemsList[{}, {}]
Out[3380]= {}
In[3381]:= ElemsList[L, {}]
Out[3381]= {{avz, agn, vsv, art, kr}, {d,e,f,g,h, {18, 25, 47, 52, 67, 72}}, {g,h,j}}
In[3382]:= ElemsList[L, {{1 ;; 3}}]
Out[3382]= {{avz, agn, vsv, art, kr}, {d,e,f,g,h, {18, 25, 47, 52, 67, 72}}, {g,h,j}}
In[3383]:= ElemsList[L, {2, 6, {3 ;; –1}}]
Out[3383]= {47, 52, 67, 72}
In[3384]:= ElemsList[L, {2, 6, 5}]
Out[3384]= 67
In[3385]:= ElemsList[L, {2, 80.480, 5}]
Out[3385]= $Failed

Extension of Mathematica system functionality

 99

In[3386]:= L[[2]][[6]][[3 ;; 0]]
 Part::take: Cannot take positions 3 through 0 in {18,25,47,52,67,72}. >>
Out[3386]= {18, 25, 47, 52, 67, 72}[[3 ;; 0]]
In[3387]:= ElemsList[L, {2, 6, {3 ;; 0}}]
Out[3387]= $Failed

The following two procedures expand the system means oriented on work
with list structures, giving a possibility to simplify programming (in certain
cases rather significantly) of a number of problems that use the lists.

The following fragment represents source codes of procedures along with
examples of their application. The call ReduceList[L,x,z,t] returns the result
of reducing of elements of a list L that are determined by a separate element
x or their list to a multiplicity determined by a separate element z or their
list. If elements of x don't belong to the list L, the procedure call returns the
initial list L. At that, if Length[z] < Length[x] a list z is padded on the right
by 1 to the list length x. In addition, the fourth argument t defines direction
of reducing in the list L (on the left at t = 1 and on the right at t = 2).

While the call SplitList[L,x] returns result of splitting of a list L onto sublists
by an element or elements x; at that, dividers x are removed from the result.
If elements x don't belong to the list L, the procedure call returns the initial
list L. In a number of cases both procedures are rather claimed. A number of
means from our AVZ_Package package rather essentially use the mentioned
procedures ReduceList and SplitList [48]. These means arose in the result of
programming of other our certain means.

In[2520]:= ReduceList[L_ /; ListQ[L], x_, z_, t_ /; MemberQ[{1, 2}, t]] :=
 Module[{a = Map[Flatten, Map[Position[L, #] &, Flatten[{x}]]],
 b = {}, m = Flatten[{x}], n = Flatten[{z}], k = 1},
 n = If[Length[m] > Length[n], PadRight[n, Length[m], 1], n];
 For[k, k <= Length[a], k++, If[Length[a[[k]]] >= n[[k]],
 AppendTo[b, a[[k]]], Null]];
 For[k = 1, k <= Length[a], k++, a[[k]] = If[t == 1,
 a[[k]][[1 ;; Length[a[[k]]] – n[[k]]]], a[[k]][[–Length[a[[k]]] + n[[k]] ;; –1]]]];
 Select[ReplacePart[L, GenRules[Flatten[a], Null]], ! SameQ[#, Null] &]]

In[2521]:= ReduceList[{f, d, d, d, d, d, f, f, f, f, f, d}, {d, f}, 3, 2]
Out[2521]= {f, d, d, d}

V.Z. Aladjev, V.A. Vaganov

 100

In[2522]:= ReduceList[{f, d, d, d, d, d, f, f, f, f, f, d}, {d, f}, 3, 1]
Out[2522]= {d, d, f, d}
In[2523]:= ReduceList[{a, f, b, c, f, d, f, d, f, f, f, g}, {d, f}, {1, 2}, 1]
Out[2523]= {a, b, c, d, f, f, g}
In[2524]:= ReduceList[{f, f, a, b, c, d, d, f, f, f, g, f}, {d, f}, {1, 2}, 2]
Out[2524]= {f, f, a, b, c, d, g}
In[2525]:= L = {a, a, a, b, b, b, b, c, c, c, c, c, d, d, d, d, d, d, e, e, e, e, e, e, e};
In[2526]:= ReduceList[L, DeleteDuplicates[L], {1, 2, 3, 4, 5}, 1]
Out[2526]= {a, b, b, c, c, c, d, d, d, d, e, e, e, e, e}

In[3340]:= SplitList[L_/; ListQ[L], x_] := Module[{a = Flatten[{x}], c, d, h,
 b = ToString[Unique["$a"]]}, c = Map[ToString[#] <> b &, a];
 d = StringJoin[Map[ToString[#] <> b &, L]];
 h = Select[StringSplit[d, c], # != "" &];
 h = Map[StringReplace[#, b –> ","] &, h];
 h = ToExpression[Map["{" <> StringTake[#, {1, –2}] <> "}" &, h]];
 Remove[b]; If[Length[h] == 1, h[[1]], h]]

In[3341]:= SplitList[{f, f, a, b, c, d, p, p, d, p, d, f, f, f, g, f}, {d, f}]
Out[3341]= {{a, b, c}, {p, p}, {p}, {g}}
In[3342]:= SplitList[{f, f, a, b, c, d, p, d, f, f, f, g, f}, {h, f}]
Out[3342]= {{a, b, c, d, p, d}, {g}}

A number of the additional means expanding the Mathematica software, in
particular, for effective enough programming of problems of manipulation
with list structures of various organization is presented in the given present
chapter. These and other our means of the given orientation are presented a
quite in details in [28-33,48]. In general, Mathematica provides the mass of
useful and effective means of processing, except already the mentioned, of
the list structures and objects that are based on structures of the given type.
Being additional tools for work with lists – basic structures in Mathematica –
these tools are rather useful in a number of applications of various purpose.
Meanwhile, other means which can be used quite successfully at processing
lists of various format are also represented in the book. A number of means
were already considered above, others will be considered below along with
tools that are directly not associated with lists, but quite accepted for work
with separate formats of lists.

Extension of Mathematica system functionality

 101

Chapter 5. The additional means expanding the standard
Mathematica functions, or its software as a whole

The string and list structures – some of the most important in Mathematica
system, they both are considered in the previous two chapters in the context
of means, additional to the system means, without regard to a large number
of the standard functions of processing of structures of this type. Naturally,
here it isn't possible to consider all range of system functions of this type,
sending the interested reader to the help information on Mathematica or to
the corresponding numerous literature. It is possible to find many of these
editions on the web-site http://www.wolfram.com/books. Having presented
the means expanding the standard Mathematica software in the context of
processing of string and list structures in the present chapter we will present
the means expanding the Mathematica which are oriented on processing of
other types of objects. First of all, we will present a number of means of bit–
by–bit processing of arbitrary symbols.

The Bits procedure quite significantly uses function BinaryListQ, providing
a number of useful functions during of work with symbols. On the tuple of
actual arguments <x, p>, where x – a 1–symbolical string (character) and p –
an integer in the range 0..8, the call Bits[x, p] returns binary representation
of x in the form of list, if p=0, and p-th bit of such representation of a symbol
x otherwise. Whereas on a tuple of the actual arguments <x, p>, where x – a
nonempty binary list of length no more than 8 and p = 0, the procedure call
returns a symbol corresponding to the given binary list x; in other cases the
call Bits[x, p] is returned as unevaluated. The following fragment represents
source code of the Bits procedure along with examples of its usage.

In[2819]:= Bits[x_, P_/; IntegerQ[P]] := Module[{a, k}, If[StringQ[x] &&
 StringLength[x] == 1, If[1 <= P <= 8,
 PadLeft[IntegerDigits[ToCharacterCode[x][[1]], 2], 8][[P]], If[P == 0,
 PadLeft[IntegerDigits[ToCharacterCode[x][[1]], 2], 8], Defer[Bits[x, P]]]],
 If[BinaryListQ[x] && 1 <= Length[Flatten[x]] <= 8, a = Length[x];
 FromCharacterCode[Sum[x[[k]]*2^(a – k), {k, 1, a}]], Defer[Bits[x, P]]]]]

In[2820]:= Map9[Bits, {"A", "A", {1,0,0,0,0,0,1}, "A", {1,1,1,1,0,1}}, {0,2,0,9,0}]
Out[2820]= {{0, 1, 0, 0, 0, 0, 0, 1}, 1, "A", Bits["A", 9], "="}

V.Z. Aladjev, V.A. Vaganov

 102

If the previous Bits procedure provides rather simple processing of symbols,
the following 2 procedures BitSet1 and BitGet1 provide the expanded bit–
by–bit information processing like our Maple procedures. In the Maple we
created a number of procedures (Bit, Bit1, xbyte, xbyte1, xNB) that provide
bit-by-bit information processing [47]; Mathematica also has similar means,
in particular, the call BitSet[n, k] returns the result of setting of 1 into a k–th
position of binary representation of an integer n. The following fragment
represents procedure, whose call BitSet1[n, p] returns result of setting into
positions of binary representation of an integer n that are determined by the
first elements of sublists of a nested list p, {0|1} – values; at that, in case of
non-nested list p the value replacement only in a single position of integer n
is made. The BitSet1 procedure is included in AVZ_Package package [48].

In[2338]:= BitSet1[n_ /; IntegerQ[n] && n >= 0, p_ /; ListQ[p]] :=
 Module[{b = 1, c, d, h = If[ListListQ[p], p, {p}],
 a = ToExpression[Characters[IntegerString[n, 2]]]},
 If[ListListQ[h] && Length[Select[h, Length[#] == 2 &&
 IntegerQ[#[[1]]] && IntegerQ[#[[2]]] &&
 MemberQ[{0, 1}, #[[2]]] &]] == Length[h], Null,
 Return[Defer[BitSet1[n, p]]]];
 For[b, b <= Length[h], b++, {c, d} = {h[[b]][[1]], h[[b]][[2]]};
 If[c <= Length[a], a[[c]] = d, Null]];
 Sum[a[[k]]*2^(Length[a] – k), {k, Length[a]}]]

In[2339]:= {BitSet1[480, {{3,1},{6,0},{9,1}}], BitSet1[80, {4,0}], BitSet1[80, {7,1}]}
Out[2339]= {481, 80, 81}
In[2340]:= BitSet1[480, {{3, 1}, {6, 0}, {9, 2}}]
Out[2340]= BitSet1[480, {{3, 1}, {6, 0}, {9, 2}}]

In[89]:= BitGet1[x___, n_ /; IntegerQ[n] && n >= 0, p_ /; IntegerQ[p] &&
 p > 0||ListQ[p]]:= Module[{b = 1, c = {}, d, h = If[ListQ[p], p, {p}],
 a = ToExpression[Characters[IntegerString[n, 2]]]},
 For[b, b <= Length[a], b++,
 c = Append[c, If[MemberQ[h, b], a[[b]], Null]]];
 If[! HowAct[x], x = Length[a], Null]; Select[c, ToString[#] != "Null" &]]

In[90]:= {BitGet1[h,80,{1,5,7}], h, BitGet1[47,{1,5,7}], BitGet1[p,480,{1,3,5}], p}
Out[90]= {{1, 0, 0}, 7, {1, 1}, {1, 1, 0}, 9}

Extension of Mathematica system functionality

 103

Examples of application of the procedures BitSet1 and BitGet1 very visually
illustrate the told. It should be noted that the BitSet1 procedure functionally
expands the standard functions BitSet and BitClear of Mathematica system,
whereas the procedure BitGet1 functionally extands the standard functions
BitGet and BitLength of the system. The call BitGet1[n, p] returns the list of
bits in the positions of binary representation of an integer n that are defined
by a list p; in addition, in case of an integer p the bit in a position p of binary
representation of integer n is returned. While the call BitGet1[x,n,p] through
a symbol x in addition returns number of bits in the binary representation of
an integer n. Examples of the previous fragment very visually illustrate the
aforesaid without any additional explanations.

In the Mathematica the transformation rules are generally determined by the
Rule function, whose the call Rule[a, b] returns the transformation rule in
the format a –> b. These rules are used in transformations of expressions by
the following functions ReplaceAll, Replace, ReplaceRepeated, ReplacePart,
StringReplaceList, StringCases, StringReplace which use either one rule, or
their list as simple list, and ListList-list. For dynamic generation of such rules
the GenRules procedure can be quite useful, whose the call GenRules[x, y]
depending on a type of its arguments returns single rule or list of rules; the
call GenRules[x, y, z] with the third optional argument z – any expression –
returns the list with single transformation rule or the nested list of ListList–
type. Depending on the coding format, the procedure call returns result in
the following format, namely:
(1) GenRules[{x, y, z, …}, a] ⇒⇒⇒⇒ {x –> a, y –> a, z –> a, …}
(2) GenRules[{x, y, z, …}, a, h] ⇒⇒⇒⇒ {{x –> a}, {y –> a}, {z –> a}, …}
(3) GenRules[{x, y, z, …}, {a, b, c, …}] ⇒⇒⇒⇒ {x –> a, y –> b, z –> c, …}
(4) GenRules[{x, y, z, …}, {a, b, c, …}, h] ⇒⇒⇒⇒ {{x –> a}, {y –> b}, {z –> c}, …}
(5) GenRules[x, {a, b, c, …}] ⇒⇒⇒⇒ {x –> a}
(6) GenRules[x, {a, b, c, …}, h] ⇒⇒⇒⇒ {x –> a}
(7) GenRules[x, a] ⇒⇒⇒⇒ {x –> a}
(8) GenRules[x, a, h] ⇒⇒⇒⇒ {x –> a}

The GenRules procedure is useful, in particular, when in some procedure it
is necessary to dynamically generate the transformation rules depending on
conditions.The following fragment represents source code of the GenRules
procedure with most typical examples of its usage on all above–mentioned

V.Z. Aladjev, V.A. Vaganov

 104

cases of coding of its call.

In[4040]:= GenRules[x_, y_, z___] := Module[{a, b = Flatten[{x}],
 c = Flatten[If[ListQ /@ {x, y} == {True, False},
 PadLeft[{}, Length[x], y], {y}]]}, a = Min[Length /@ {b, c}];
 b = Map9[Rule, b[[1 ;; a]], c[[1 ;; a]]];
 If[{z} == {}, b, b = List /@ b; If[Length[b] == 1, Flatten[b], b]]]

In[4041]:= {GenRules[{x, y, z}, {a, b, c}], GenRules[x, {a, b, c}],
 GenRules[{x, y}, {a, b, c}], GenRules[x, a], GenRules[{x, y}, a]}
Out[4041]= {{x–>a, y–>b, z–>c}, {x–>a}, {x–>a, y–>b}, {x–>a}, {x–>a, y–>a}}
In[4042]:= {GenRules[{x, y, z}, {a, b, c}, 72], GenRules[x, {a, b, c}, 42],
 GenRules[x,a,6], GenRules[{x,y},{a,b,c},47], GenRules[{x,y},a,67]}
Out[4042]= {{{x –> a}, {y –> b}, {z –> c}}, {x –> a}, {{x –> a}, {y –> b}}, {x –> a},
 {{x –> a}, {y –> a}}}

In[4043]:= GenRules[x_, y_, z___] := Module[{a, b}, b = If[ListQ[x] &&
 ! ListQ[y], a = Map[Rule[#, y] &, x], If[ListQ[x] && ListQ[y],
 a = Map9[Rule, x, y], {x –> Flatten[{y}][[1]]}]];
 b = If[{z} != {}, SplitBy[b, Head[#] & == Rule], b];
 If[NestListQ[b] && Length[b] == 1, b[[1]], b]]

In[4044]:= {GenRules[{x, y, z}, {a, b, c}], GenRules[x, {a, b, c}],
 GenRules[{x, y}, {a, b, c}], GenRules[x, a], GenRules[{x, y}, a]}
Out[4044]= {{x –> a, y –> b, z –> c}, {x –> a}, Map9[Rule, {x, y}, {a, b, c}],
 {x –> a}, {x –> a, y –> a}}
In[4045]:= {GenRules[{x, y, z}, {a, b, c}], GenRules[x, {a, b, c}],
 GenRules[{x, y, z}, {a, b, c}], GenRules[x, a], GenRules[{x, y}, a]}
Out[4045]= {{x –> a, y –> b, z –> c}, {x –> a}, {x –> a, y –> b, z –> c}, {x –> a},
 {x –> a, y –> a}}
In[4046]:= {GenRules[{x, y, z}, {a, b, c}, 72], GenRules[x, {a, b, c}, 42],
 GenRules[x, a, 6], GenRules[{x, y}, a, 67]}
Out[4046]= {{{x –> a}, {y –> b}, {z –> c}}, {x –> a}, {x –> a}, {{x –> a}, {y –> a}}}

In[2457]:= GenRules2[x_ /; ListQ[x], y_] := If[ListQ[y],
 Map[Rule[x[[#]], y[[#]]] &, Range[1, Min[Length[x], Length[y]]]],
 Map[Rule[x[[#]], y] &, Range[1, Length[x]]]]

In[2458]:= {GenRules2[{x, y, z}, {a, b, c}], GenRules2[{x, y, z}, h],

Extension of Mathematica system functionality

 105

 GenRules2[{x, y, z}, {a, b}], GenRules2[{x, y, z}, {a, b, c, d}]}
Out[2458]= {{x –> a, y –> b, z –> c}, {x –> h, y –> h, z –> h}, {x –> a, y –> b},
 {x –> a, y –> b, z –> c}}

The GenRules procedure of the same name that is functionally equivalent
to the initial procedure is given as an useful modification provided that lists
x and y as two first arguments have identical length. The simple GenRules2
function which depending on type of the second argument generates the list
of transformation rules of the above formats (1) and (3) respectively finishes
the fragment as illustrate very transparent examples. In certain cases these
means allows quite significantly to reduce source code of the programmable
procedures. Some means of our package essentially use these means [48].

Along with the considered transformation rules of the form a –> b the system
allows use also of the delayed rules (RuleDelayed) of the form a :> b or a :→ b
which are realized only at the time of their application. In the rest they are
similar to the already considered transformation rules. For generation of list
of transformation rules of similar type can be used the GenRules procedure
presented above for which the Rule function is replaced by the RuleDelayed
function, or can be used its modification GenRules1 adapted onto usage of
one or other function by the corresponding coding of the third argument at
the call GenRules1[x, y, h, z], where x, y, z – arguments completely similar
to the arguments of the same name of the procedure GenRules whereas the
third h argument determines the mode of generation of the list of the usual
or delayed rules on the basis of the received value "rd" (delayed rule) or "r"
(simple rule). The next fragment represents a source code of the GenRules1
procedure along with the most typical examples of its usage.

In[2623]:= GenRules1[x_, y_, h_ /; h == "r" || h == "rd", z___] :=
 Module[{a, b = Flatten[{x}], c = Flatten[If[Map[ListQ, {x, y}] ==
 {True, False}, PadLeft[{}, Length[x], y], {y}]]},
 a = Min[Map[Length, {b, c}]];
 b = Map9[If[h == "r", Rule, RuleDelayed], b[[1 ;; a]], c[[1 ;; a]]];
 If[{z} == {}, b, b = Map[List, b];
 If[Length[b] == 1, Flatten[b], b]]]

In[2624]:= GenRules1[{x, y, z}, {a, b, c}, "r", 480]
Out[2624]= {{x –> a}, {y –> b}, {z –> c}}

V.Z. Aladjev, V.A. Vaganov

 106

In[2625]:= GenRules1[{x, y, z}, {a, b, c}, "rd", 80]
Out[2625]= {{x :→ a}, {y :→ b}, {z :→ c}}
In[2626]:= GenRules1[{x, y, z}, a, "r"]
Out[2626]= {x –> a, y –> a, z –> a}
In[2627]:= GenRules1[{x, y, z}, a, "rd"]
Out[2627]= {x :→ a, y :→ a, z :→ a}
In[2628]:= GenRules1[{x, y}, {a, b, c, d}, "rd", 480]
Out[2628]= {{x :→ a}, {y :→ b}}
In[2629]:= GenRules1[x, a, "rd", 80]
Out[2629]= {x :→ a}

Considering the importance of the map-function, since Maple 10, the option
`inplace`, admissible only at usage of this function with rectangular rtable–
objects at renewing these objects in situ was defined. Whereas for objects of
other type this mechanism isn't supported as certain examples from [25–27]
illustrate. For the purpose of disposal of this shortcoming we offered a quite
simple MapInSitu procedure [27,47]. Along with it the similar means and
for Mathematica in the form of two functions MapInSitu and MapInSitu1
together with the MapInSitu2 procedure have been offered. The following
fragment represents source codes of the above means with typical examples
of their application.

In[2650]:= MapInSitu[x_, y_/; StringQ[y]] := ToExpression[y <> "=" <>
 ToString[Map[x, ToExpression[y]]]]

In[2651]:= y = {a, b, c}; h = {{4.2, 7.2}, {4.7, 6.7}};

 {MapInSitu[G, "y"], MapInSitu[Sin, "h"]}

Out[2651]= {{G[a], G[b], G[c]}, {{–0.871576, 0.793668}, {–0.999923, 0.40485}}}
In[2652]:= {y, h}
Out[2652]= {{G[a], G[b], G[c]}, {{–0.871576, 0.793668}, {–0.999923, 0.40485}}}
In[2653]:= {H, G} = {{8.48, 47.67, 18.25}, {7.8, 47.67, 18.25}}
Out[2653]= {0.810367, –0.519367, –0.564276}

In[2654]:= MapInSitu1[x_, y_] := ToExpression[ToString[Args[MapInSitu,
 80]] <> "=" <> ToString[Map[x, y]]]

In[2655]:= y = {{80.42, 25.57}, {80.45, 80.89}}; MapInSitu1[Sin, y]
Out[2655]= {{–0.95252, 0.423458}, {–0.942959, –0.711344}}

Extension of Mathematica system functionality

 107

In[2656]:= y
Out[2656]= {–0.942959, –0.711344}

In[2657]:= MapInSitu2[x_, y_] := Module[{a = Map[x, y], b = ToString[y], h,
 d = {}, k = 1, c = Select[Names["`*"], StringFreeQ[#, "$"] &]},
 For[k, k <= Length[c], k++, h = c[[k]];
 If[ToString[ToExpression[h]] === b, d = Append[d, h], Null]];
 For[k = 1, k <= Length[d], k++, h = d[[k]];
 ToExpression[h <> " = " <> ToString[a]]]; a]

In[2658]:= MapInSitu2[Sin, {7.4, 47.67, 18.25}]
Out[2658]= {0.998543, –0.519367, –0.564276}
In[2659]:= {H, G}
Out[2659]= {{0.810367, –0.519367, –0.564276}, {0.998543, –0.519367, –0.564276}}

With the mechanisms used by Maple–процедурой MapInSitu and Math–
functions MapInSitu of the same name and MapInSitu1 can familiarize in
[25-33,47,48]. Means MapInSity for both systems are characterized by the
prerequisite, that the second argument at their call points out on an identifier
in string format to which a certain value has been ascribed earlier and that
is updated in situ after its processing by the function {map|Map}.

The call MapInSitu1[x, y] provides assignment to all identifiers to which in
the current session the values coinciding with value of the second argument
y have been ascribed, of the result of the call of Map, updating their values
in situ. Anyway, the calls of these procedures return Map[x, y] as a result.
The previous fragment represents source codes of all these procedures and
typical examples of their usage.

The standard Part function is quite useful at analysis and processing of the
expressions in addition to the Head function, allowing six formats of coding
[60]. Between the functions Head, Level and Part some useful relations take
place that can be used for problems of testing of expressions, in particular,
Part[Ex, 0] ≡ Head[Ex], Level[Ex, 1][[1]] ≡ Part[Ex, 1], Level[Ex, Infinity] ≡
Level[Ex, –1], where Ex – an arbitrary expression, etc. The given means can
be used quite successfully for testing and processing of expressions. So, the
following fragment represents source code of the procedure, whose the call
Decomp[x] returns the list of all unique atomic components of an arbitrary
expression x, including names of variables, functions, procedures, operations

V.Z. Aladjev, V.A. Vaganov

 108

along with constants. This procedure significantly uses the above functions
Level and Head; usage of the functions Head, Level and Part in a number
of functions and procedures of the package [48] proved their effectiviness.

In[2417]:= Decomp[x_] := Module[{c = DeleteDuplicates[Flatten[Level[x,
 Infinity]], Abs[#1] === Abs[#2] &], b = {}, k},
 Label[ArtKr];
 For[k = 1, k <= Length[c], k++, b = Append[b,
 If[AtomQ[c[[k]]], c[[k]], {Level[c[[k]], –1], Head[c[[k]]]}]]];
 b = DeleteDuplicates[Flatten[b], Abs[#1] === Abs[#2] &];
 If[c == b, Return[b], c = b; b = {}; Goto[ArtKr]]]

In[2418]:= Decomp[{6*Cos[x] – n*Sin[y]/(Log[h] – b), ProcQ[c, d]}]
Out[2418]= {6, x, Cos, Times, –1, n, b, h, Log, Plus, Power, y, Sin, c, d, ProcQ}

The following procedure makes grouping of the expressions that are given
by argument L according to their types defined by the Head1 procedure; at
that, a separate expression or their list is coded as an argument L. The call of
GroupNames[L] returns simple list or nested list, whose elements are lists,
whose first element – an object type according to the Head1 procedure while
the others – expressions of this type. The fragment represents source code
of the GroupNames with examples from which the format of the result that
is returned by the procedure is visible quite transparently.

In[2486]:= GroupNames[L_] := Module[{a = If[ListQ[L], L, {L}], c, d, p, t,
 b = {{"Null", "Null"}}, k = 1},
 For[k, k <= Length[a], k++, c = a[[k]]; d = Head1[c];
 t = Flatten[Select[b, #[[1]] === d &]];
 If[t == {}, AppendTo[b, {d, c}], p = Flatten[Position[b, t]][[1]];
 AppendTo[b[[p]], c]]]; b = b[[2 ;; –1]];
 If[Length[b] == 1, Flatten[b], b]]

In[2487]:= GroupNames[{Sin, Cos, ProcQ, Locals2, 80, Map1, StrStr, 67/42,
 Avz, Nvalue1, a + b}]
Out[2487]= {{System, Sin, Cos}, {Module, ProcQ, Locals2, Map1, Nvalue1},
{Integer, 80}, {Function, StrStr}, {Rational, 67/42}, {Symbol, Avz}, {Plus, a + b}}
In[2488]:= GroupNames[Head1]
Out[2488]= {Module, Head1}

Extension of Mathematica system functionality

 109

In[2489]:= L = GroupNames[Names["*"]]
Out[2489]= {{Global`System, "\[FormalA]", …, "CallPacket"},
 {Function, "AcNb", …, "$ProcName"},
 {String, "ActionMenu", …, "GroebnerBasis"},
 {Module, "ActiveProcess", …, "WhichN"},
 {System, "CanberraDistance", …, "$VersionNumber"}}
In[2490]:= Map[Length, L] – 1
Out[2490]= {594, 548, 90, 500, 6817}

In particular, from 2 last examples of the GroupNames usage follows, that
names of the current session belong to five groups, namely: Global'System,
Function, String, Module and System, the number of elements in which is
594, 548, 90, 500 and 6817 respectively. Meanwhile, for receiving this result
a considerable time expenditure are needed, due to the need of testing of a
large number of means of the current session.

In addition to the GroupNames procedure a certain interest can present and
a rather simple procedure, whose call LocObj[x] returns the three–element
list whose first element defines an object x, the second element determines its
type in the context {"Module", "SFunction" (system function), "Expression",
"Function"}, while the third element – its location in the context {"Global" –
the current session, "System" – a kernel or Mathematica library, "Context" –
a system or user package that has been loaded into the current session and
which contains definition of the object x}. The following fragment represents
source code of the procedure and the most typical examples of its usage.

In[2244]:= LocObj[x_] := Module[{a = Head1[x], b},
 b[y_] := StringTake[Context[y], {1, –2}];
 If[a == "Module", {x, "Module", b[x]},
 If[a == "Function", {x, "Function", b[x]},
 If[SystemQ[x], {x, "SFunction", b[x]},
 {x, "Expression", "Global"}]]]]

In[2245]:= Map[LocObj, {PureDefinition, ProcQ, StrStr, Sin, a + b, 500}]
Out[2245]= {{PureDefinition, "Module", "AladjevProcedures"},
 {ProcQ, "Module", "AladjevProcedures"}, {StrStr, "Function",
 "AladjevProcedures"}, {Sin, "SFunction", "System"},
 {a + b, "Expression", "Global"}, {500, "Expression", "Global"}}

V.Z. Aladjev, V.A. Vaganov

 110

While the call Names1[] returns the nested 4-element list whose 1st element
defines the list of names of procedures, the 2nd element – the list of names
of functions, the 3rd element – the list of names whose definitions have been
evaluated in the current session whereas the 4th element determines the list
of other names associated with the current session. The fragment represents
source code of the Names1 procedure along with an application example.

In[2545]:= Names1[x___ /; {x} == {}] := Module[{c = 1, d, h, b = {{}, {}, {}, {}},
 a = Select[Names["`*"], StringTake[#, {1, 1}] != "$" &]},
 While[c <= Length[a], d = a[[c]]; If[ProcQ[d], AppendTo[b[[1]], d],
 If[Quiet[Check[QFunction[d], False]], AppendTo[b[[2]], d],
 h = ToString[Quiet[DefFunc[d]]];
 If[! SameQ[h, "Null"] && h == "Attributes[" <> d <> "] = {Temporary}",
 AppendTo[b[[3]], d]], AppendTo[b[[4]], d]]]; c++]; b]
In[2546]:= Names1[]
Out[2546]= {{"Bt", "Mas", "Names1", "W"}, {"F", "G"}, {"Art25$", "Kr18"}, {}}

The Names1 procedure is a rather useful means in a number of appendices,
in particular, in some questions of the procedural programming, in certain
relations expanding the standard Names function of Mathematica. Though,
during work in the current session, the execution of the Names1 procedure
demands the increasing time expenditure, assuming its circumspect usage.

The call RemoveNames[] provides removal from the current session of the
names, whose types are other than procedures and functions, and whose
definitions have been evaluated in the current session; moreover, the names
are removed so that aren't recognized by Mathematica any more. The call
RemoveNames[] along with removal of the above names from the current
session returns the nested 2-element list whose first element determines the
list of names of procedures, whereas the second element – the list of names
of functions whose definitions have been evaluated in the current session.
The following fragment represents source code of the RemoveNames with
typical examples of its usage.

In[2565]:= RemoveNames[x___] := Module[{a = Select[Names["`*"],
 ToString[Definition[#]] != "Null" &], b},
 ToExpression["Remove[" <> StringTake[ToString[MinusList[a,
 Select[a, ProcQ[#]||! SameQ[ToString[Quiet[DefFunc[#]]], "Null"]||

Extension of Mathematica system functionality

 111

 Quiet[Check[QFunction[#], False]] &]]], {2, –2}] <> "]"];
 b = Select[a, ProcQ[#] &]; {b, MinusList[a, b]}]

In[2566]:= {Length[Names["`*"]], RemoveNames[], Names["`*"]}
Out[2566]= {80, {{"Ar", "Kr", "Rans"}, {"Ian"}}, {"Ar", "Kr", "Rans", "Ian"}}
In[2567]:= RemoveNames[]
Out[2567]= {{"Art", "Kr", "Rans"}, {"Ian"}}
In[2568]:= RemoveNames[]
Out[2568]= {{"M", "M1", "M2"}, {"F", "F42", "F47", "$LoadContexts"}}

The RemoveNames procedure is a rather useful means in some appendices
connected with cleaning of the working Mathematica area from definitions
of non–used symbols. The given procedure confirmed a certain efficiency in
management of random access memory.

Using our procedures and functions such as DefFunc3, HeadPF, ToString1,
SymbolQ and PrefixQ, it is possible to obtain the more developed means of
testing of program objects of the Mathematica; the ObjType procedure acts
as a similar means. The call ObjType[x] returns the type of an object x in the
context {Function, Module, Block or DynamicModule}, in other cases the type of
an expression assigned in the current session to a symbol x by assignment
operators {:=, =} is returned. The following fragment represents source code
of the ObjType procedure along with typical application examples.

In[2220]:= ObjType[x_] := Module[{a, b, c, d = {}, h},
 If[ToString1[HeadPF[x]] === "HeadPF[" <> ToString1[x] <> "]" ||
 SymbolQ[HeadPF[x]], Return[Head[x]], b = {ToString1[DefFunc[x]]};
 c = Length[b]];
 Do[AppendTo[d, h = StringSplit[b[[k]], " := "]; {h[[1]],
 If[PrefixQ["Module[{", h[[2]]], Module,
 If[PrefixQ["Block[{", h[[2]]], Block,
 If[PrefixQ["Function[", h[[2]]], Function,
 If[PrefixQ["DynamicModule[{", h[[2]]], DynamicModule,
 {Function, Head[ToExpression[h[[2]]]]}]]]]}]; Flatten[d, 1]]

In[2221]:= Sv[x_, y_] := x + y; G[x_] := Block[{}, x^2]; V[x_] := If[EvenQ[x],
 x, 2*x]; V[x_, y_] := Block[{a = If[PrimeQ[x], NextPrime[y]]}, a*(x + y)];
In[2222]:= Map[ObjType, {ObjType, 80, a + b, ProcQ}]

V.Z. Aladjev, V.A. Vaganov

 112

Out[2222]= {{"ObjType[x_]", Module}, Integer, Plus, {"ProcQ[x_]", Module}}
In[2223]:= Map[ObjType, {Sv, G, V}]
Out[2223]= {{"Sv[x_, y_]", {Function, Plus}}, {"G[x_]", Block},
 {"V[x_, y_]", Block}, {"V[x_]", {Function, Times}}}
In[2224]:= ObjType[DefFunc3]
Out[2224]= {"DefFunc3[x_ /; BlockFuncModQ[x]]", Module}
In[2225]:= F := Function[{x, y}, x + y]; {F[80, 480], ObjType[F]}
Out[2225]= { 560, Function}
In[2226]:= F1 := #1 * #2 &; {F1[80, 480], ObjType[F1]}
Out[2226]= {38400, Function}
In[2227]:= Map[ObjType, {HeadPF, StrStr}]
Out[2227]= {{"Head1[x_]", Module}, {"StrStr[x_]", {Function, String}}}
In[2228]:= Agn := "4247679886"; Avz = 2014; Map[ObjType, {Agn, Avz}]
Out[2228]= {String, Integer}

Here is quite appropriate to make one explanation: the ObjType procedure
carries to the Function type not only especially functional objects, but also
definitions of the format Name[x_, y_, z_, …]: = Expression; in this case the
call returns the list of the following format, namely: {"Name[x_, y_, z_, …]",
{Function, Head[Expression]}}. Due to the aforesaid the ObjType procedure
is represented to us as a rather useful means at testing of objects of various
type in the current session in problems of procedural programming.

In a number of cases exists an urgent need of determination of the program
objects and their types activated directly in the current session. The problem
is solved by the TypeActObj procedure, whose call TypeActObj[] returns
the nested list, whose sublists in string format by the first element contain
types of active objects of the current session, whereas other elements of the
sublist are names corresponding to this type; at that, the types recognized
by the system, or the types of expressions determined by us, in particular,
{`Procedure`, `Function`} can act as a type. In a certain sense the TypeActObj
procedure supplements the ObjType procedure. The following fragment
represent source code of the procedure with examples of its application.

In[2787]:= TypeActObj[] := Module[{a = Names["`*"], b = {}, c, d, h, p, k = 1},
 Quiet[For[k, k <= Length[a], k++, h = a[[k]]; c = ToExpression[h];
 p = StringJoin["0", ToString[Head[c]]];

Extension of Mathematica system functionality

 113

 If[! StringFreeQ[h, "$"] || (p === Symbol &&
 "Definition"[c] === Null), Continue[],
 b = Append[b, {h, If[ProcQ[c], "0Procedure",
 If[Head1[c] === Function, "0Function", p]]}]]]];
 a = Quiet[Gather1[Select[b, ! #1[[2]] === Symbol &], 2]];
 a = ToExpression[StringReplace[ToString1[DeleteDuplicates /@
 Sort /@ Flatten /@ a], "AladjevProcedures`TypeActObj`" –> ""]];
 Append[{}, Do[a[[k]][[1]] = StringTake[a[[k]][[1]], {2, –1}],
 {k, Length[a]}]]; a]

In[2788]:= TypeActObj[]
Out[2788]= {{"Symbol", "A", "B", "g", "H3", "m", "n", "PacletFind", "System",
"Procedure"}, {"Procedure", "As", "Kr"}, {"Function", "G", "V"}, {"List", "xyz"}}
In[2789]:= TypeActObj[]
Out[2789]= {{"String", "Agn"}, {"Symbol", "atr", "F2", "F47", "M", "Sv", "V"},
 {"Integer", "Avz"}, {"Function", "F", "F1"},
 {"Procedure", "G", "M2", "M3", "M4", "M5", "RemoveNames"}}

In the context of use of the standard functions Nest and Map for definition
of new pure functions on the basis of available ones, it is possible to offer a
procedure as an useful generalization of the standard Map function, whose
call Mapp[F, E, x] returns result of application of a function/procedure F to
an expression E with transfer to it of the actual arguments determined by a
tuple of expressions x which can be and empty. In case of the empty tuple x
the identity Map[F, E] ≡ Mapp[F, E] takes place. As formal arguments of the
standard function Map[f, g] act the name f of a procedure/function whereas
as the second argument – an arbitrary expression g, to whose operands of the
first level is applied f. The following fragment represents source code of the
Mapp procedure along with typical examples of its usage.

In[2634]:= Mapp[f_ /; ProcQ[f]||SysFuncQ[f]||SymbolQ[f], Ex_, x___] :=
 Module[{a = Level[Ex, 1], b = {x}, c = {}, h, g = Head[Ex], k = 1},
 If[b == {}, Map[f, Ex], h = Length[a];
 For[k, k <= h, k++, AppendTo[c, ToString[f] <> "[" <>
 ToString1[a[[k]]] <> ", " <> ListStrToStr[Map[ToString1, {x}]] <> "]"]];
 g[Sequences[ToExpression[c]]]]]

V.Z. Aladjev, V.A. Vaganov

 114

In[2635]:= Mapp[F, {a, b, c}, x, y, z]
Out[2635]= {F[a, x, y, z], F[b, x, y, z], F[c, x, y, z]}
In[2636]:= Mapp[F, a + b + c, x, y, z]
Out[2636]= F[a, x, y, z] + F[b, x, y, z] + F[c, x, y, z]
In[2637]:= Mapp[F, (m + n)/(g + h) + Sin[x], a, b, c]
Out[2637]= F[(m + n)/(g + h), a, b, c] + F[Sin[x], a, b, c]
In[2638]:= Mapp[StringPosition, {"11123", "33234"}, {"2", "3", "23"}]
Out[2638]= {{{4, 4}, {4, 5}, {5, 5}}, {{1, 1}, {2, 2}, {3, 3}, {3, 4}, {4, 4}}}
In[2639]:= Mapp[StringReplace, {"123525", "2595"}, {"2" –> "V", "5" –> "G"}]
Out[2639]= {"1V3GVG", "VG9G"}
In[2640]:= Map[F, {{a, b}, {c, d, e}}]
Out[2640]= {F[{a, b}], F[{c, d, e}]}
In[2641]:= Mapp[F, {{a, b}, {c, d, e}}, x, y, z]
Out[2641]= {F[{a, b}, x, y, z], F[{c, d, e}, x, y, z]}
In[2642]:= Mapp[ProcQ, {Sin, ProcQ, Mapp, PureDefinition, SysFuncQ}]
Out[2642]= {False, True, True, True, False}

In[2653]:= Mapp1[f_ /; SymbolQ[f], L_ /; ListQ[L]] := Module[{b,
 a = Attributes[f]}, SetAttributes[f, Listable]; b = Map[f, L];
 ClearAllAttributes[f]; SetAttributes[f, a]; b]

In[2654]:= Map[F, {{a, b, c}, {x, y, {c, d, {h, k, t}}}}]
Out[2654]= {F[{a, b, c}], F[{x, y, {c, d, {h, k, t}}}]}
In[2655]:= Mapp[F, {{a, b, c}, {x, y, {c, d, {h, k, t}}}}]
Out[2655]= {F[{a, b, c}], F[{x, y, {c, d, {h, k, t}}}]}
In[2656]:= Mapp1[F, {{a, b, c}, {x, y, {c, d, {h, k, t}}}}]
Out[2656]= {{F[a], F[b], F[c]}, {F[x], F[y], {F[c], F[d], {F[h], F[k], F[t]}}}}

We will note that realization of algorithm of the Mapp procedure is based
on the following relation, namely:

Map[F, Expr] ≡ Head[Expr][Sequences[Map[F, Level[Expr, 1]]]]

Whose rightness follows from definition of the system functions Head, Map,
Level, and also of the Sequences procedure considered in the present book.
The following simple example rather visually illustrates the aforesaid:

In[4942]:= Map[F, (m + n)/(g + h) + Sin[x]] == Head[(m + n)/(g + h) +
 Sin[x]][Sequences[Map[F, Level[(m + n)/(g + h) + Sin[x], 1]]]]
Out[4942]= True

Extension of Mathematica system functionality

 115

The given relation can be used and at realization of cyclic structures for the
solution of problems of other directionality, including programming on the
basis of use of mechanism of the pure functions. While the Mapp procedure
in some cases rather significantly simplifies programming of various tasks.
The Listable attribute for a function F determines that the function F will be
automatically applied to elements of the list that acts as its argument. Such
approach can be used rather successfully in a number of cases of realization
of blocks, functions and modules.

In particular, in this context a rather simple Mapp1 procedure is of interest,
whose call Mapp1[x, y] unlike the call Map[x, y] of the standard function
returns result of applying of a block, function or a module x to all elements
of a list y, regardless of their location on list levels. The previous fragment
represents source code of the Mapp1 procedure with comparative examples
relative to the system Map function.

Meanwhile, for a number of functions and expressions the Listable-attribute
doesn't work, and in this case the system provides 2 special functions Map
and Thread that in a certain relation can quite be referred to the structural
means that provide application of functions to parts of expressions. In this
conexion we created group of enough simple and at the same time useful
procedures and functions, so-called Map-means which enough significantly
expand the system Map function. Two means of this group – the procedures
Mapp and Mapp1 that have a number of applications in means of package
AVZ_Package [48] have already been presented above, we will present also
other means of this Map–group. The following fragment represents source
codes of means of this group with typical examples of their application that
on the formal level rather visually illustrate results of calls of these means
on correct factual arguments. Similar representation allows to significantly
minimize descriptions of means when on the basis of formal results of calls
it is quite simple to understand an essence of each means of Map–group.

In[2625]:= Map1[x_ /; ListQ[x] &&
 SameQ[DeleteDuplicates[Map[SymbolQ[#] &, x]], {True}], y_List] :=
 Map[Symbol[ToString[#]][Sequences[y]] &, x]

In[2626]:= Map1[{F, G, H, V}, {x, y, z, h, p, t}]
Out[2626]= {F[x, y, z, h, p, t], G[x, y, z, h, p, t], H[x, y, z, h, p, t], V[x, y, z, h, p, t]}

V.Z. Aladjev, V.A. Vaganov

 116

In[2627]:= Map2[F_ /; SymbolQ[F], c_ /; ListQ[c], d_ /; ListQ[d]] :=
 Map[Symbol[ToString[F]][#, Sequences[d]] &, c]

In[2628]:= Map2[F, {a, b, c, d, e, g}, {x, y, z, p, q, h}]
Out[2628]= {F[a, x, y, z, p, q, h], F[b, x, y, z, p, q, h], F[c, x, y, z, p, q, h],
 F[d, x, y, z, p, q, h], F[e, x, y, z, p, q, h], F[g, x, y, z, p, q, h]}

In[2629]:= Map3[f_ /; SymbolQ[f], g_, l_ /; ListQ[l]] :=
 Map[Symbol[ToString[f]][g, #] &, l]

In[2630]:= Map3[F, H, {x, y, z, h, p, h, m, n}]
Out[2630]= {F[H, x], F[H, y], F[H, z], F[H, h], F[H, p], F[H, h], F[H, m], F[H, n]}

In[2631]:= Map4[F_ /; SymbolQ[F], L_/; ListQ[L], x_] :=
 Map[Symbol[ToString[F]][#, x] &, L]

In[2632]:= Map4[F, {a, b, c, d, h, g, m, n}, x]
Out[2632]= {F[a, x], F[b, x], F[c, x], F[d, x], F[h, x], F[g, x], F[m, x], F[n, x]}

In[2633]:= Map5[F_, L_ /; NestListQ[L]] := Map[F[Sequences[#]] &, L]

In[2634]:= Map5[S, {{x1, y1, z1, t1}, {x2, y2, z2}, {x3, y3}, {x4, y4, z4, t4, m, n}}]

Out[2634]= {S[x1, y1, z1, t1], S[x2, y2, z2], S[x3, y3], S[x4, y4, z4, t4, m, n]}
In[2635]:= F[x_, y_, z_, h_] := a[x]*b[y]*d[z]*g[z] – c[x, y, z]
In[2636]:= Map5[F, {{x1, y1, z1, t1}, {x2, y2, z2}, {x3, y3}, {x4, y4, z4, t4, m, n}}]
Out[2636]= {–c[x1, y1, z1] + a[x1] b[y1] d[z1] g[z1], F[x2, y2, z2], F[x3, y3],
 F[x4, y4, z4, t4, m, n]}

In[2637]:= Map6[F_ /; PureFuncQ[F], L_ /; ListListQ[L]] := Module[{a, h, p,
 b = Length[L], c = Length[L[[1]]], d = {}, k = 1},
 h = StringTake[ToString[F], {1, –4}];
 For[k, k <= b, k++, a = {}; AppendTo[d, StringReplace[h,
 Flatten[{For[p = 1, p <= c, p++, AppendTo[a, "#" <> ToString[p] –>
 ToString[L[[k]][[p]]]]], a}][[2 ;; –1]]]]]; ToExpression[d]]

In[2638]:= Map6[a[#1]*b[#2]*d[#3]*g[#4z] – c[#1, #2, #3] &, {{x1, y1, z1, t1},
 {x2, y2, z2, t2}, {x3, y3, z3, t3}, {x4, y4, z4, t4}}]
Out[2638]= {–c[x1, y1, z1] + a[x1] b[y1] d[z1] g[t1], –c[x2, y2, z2] + a[x2] b[y2]
 d[z2] g[t2], –c[x3, y3, z3] + a[x3] b[y3] d[z3] g[t3] –c[x4, y4, z4] +
 a[x4] b[y4] d[z4] g[t4]}

Extension of Mathematica system functionality

 117

In[2639]:= Map7[x__ /; DeleteDuplicates[Map[SymbolQ, {x}]] === {True},
 y_ /; ListQ[y]] := Map[FunCompose[Reverse[Map[Symbol,
 Map[ToString, {x}]]], #] &, y]

In[2640]:= Map7[F, G, H, {a, b, c, d, h}]
Out[2640]= {F[G[H[a]]], F[G[H[b]]], F[G[H[c]]], F[G[H[d]]], H[G[F[h]]]}

In[2641]:= Map7[Sin, Sqrt, N, {18, 25, 47, 67, 72, 480}]
Out[2641]= {–0.891682, –0.958924, 0.541709, 0.945597, 0.807261, 0.0821536}

In[2642]:= Map8[x__ /; DeleteDuplicates[Map[SymbolQ, {x}]] === {True},
 y_ /; ListQ[y]] := Map[Symbol[ToString[#]][Sequences[y]] &, {x}]

In[2643]:= Map8[x, y, z, h, g, {a, b, c, d}]
Out[2643]= {x[a, b, c, d], y[a, b, c, d], z[a, b, c, d], h[a, b, c, d], g[a, b, c, d]}

In[2644]:= Map9[F_ /; SymbolQ[F], x_ /; ListQ[x], y_ /; ListQ[y]] :=
 If[Length[x] == Length[y], Map13[F, {x, y}], Defer[Map9[F, x, y]]]

In[2645]:= Map9[F, {a, b, c, d, g, p}, {x, y, z, h, s, w}]
Out[2645]= {F[a, x], F[b, y], F[c, z], F[d, h], F[g, s], F[p, w]}

In[2646]:= Map9[Rule, {"72a", "67g", "47s", "80b"}, {"a", "b", "c", "d"}]
Out[2646]= {"72a" –> "a", "67g" –> "b", "47s" –> "c", "80b" –> "d"}

In[2647]:= Map9[Rule, {a, b, c, d, m, p}, {x, y, z, t, n, q}]
Out[2647]= {a –> x, b –> y, c –> z, d –> t, m –> n, p –> q}

In[2648]:= Map9[Plus, {a, b, c, d, g, p, u}, {x, y, z, h, s, w, t}]
Out[2648]= {a + x, b + y, c + z, d + h, g + s, p + w, u + t}

In[2649]:= Map10[F_ /; SymbolQ[F], x_, L_ /; ListQ[L], y___] :=
 Map[Symbol[ToString[F]][x, #, Sequences[{y}]] &, L]

In[2650]:= Map10[F, x, {a, "b", c, d}, y, "z", h]
Out[2650]= {F[x, a, y, "z", h], F[x, "b", y, "z", h], F[x, c, y, "z", h], F[x, d, y, "z", h]}
In[2651]:= Map10[F, "x", {a, "b", c, d, f, g}]
Out[2651]= {F["x", a], F["x", "b"], F["x", c], F["x", d], F["x", f], F["x", g]}
In[2652]:= Map10[SuffPref, "C:\\89b8fc17cbdce3\\ mxdwdrv.dll", {".nb",
 ".m", ".dll", ".cdf"}, 2]
Out[2652]= {False, False, True, False}

V.Z. Aladjev, V.A. Vaganov

 118

In[2653]:= Map11[x_/; SymbolQ[x], y_/; ListQ[y], z_] := (If[ListQ[#1],
 (x[#1, z] &) /@ #1, x[#1, z]] &) /@ y

In[2654]:= Map11[G, {x, y, z, m, n, g}, t]
Out[2654]= {G[x, t], G[y, t], G[z, t], G[m, t], G[n, t], G[g, t]}

In[2655]:= Map12[F_ /; SymbolQ[F], x_ /; NestListQ1[x]] := Module[{c,
 a = ToString1[x], b = ToString[F] <> "@"},
 c = StringReplace[a, {"{" –> "{" <> b, ", " –> "," <> b}];
 c = StringReplace[c, b <> "{" –> "{"]; ToExpression[c]]

In[2656]:= Map12[F, {{a, b, c}, {x, y, z}, h, {m, {{"p"}}, n, p, {{{x, "y"}}}}}]
Out[2656]= {{F[a], F[b], F[c]}, {F[x], F[y], F[z]}, F[h], {F[m], {{F["p"]}}, F[n],
 F[p], {{{F[x], F[y]}}}}}
In[2657]:= Map12[ToString1, {{a, b, c}, {x, y, z}, "h", {m, {"x"}, n, p}}]
Out[2657]= {{"a", "b", "c"}, {"x", "y", "z"}, "\"h\"", {"m", {"\"x\""}, "n", "p"}}

In[2658]:= Map13[x_ /; SymbolQ[x], y_ /; ListListQ[y]] := Module[{k, j,
 a = Length[y], b = Length[y[[1]]], c = {}, d = {}},
 For[k = 1, k <= b, k++, For[j = 1, j <= a, j++, AppendTo[c, y[[j]][[k]]]];
 AppendTo[d, Apply[x, c]]; c = {}]; d]

In[2659]:= Map13[F, {{a, b, c, s}, {x, y, z, g}, {m, n, p, w}}]
Out[2659]= {F[a, x, m], F[b, y, n], F[c, z, p], F[s, g, w]}
In[2660]:= Map13[ProcQ, {{ProcQ}}]
Out[2660]= {True}
In[2661]:= Map13[Plus, {{a, b, c, g, t}, {x, y, z, g, t}, {m, n, p, h, g}}]
Out[2661]= {a + m + x, b + n + y, c + p + z, 2 g + h, g + 2 t}
In[2662]:= G[x_, y_] := x + y; Map13[G, {{a, b, c}, {x, y, z}, {m, n, p}}]
Out[2662]= {G[a, x, m], G[b, y, n], G[c, z, p]}
In[2663]:= Map13[G, {{a, b, c, g, h}, {x, y, z, t, v}}]
Out[2663]= {a + x, b + y, c + z, g + t, h + v}

In[2664]:= Map14[x_ /; SymbolQ[x], y_ /; ListQ[y], z_, t___] :=
 Module[{a = Map[x[#, z] &, y]}, If[{t} == {}, a, Map[ToString, a]]]

In[2665]:= Map14[G, {a, b, c, d, f, g, h}, Kr]
Out[2665]= {G[a, Kr], G[b, Kr], G[c, Kr], G[d, Kr], G[f, Kr], G[g, Kr], G[h, Kr]}
In[2666]:= Map14[G, {a, b, c, d, f, g}, Kr, 500]
Out[2666]= {"G[a, Kr]", "G[b, Kr]", "G[c, Kr]", "G[d, Kr]", "G[f, Kr]", "G[g, Kr]"}

Extension of Mathematica system functionality

 119

In[2667]:= Map14[G, {}, Kr, 90]
Out[2667]= {}

In[2668]:= Map15[x__ /; SameQ[DeleteDuplicates[Map[SymbolQ, {x}]],
 {True}], y_] := Map[#[y] &, {x}]

In[2669]:= Map15[TableForm, MatrixForm, {{1, V, 72}, {2, G, 67}, {3, S, 47},
 {4, A, 25}, {5, K, 18}}]

Out[2669]=

1 V 72
2 G 67
3 S 47
4 A 25
5 K 18

,

1 V 72
2 G 67
3 S 47
4 A 25
5 K 18

In[2670]:= Map15[F, G, H, P, Q, X, Y, (a + b)]
Out[2670]= {F[a + b], G[a + b], H[a + b], P[a + b], Q[a + b], X[a + b], Y[a + b]}

In[2671]:= Map16[f_/; SymbolQ[f], l_/; ListQ[l], x___] := Quiet[(f[#1,
 FromCharacterCode[6]] &) /@ l /. FromCharacterCode[6] –> Sequence[x]]

In[2672]:= Map16[F, {x, y, z, t}, h, m, p]
Out[2672]= {F[x, h, m, p], F[y, h, m, p], F[z, h, m, p], F[t, h, m, p]}

In[2673]:= Map17[x_, y_ /; RuleQ[y] || ListRulesQ[y]] :=
 If[RuleQ[y], Map[x, y], Map[Map[x, #] &, y]]

In[2674]:= Map17[F, {a –> b, c –> d, t –> g, w –> v, h –> 80}]
Out[2674]= {F[a] –> F[b], F[c] –> F[d], F[t] –> F[g], F[w] –> F[v], F[h] –> F[80]}

The previous fragment represents source codes of means of the above Map–
group with examples of their usages, from which the structure of the results
returned by them is quite visually visible. Without increasing essence, we
will give only short explanations concerning means of the given group. For
example, the following calls

Map1[{F, G, H, ...}, {x, y, ...}], Map2[F, {a, b, ...}, {x, y, ...}], Map3[F, H, {x, y, ...}]

return respectively lists of the following format, namely:

{F[x, y, ...], G[x, y, ...], H[x, y, ...], ...}; {F[a, x, y, ...], F[b, x, y, ...], F[c, x, y, ...], ...};
{F[H, x], F[H, y], F[H, z], F[H, h], …, F[H, g], F[H, m], F[H, n], ...}.

The call Map4[x, y, z] returns result in the format {x[a1,z], x[a2,z], x[a3,z], ...},
where y = {a1, a2, a3, …}. Whereas two procedures Map5 and Map6 expand

V.Z. Aladjev, V.A. Vaganov

 120

action of the system function Map onto cases of classical and pure functions
with any number of arguments. The call Map7[F, G, …, V, {a, b, …, v}] where
F,G,…,V – symbols and {a,b,c,…,v} – the list of arbitrary expressions, returns
result of the following format, namely:

{F[G[… V[a]]]] …], F[G[… V[b]]]] …], F[G[… V[c]]]] …], …, F[G[… V[v]]]]…]}

without demanding any additional explanations in view of transparency.

Quite certain interest is represented by quite simple Map8 function, whose
call Map8[F, G, H, …, V, {a, b, …, v}], where to F, G, …, V – symbols whereas
{a, b, c, …, v} – the list of arbitrary expressions, returns result of the format:

{F[a, b, c, …, v], G[a, b, c, …, v], H[a, b, c, …, v], …, V[a, b, c, …, v]}

without demanding any additional explanations in view of transparency; at
that, the Map8 function is rather useful means, in particular, at organization
of comparisons of results of the calls of functionally similar blocks/functions

/modules on identical tuples of the actual arguments. While the call Map9[x,
{a,b,…,v}, {a1,b1,…,v1}] where x – the symbol, {a,b,c,…,v} and {a1,b1,c1,…,v1}
are lists of the arbitrary expressions of identical length, returns result of the
following format, namely:

{x[a, a1], x[b, b1], x[c, c1], x[d, d1], …, x[v, v1]}

The call Map10[F, x, {a, b, …, v}, c1, c2, …, cn], where F – a symbol, x and {a,
b, c, …, v} – an expression and lists of expressions respectively, c1, c2, …, cn –
optional arguments, returns result of the following format, namely:

{F[x, a, c1, c2, …], F[x, b, c1, c2, …], F[x, c, c1, c2, …], …, F[x, v, c1, c2, …]}

The Map12 procedure generalizes the standard Map function onto a case of
a nested list as its second actual argument. The call Map12[F, {{a, b, c, …, v},
{a1, b1, c1, …, v1}, …, p, …, {ap, bp, h, cp, …, vp}}] where F – a symbol, and the
second argument – the nested list of arbitrary expressions, returns result of
the following format, namely:

{Map[F, {a, b, c, …, v}], Map[F, {a1, b1, c1, …, v1}], …, F[p], …, Map[F, {ap, bp,
h, cp, …, vp}]}

Whereas the Map13 procedure generalizes the standard Map function onto
case of a list of ListList-type as its second actual argument. The procedure call
Map13[F, {{a, b, c, …, v}, {a1, b1, c1, …, v1}, …, {ap, bp, cp, …, vp}}] where F –

Extension of Mathematica system functionality

 121

a symbol, and the second argument – the list of ListList-type of expressions,
returns result of the following format, namely:

{F[a, a1, a2, …, ap], F[b, b1, b2, …, bp], F[c, c1, c2, …, cp], …, F[v, v1, v2, …, vp]}

In case of an undefinite symbol x the concept of arity is ignored; meanwhile,
if an actual argument x defines procedure or function of the user, the call of
Map13 is returned unevaluated if arity x is other than length of sublists of y.
The call Map14[F, {a, b, c, …, v}, y] where F – a symbol, the second argument
is a list of any expressions and y – an arbitrary expression, returns result of
the following format, namely:

{F[a, y], F[b, y], F[c, y], F[d, y], …, F[v, y]}

At that, an use at the call Map14[F, {a, b, c, …, v}, y, t] of optional 4th actual
argument – an arbitrary expression – returns result of the following format,
namely:

{"F[a, y]", "F[b, y]", "F[c, y]", "F[d, y]", …, "F[v, y]"}

The call Map15[x1, x2, x3, …, xp, t] where xj – symbols, and t – an arbitrary
admissible expression, returns result of the following format, namely:

{x1[t], x2[t], x3[t], x4[t], x5[t], …, xp[t]}

The call Map16[F, {a, b, ..., v}, c1, c2, ..., cn] where F – a symbol whereas {a, b,
c, ..., v} – a list of arbitrary expressions, and c1, c2, ..., cn – optional arguments
accordingly – returns the list of the following format, namely:

{F[a, c1, c2, ...], F[b, c1, c2, ...], F[c, c1, c2, ...], ..., F[v, c1, c2, ...]}

At last, the call Map17[F, {a –> b, c –> d, ...}] where F – a symbol while {a –> b,
c –> d, ...} – a list of rules returns the list of the following format, namely:

{F[a] –> F[b], F[c] –> F[d], ...}

without demanding any additional explanations in view of its transparency.
The seventeen means, represented above, form so-called Map–group which
rather significantly expands functionality of standard function Map of the
system. From the presented information the formats of the returned results
of calls of the above means are quite transparent, without demanding any
additional explanations. Means of Map-group in a number of cases allow to
simplify programming of procedures and functions, significantly extending
the standard Map function. The AVZ_Package package also use these tools.

V.Z. Aladjev, V.A. Vaganov

 122

It is rather expedient to programmatically process all special and erroneous
situations arising in the course of calculation for that the Mathematica has
quite enough means in the Input-mode whereas at procedural processing of
such situations the question is slightly more difficult. For this reason the Try
function which represents a certain analog of try–sentence of Maple system
whose mechanism is very effective in the Input–mode and at a procedural
processing of special and erroneous situations when erroneous and special
situations without any serious reason don't lead to a procedure completion
without returning the corresponding diagnostic messages has been offered.
The fragment below represents source code of the Try function along with
examples of its typical application.

In[2458]:= G::norational = "actual argument `1` is not rational"
Out[2458]= "actual argument `1` is not rational"
In[2459]:= G[x_] := If[Head[x] === Rational, Numerator[x]^9 +
 Denominator[x]^9, Message[G::norational, x]; Defer[G[x]]]
In[2460]:= G[42.73]
 G::norational: actual argument 42.73` is not rational
Out[2460]= G[42.73]

In[2461]:= Try[x_ /; StringQ[x], y_] := Quiet[Check[ToExpression[x],
 {y, $MessageList}]]
In[2462]:= Try["G[42/73]", "Res"]
Out[2462]= 59 278 258 092 117 385
In[2463]:= Try["G[42.73]", "Res"]
Out[2463]= {"Res", {G::norational}}
In[2464]:= Try["1/0", "Error"]
Out[2464]= {"Error", {Power::infy}
In[2465]:= Ag[x_Integer, y_Integer] := Module[{a = Try[ToString[x] <> "/"
 <> ToString[y], "Error"]},
 If[ListQ[a], If[a[[1]] === "Error", {x, y, a[[2]]}], x/y]]
In[2466]:= Ag[80, 480]
Out[2466]= 1/6
In[2467]:= Ag[80, 0]
Out[2467]= {80, 0, {Power::infy}}

First of all, for illustration of operating of the function Try[x, y] the message
with name "G::norational" that is used by simple function G[x] in case of its

Extension of Mathematica system functionality

 123

call on argument x different from a rational number. Such call outputs this
message with return of the unevaluated call (at that, only simplifications of an
expression x can be done). The Try function is similar to try–clause of Maple,
providing processing of x depending on the messages initiated by evaluation
of x. Furthermore, it is necessary to note that all messages initiated by such
evaluation of an expression x, should be activated in the current session. The
call of the function has the following format, namely:

Try["x–expression", y}}]

where the first argument x defines an expression x in string format whereas
the second argument defines the message associated with a possible special
or erroneous situation at calculation of expression x. In case evaluation of an
expression x is correct, the result of its evaluation (for example, the procedure
call) is returned, otherwise the nested list of the format {y, {Mes}} is returned
where Mes defines the system message generated as a result of processing
of a erroneous or special situation by the system. The function Try proved
itself as a rather convenient means for processing of special and erroneous
situations at programming of a number of applied and system problems.
For the rather experienced users of the Mathematica system the codes of the
illustrative examples and means of this section are quite transparent and of
any special additional explanations don't demand.

5.1. The control branching structures and cyclic structures in the
Mathematica system

Rather difficult algorithms of calculations and/or control algorithms (first of
all) can't use especially consequent schemes, including various constructions
changing consequent order of an algorithm execution depending on these or
those conditions: conditional and unconditional transitions, cycles, branchings
(the structures of such type in a number of cases are called as control structures).
In particular, for the organization of the control structures of the branching
type the Math–language of Mathematica has rather effective tool provided
with the If–function having three formats of coding [28-33,60]. In a number
of cases a simple Iff procedure from number of arguments from 1 to n that
generalizes the standard If function is quite useful tool; it is very convenient
at number of arguments, starting with 1, what is convenient in cases when

V.Z. Aladjev, V.A. Vaganov

 124

calls of the Iff function are generated in a certain procedure automatically,
simplifying processing of erroneous and special situations arising by a call
of such procedure on number of arguments from range 2..4. The following
fragment represents source code of the Iff procedure with an example. At
that, it must be kept in mind that all actual arguments of y, since the second,
are coded in string format in order to avoid their premature calculation at
the call Iff[x, ...] when the actual arguments are being calculated/simplified.

In[2745]:= Iff[x_, y__ /; StringQ[y]] := Module[{a = {x, y}, b}, b = Length[a];
 If[b == 1||b >= 5, Defer[Iff[x, y]],
 If[b === 2, If[x, ToExpression[y]],
 If[b == 3, If[x, ToExpression[y], ToExpression[a[[3]]]],
 If[b == 4, If[x, ToExpression[a[[2]]], ToExpression[a[[3]]],
 ToExpression[a[[4]]]], Null]]]]]

In[2746]:= a = {}; For[k=1, k<=73, k++, Iff[PrimeQ[k], "AppendTo[a, k]"]]; a
Out[2746]= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73}

So, the function If represents the most typical instrument for ensuring of the
branching algorithms. In this context it should be noted that If–means of the
Maple and Mathematica are considerably equivalent, however readability
of difficult enough branching algorithms realized by if–offers of the Maple
system is being perceived slightly more clearly. In particular, Maple allows
the conditional if–offer of the following format, namely:

if lc1 then v1 elif lc2 then v2 elif lc3 then v3 elif lc4 then v4 … else vk end if

where j-th lcj – a logical condition and vj – an arbitrary expression, whose
sense is rather transparent and considered, for example, in books [25-27,49].
This offer is very convenient at programming of a number of conditional
structures. For determination of similar structure in Mathematica the IFk
procedure whose source code along with examples of usage represents the
following fragment can be used, namely:

In[2340]:= IFk[x__] := Module[{a = {x}, b, c = "", d = "If[", e = "]", h = {}, k = 1},
 b = Length[a];
 If[For[k, k <= b – 1, k++, AppendTo[h, b >= 2 &&
 ListQ[a[[k]]] && Length[a[[k]]] == 2]];
 DeleteDuplicates[h] != {True}, Return[Defer[Ifk[x]]], k = 1];

Extension of Mathematica system functionality

 125

 For[k, k <= b – 1, k++, c = c <> d <> ToString[a[[k]][[1]]] <>
 "," <> ToString[a[[k]][[2]]] <> ","]; c = c <> ToString[a[[b]]] <>
 StringMultiple[e, b – 1]; ToExpression[c]]

In[2341]:= IFk[{a, b}, {c, d}, {g, s}, {m, n}, {q, p}, h]
Out[2341]= If[a, b, If[c, d, If[g, s, If[m, n, If[q, p, h]]]]]
In[2342]:= IFk[{False, b}, {False, d}, {False, s}, {True, n}, {False, p}, h]
Out[2342]= n
In[2343]:= IFk[{False, b}, {False, d}, {False, s}, {False, n}, {g, p}, h]
Out[2343]= If[g, p, h]

In[2060]:= IFk1[x__] := Module[{a = {x}, b, c = "", d = "If[", e = "]", h = {}, k = 1},
 b = Length[a];
 If[For[k, k <= b – 1, k++, AppendTo[h, b >= 2 &&
 ListQ[a[[k]]] && Length[a[[k]]] == 2]];
 DeleteDuplicates[h] != {True}, Return[Defer[Ifk1[x]]], {h, k} = {{}, 1}];
 If[For[k, k <= b – 1, k++, AppendTo[h, a[[k]][[1]]]];
 Select[h, ! MemberQ[{True, False}, #] &] != {},
 Return[Defer[Ifk1[x]]], k = 1];
 For[k = 1, k <= b – 1, k++, c = c <> d <> ToString[a[[k]][[1]]] <>
 "," <> ToString[a[[k]][[2]]] <> ","]; c = c <> ToString[a[[b]]] <>
 StringMultiple[e, b – 1]; ToExpression[c]]

In[2061]:= IFk1[{False, b}, {False, d}, {False, s}, {False, n}, {g, p}, h]
Out[2061]= IFk1[{False, b}, {False, d}, {False, s}, {False, n}, {g, p}, h]
In[2062]:= IFk1[{False, b}, {False, d}, {False, s}, {True, n}, {False, p}, h]
Out[2062]= n
In[2063]:= IFk1[{a, b}, {c, d}, {g, s}, {m, n}, {q, p}, h]
Out[2063]= IFk1[{a, b}, {c, d}, {g, s}, {m, n}, {q, p}, h]
In[2065]:= IFk1[{True, b}]
Out[2065]= IFk1[{True, b}]
In[2066]:= IFk1[{False, b}, Agn]
Out[2066]= Agn

The call of the IFk procedure uses any number of the actual arguments more
than one; the arguments use the 2-element lists of the format {lcj, vj}, except
the last. Whereas the last actual argument is a correct expression; at that, a
testing of lcj on Boolean type isn’t done. The call of the IFk procedure on a

V.Z. Aladjev, V.A. Vaganov

 126

tuple of correct actual arguments returns the result equivalent to execution
of the corresponding Maple if–offer [25-27].

At that, the IFk1 procedure is an useful extension of the previous procedure
which unlike IFk allows only Boolean expressions as the actual arguments
lcj, otherwise returning the unevaluated call. In the rest, the procedures IFk
and IFk1 are functionally identical. Thus, similarly to the if–offer of Maple
system the procedures IFk and IFk1 are quite useful at programming of the
branching algorithms of various types. With that said, the above procedures
IFk and IFk1 are provided with a quite developed mechanism of testing of
the factual arguments transferred at the procedure call whose algorithm is
easily seen from source code. Now, using the described approach fairly easy
to program in Math–language an arbitrary construction of Maple–language
describing the branching algorithms [28-33].

To a certain degree it is possible to refer to If–constructions also the Which–
function of the following format

Which[lc1, w1, lc2, w2, lc3, w3, ..., lck, wk]
that returns result of evaluation of the first wj–expression for which Boolean
expression lcj (j=1..k) accepts True value, for example:

In[2735]:= G[x_] := Which[–Infinity <= x < 80, Sin[x], 80 <= x < 480, Cos[x],
 480 <= x <= Infinity, x^2]
In[2736]:= {G[67], G[80.480], G[480], G[2014], G[–18.06]}
Out[2736]= {Sin[67], 0.361044, 230400, 4056196, 0.710041}

The example illustrates definition of a piecewise–defined function through
the Which function. If some of the evaluated conditions lcj doesn't return
{True|False} the function call is returned unevaluated while in case of False
value for all conditions lcj (j=1..k) the function call returns Null, i.e. nothing.
At dynamic generation of a Which–object a simple WhichN procedure can
be rather useful which allows any even number of arguments similar to the
Which–function, otherwise returning result by unevaluated. In the rest, the
WhichN is similar to the Which function; the following fragment represents
source code of the procedure along with typical examples of its usage.

In[4731]:= WhichN[x__] := Module[{a = {x}, c = "Which[", d, k = 1}, d =
 Length[a]; If[OddQ[d], Defer[WhichN[x]], ToExpression[For[k, k <= d,
 k++, c = c <> ToString[a[[k]]] <> ","]; StringTake[c, {1, –2}] <> "]"]]]

Extension of Mathematica system functionality

 127

In[4732]:= WhichN[a, b, c, d, f, g, h, r]
Out[4732]= Which[a, b, c, d, f, g, h, r]
In[4733]:= f = 80; WhichN[False, b, f == 80, SV, g, h, r, t]
Out[4733]= SV

The above procedures IFk, IFk1 and Which represent a quite certain interest
at programming a number of applications of various purpose, first of all, of
the system character.

5.2. The cyclic control structures of the Mathematica system

So, one of the main cyclic structures of the system is based on the function
For that has the following general format of coding, namely:

For[a, <lc>, b, <Body of a cyclic construction>]

Since the given a, the body of a construction which contains offers of Math-
language, with cyclic increment of a cyclic variable on a magnitude b so long
as a logical condition (lc) doesn't accept True is cyclically calculated. Simple
example of usage of this function is represented below, namely:

In[2942]:= For[k = 1; h = 1, k < 10000, k = k + 1, h = h^2 + 80*h + k;
 If[k < 5, Continue[], Print[h]; Break[]]]
 994 450 659 746 015 592 932 434 074 712 430

For continuation of a For-cycle and exit from it the control words Continue
and Break serve respectively as it very visually illustrates a simple example
above. While other quite widely used means in the Mathematica system for
organization of cyclic calculations is the Do function that has five formats of
coding whose descriptions with examples can be found in books [28-33,60].
Meantime, unlike the Maple system the Mathematica system has no analog
of very useful cyclic constructions of types (1.b) and (1.d) [27] that allow to
execute cyclical calculations at subexpressions of a certain expression what
provides possibility on their basis to program quite interesting constructions
as illustrate simple fragments [25-27]. In this context we will represent the
procedure whose call DO[x,y,j] returns the list of results of cyclic calculation
of an expression x on a cycle variable j which accepts values from the Op[y]
list. The construction in a certain relation is analog of the cyclic construction
for_in for the Maple system [25-27,47].

V.Z. Aladjev, V.A. Vaganov

 128

In[2274]:= DO[x_, y_, k_] := Module[{a = x, b = Op[y], c, d = 1, R = {}}, c :=
 Length[b] + 1; While[d < c, R = Insert[R, a /. k –> b[[d]], –1]; a := x; d++]; R]

In[2275]:= DO[k^2 + Log[k], f[g[a, b], h[c, d, e, j, k, l]], k]
Out[2275]= {g[a, b]^2 + Log[g[a, b]], h[c, d, e, j, k, l]^2 + Log[h[c, d, e, j, k, l]]}

In our books [28-33] the reciprocal functional equivalence of both systems is
quite visually illustrated when the most important computing constructions
of the Mathematica system with this or that efficiency are simulated by the
Maple constructions and vice versa. Truly, in principle, it is a quite expected
result because the builtin languages of both systems are universal and in this
regard with one or the other efficiency they can program any algorithm. But
in the temporary relation it is not so and at using of cyclic structures of large
enough nesting level the Maple can have very essential advantages before
Mathematica. For confirmation we will give a simple example of a cyclical
construction programmed both in the Maple, and the Mathematica.

The results speak for themselves – if in Maple 11 the execution of a certain
construction requires 7.800 s, then Mathematica 10 for execution of the same
construction requires already 49.358 s, i.e. approximately 6.3 times more (the
estimations have been obtained on PC Dell Optiplex 3020, i5–4570 3.2 GHz with
64–bit Windows 7 Professional). Furthermore, with growth of depth of nesting
and range of a cycle variable at implementation of cyclic constructions this
difference rather significantly grows.

> t := time(): for k1 to 10 do for k2 to 10 do for k3 to 10 do for k4 to 10 do
for k5 to 10 do for k6 to 10 do for k7 to 10 do for k8 to 10 do 80 end do end
do end do end do end do end do end do end do: time() – t; # (Maple 11)

7.800

In[2693]:= n = 10; t = TimeUsed[]; For[k1 = 1, k1 <= n, k1++,
 For[k2 = 1, k2 <= n, k2++,
 For[k3 = 1, k3 <= n, k3++,
 For[k4 = 1, k4 <= n, k4++,
 For[k5 = 1, k5 <= n, k5++,
 For[k6 = 1, k6 <= n, k6++,
 For[k7 = 1, k7 <= n, k7++,
 For[k8 = 1, k8 <= n, k8++, 80]]]]]]]]; TimeUsed[] – t
Out[2693]= 49.358

Extension of Mathematica system functionality

 129

Naturally, the received values are determined by the main resources of the
computer however on identical resources this basic relation retains. From
the given example follows the Maple uses more effective algorithms in the
temporary relation for realization of cyclical constructions of large nesting
depth and range of cycle variable, than it takes place for its main competitor
– the Mathematica systems even of its latest version 10.1.0.0. A number of
interesting enough comparisons relative to estimates of time characteristics
of performance of mass means of processing and calculations is represented
in our books [25-27]. Of these comparisons follows, that according to time
characteristics the Maple system in certain cases is more preferable than the
Mathematica system what in each concrete case supposes the corresponding
comparative analysis.

Among special types of cyclic control structures in the Mathematica system
it is possible to note a series of interesting enough ones, some of them have
various level of analogy with similar means of the Maple system [27,28-33].
However in general, means of Mathematica system are more preferable at
generation of the nested expressions and, first of all, of pure functions that
play especially essential part in problems of functional programming in the
Mathematica system. At comparative consideration of the control structures
of branching and cycle that are supported by both systems, two main groups
have been distinguished, namely: basic and additional resources of providing
the specified control structures. So, the if offer of the Maple system and the
If function of the Mathematica system represent the most typical means of
ensuring of the branching algorithms. At operating with both means a point
of view has been formed, the means are being represented as substantially
equivalent, however these means realized by the if clause of the Maple for
rather complex branching algorithms are being slightly more simply perceived
in sence of readability. In other respects it is very difficult to give preference
to any of these control means and in this relation both leading systems can
quite be considered as equivalent.

V.Z. Aladjev, V.A. Vaganov

 130

Chapter 6. Problems of procedural programming in the
Mathematica software

Procedural programming is one of basic paradigms of the Mathematica that
in quite essential degree differs from the similar paradigm of well–known
traditional procedural programming languages. The given circumstance is
the cornerstone of a number of the system problems relating to a question
of procedural programming in Mathematica. Above all, similar problems
arise in the field of distinctions in realization of the above paradigms in the
Mathematica and in the environment of traditional procedural languages.
Along with it, unlike a number of traditional and built-in languages the built-
in Math-language has no a number of useful enough means for work with
procedural objects. Some such means are represented in our books [28-33]
and AVZ_Package package [48]. A number of the tasks connected with such
means is considered in the present chapter, previously having discussed the
concept of `procedure` in Mathematica as bases of its procedural paradigm.
At that, means of analysis of this section concern only the user procedures
and functions because definitions of all system functions (unlike, say, from the
Maple) from the user are hidden, i.e. are inaccessible by standard means of
the Mathematica system.

6.1. Definition of procedures in the Mathematica software

Procedures in the Mathematica system formally represent functional objects
of following two simple formats, namely:

M[x_/; Testx, y_/; Testy, ...] {:= | =} Module[{locals}, Procedure Body]

B[x_/; Testx, y_/; Testy, ...] {:= | =} Block[{locals}, Procedure Body]

i.e., the procedures of both types represent functions from two arguments –
body of a procedure (Body) and local variables (locals). Local variables – the
list of names, perhaps, with the initial values which are attributed to them.
These variables have local character concerning procedure, i.e. their values
aren't crossed with values of the symbols of the same name outside of the
procedure. All other variables in procedure have global character, dividing
area of variables of the Mathematica current session.

Extension of Mathematica system functionality

 131

Thus, in definition of procedures it is possible to distinguish five following
component, namely:

– procedure name (M in the first procedure definition);
– procedure heading (M[x_/; Testx, y_/; Testy, ...] in the both procedures

 definitions);
– procedural brackets (Module[…] or Block[…]);
– local variables (list of local variables {locals}; can be empty);
– procedure body; can be empty.

Above all, it should be noted the following very important circumstance. If
in the traditional programming languages the identification of an arbitrary
procedure/function is made according to its name, in case of Math-language
identification is made according to its heading. The circumstance is caused
by that the definition of a procedure/function in Math-language is made by
the manner different from traditional [28-33]. Simultaneous existence of the
procedures/functions of the same name with various headings in the given
situation is admissible as it illustrates the following fragment, namely:

In[2434]:= M[x_, y_] := Module[{}, x + y]; M[x_] := Module[{}, x^2];
 M[y_] := Module[{}, y^3]; M[x___] := Module[{}, {x}]
In[2435]:= Definition[M]
Out[2435]= M[x_, y_] := Module[{}, x + y]
 M[y_] := Module[{}, y^3]
 M[x___] := Module[{}, {x}]
In[2436]:= {M[480, 80], M[80], M[42, 47, 67, 25, 18]}
Out[2436]= {560, 512000, {42, 47, 67, 25, 18}}
In[2437]:= G[x_Integer] := Module[{}, x]; G[x_] := Module[{}, x^2]; G[480]
Out[2437]= 480

At the call of a procedure/function of the same name from the list is chosen
the one, whose formal arguments of the heading correspond to the factual
arguments of the call, otherwise the call is returned by unevaluated, except
for simplifications of the actual arguments according to the standard system
agreements. Moreover, at compliance of formal arguments of heading with
the actual ones a procedure x is caused, whose definition is above in the list
returned at the Definition[x] call; in particular, whose definition has been
calculated in the Mathematica current session by the first.

V.Z. Aladjev, V.A. Vaganov

 132

Further is being quite often mentioned about return of result of the call of a
function/procedure by unevaluated, it concerns both the standard system
means, and the user means. In any case, the call of a procedure/function on
an inadmissible tuple of actual arguments is returned by unevaluated, except
for standard simplifications of the actual arguments. In this connection the
UnevaluatedQ procedure providing testing of a certain procedure/function
regarding of return of its call unevaluated on a concrete tuple of the factual
arguments has been programmed. The call UnevaluatedQ[F, x] returns True
if the call F[x] is returned unevaluated, and False otherwise; in addition, on
an erroneous call F[x] "ErrorInNumArgs" is returned. The fragment below
represents source code of the UnevaluatedQ procedure with examples of
its usage. Procedure represents a certain interest for program processing of
results of calls of procedures and functions.

In[3246]:= UnevaluatedQ[F_ /; SymbolQ[F], x___] :=
 Module[{a = Quiet[Check[F[x], "e", F::argx]]},
 If[a === "e", "ErrorInNumArgs", If[ToString1[a] === ToString[F] <> "[" <>
 If[{x} == {}, "", ListStrToStr[Map[ToString1, {x}]] <> "]"], True, False]]]

In[3247]:= {UnevaluatedQ[F, x, y, z], UnevaluatedQ[Sin, x, y, z]}
Out[3247]= {True, "ErrorInArgs"}
In[3248]:= {UnevaluatedQ[Sin, 48080], UnevaluatedQ[Sin, 480.80],
 UnevaluatedQ[Sin]}
Out[3248]= {True, False, "ErrorInNumArgs"}

Meanwhile, the standard Definition function in the case of the procedures/

functions of the same name in a number of cases is of little use for solution
of tasks which are connected with processing of definitions of such objects.
Above all, it concerns the procedures whose definitions are located in the
user packages loaded into the current session of Mathematica as illustrates
a simple example of receiving definition of the SystemQ procedure [48]:

In[3247]:= Definition["SystemQ"]
Out[3247]= SystemQ[AladjevProcedures`SystemQ`S_] :=
 If[Off["Definition"::"ssle"];
 ! ToString["Definition"[AladjevProcedures`SystemQ`S]] === Null &&
 SysFuncQ1[AladjevProcedures`SystemQ`S], On["Definition"::"ssle"];
 True, On["Definition"::"ssle"]; False]

Extension of Mathematica system functionality

 133

The call Definition[x] of the standard function in a number of cases returns
the definition of some object x with the context corresponding to it what at
quite large definitions becomes bad foreseeable and less acceptable for the
subsequent program processing as enough visually illustrates the previous
example. Moreover, the name of object or its string format also can act as an
actual argument. For elimination of this shortcoming we defined a number
of means allowing to obtain definitions of procedures/functions in a certain
optimized format. As such tools it is possible to note such as DefOptimum,
Definition1, Definition2, Definition3, Definition4, DefFunc, DefFunc1,
DefFunc2, DefFunc3 and DefOpt. These means along with some others are
presented in books [28-33] and included in the AVZ_Package package [48].
The following fragment represents source codes of the most used of them.

In[2470]:= Definition2[x_ /; SameQ[SymbolQ[x], HowAct[x]]] :=
 Module[{a, b = Attributes[x], c},
 If[SystemQ[x], Return[{"System", Attributes[x]}], Off[Part::partw]];
 ClearAttributes[x, b]; Quiet[a = ToString[InputForm[Definition[x]]];
 Mapp[SetAttributes, {Rule, StringJoin}, Listable];
 c = StringReplace[a, Flatten[{Rule[StringJoin[Contexts1[],
 ToString[x] <> "`"], ""]}]]; c = StringSplit[c, "\n \n"];
 Mapp[ClearAttributes, {Rule, StringJoin}, Listable];
 SetAttributes[x, b]; a = AppendTo[c, b];
 If[SameQ[a[[1]], "Null"] && a[[2]] == {},
 On[Part::partw]; {"Undefined", Attributes[x]},
 If[SameQ[a[[1]], "Null"] && a[[2]] != {} && ! SystemQ[x],
 On[Part::partw]; {"Undefined", Attributes[x]},
 If[SameQ[a[[1]], "Null"] && a[[2]] != {} && a[[2]] != {},
 On[Part::partw]; {"System", Attributes[x]}, On[Part::partw]; a]]]]]

In[2471]:= Definition2[SystemQ]
Out[2471]= {"SystemQ[S_] := If[Off[MessageName[Definition, \"ssle\"]];
 ! ToString[Definition[S]] === Null && SysFuncQ1[S],
 On[MessageName[Definition, \"ssle\"]]; True,
 On[MessageName[Definition, \"ssle\"]]; False]", {}}
In[2472]:= Definition2[Tan]
Out[2472]= {"System", {Listable, NumericFunction, Protected}}

V.Z. Aladjev, V.A. Vaganov

 134

In[2473]:= Definition2[(a + b)/(c + d)]
Out[2473]= Definition2[(a + b)/(c + d)]

In[2502]:= Definition3[x_ /; SymbolQ[x], y_ /; ! HowAct[y]] :=
 Module[{a = Attributes[x], b = Definition2[x]},
 If[b[[1]] == "System", y = x; {"System", a}, b = Definition2[x][[1 ;; –2]];
 ClearAttributes[x, a]; If[BlockFuncModQ [x, y], ToExpression[b];
 SetAttributes[x, a]; Definition[x], SetAttributes[x, a]; Definition[x]]]]

In[2503]:= Definition3[SystemQ, y]
Out[2503]= SystemQ[S_] := If[Off["Definition"::"ssle"];
 ! ToString["Definition"[S]] === Null && SysFuncQ1[S],
 On["Definition"::"ssle"]; True, On["Definition"::"ssle"]; False]
In[2504]:= y
Out[2504]= "Function"
In[2505]:= Definition3[Sin, z]
Out[2505]= Attributes[Sin] = {Listable, NumericFunction, Protected}
In[2506]:= z
Out[2506]= Sin

In[2598]:= Definition4[x_ /; StringQ[x]] := Module[{a},
 a = Quiet[Check[Select[StringSplit[ToString[InputForm[
 Quiet[Definition[x]]]], "\n"], # != " " && # != x &], $Failed]];
 If[a === $Failed, $Failed, If[SuffPref[a[[1]], "Attributes[", 1],
 a = AppendTo[a[[2 ;; –1]], a[[1]]]]]; If[Length[a] != 1, a, a[[1]]]]

In[2599]:= W = 80; G := 480; Map[Definition4, {"W", "G", "72", "a + b", "If"}]
Out[2599]= {"W = 80", "G := 480", $Failed, $Failed, "Attributes[If] =
 {HoldRest, Protected}"}
In[2600]:= A[x_] := Module[{a=90}, x+a]; A[x_, y_] := Module[{a=6}, x+y+a];
 A[x_, y_List] := Block[{}, {x, y}]; A[x_Integer] := Module[{a = 480}, x + a];
 A := {a, b, c, d, h}; SetAttributes[A, {Flat, Listable, Protected}];
In[2601]:= Definition4["A"]
Out[2601]= {"A := {a, b, c, d, h}", "A[x_Integer] := Module[{a = 480}, x + a]",
 "A[x_] := Module[{a = 90}, x + a]", "A[x_, y_List] := Block[{}, {x, y}]",
 "A[x_, y_] := Module[{a = 6}, x + y + a]", "Attributes[A] =
 {Flat, Listable, Protected}"}

Extension of Mathematica system functionality

 135

A number of functional means of Math–language as the actual arguments
assume only objects of the types {Symbol, String, HoldPattern[Symbol]} what
in some cases is quite inconvenient at programming of problems of different
purpose. In particular, the Definition function refers to these means too [28-
33]. For the purpose of expansion of the Definition function on the types,
different from the mentioned ones, the Definition1 procedure can be used,
whose call Definition1[x] returns definition of an object x in string format,
"Null" if x isn't defined, otherwise $Failed is returned. A fragment in [28,33]
represents the procedure code with typical examples of its application from
which certain advantages of the Definition1 concerning the Definition are
quite visually visible. The Definition1 procedure has been realized with use
of our ToString1 procedure [28] that unlike the standard ToString function
provides correct converting of expressions in string format. The Definition1
procedure processes the main special and erroneous situations. Meanwhile,
the Definition1 procedure doesn't rid the returned definitions from contexts
and is correct only for objects with unique names. Moreover, in case of the
multiple contexts the Definition1 procedure call returns definitions with a
context that answers the last user package loaded into the current session.
On system functions, the Definition1 procedure call returns "Null".

As an expansion of the Definition1 procedure the Definition2 procedure
represented by the previous fragment can serve. The given procedure uses
our means Contexts1, HowAct, Mapp, SymbolQ and SystemQ considered
in the present book and in [28-33]. These means are rather simple and are
used in our means enough widely [48].

Unlike previous procedure Definition1, the Definition2 procedure rids the
returned definitions from contexts, and is correct for program objects with
unique names. The Definition2 call on system functions returns the nested
list, whose first element – "System", whereas the second element – the list of
attributes ascribed to a factual argument. On a function or procedure of the
user x the call Definition2[x] also returns the nested list, whose first element
– the optimized definition of x (in the sense of absence of contexts in it), whereas
the second element – the list of attributes ascribed to x; in their absence the
empty list acts as the second element of the returned list. In the case of False
value on a test ascribed to formal argument x, the call Definition2[x] will be
returned unevaluated. Analogously to the previous procedure, the procedure

V.Z. Aladjev, V.A. Vaganov

 136

Definition2 processes the main special and erroneous situations. In addition,
Definition1 and Definition2 return definitions of objects in string format.

The call Definition3[x, y] returns the optimum definition of a procedure or
a function x, while through the second argument y – an undefined variable –
the type of x in a context {"Procedure", "Function", "Procedure&Function"} is
returned if x is a procedure or function, on system functions the procedure
call returns the list {"Function", {Attributes}} while thru the second argument
y the first argument is returned; at inadmissibility of the first argument x the
call is returned unevaluated, i.e. Definition[x].

The call Definition4[x] in a convenient format returns the definition of an
object x whose name is coded in the string format, namely: (1) on a system
function x its attributes are returned, (2) on the user block, function, module
the call returns the definition of object x in string format with the attributes,
options and/or values by default for formal arguments ascribed to it (if such
are available), (3) the call returns the definition of an object x in string format
for assignments by operators {":=", "="}, and (4) in other cases the procedure
call returns $Failed. The procedure has a number of interesting appendices
at programming of various system appendices.

The following DefOpt procedure represents a quite certain interest that in a
number of cases is more acceptable than the Definition function along with
our procedures DefFunc, DefFunc1, DefFunc2 and DefFunc3 considered in
[28-33,48] that are also intended for obtaining definitions of procedures and
functions in the convenient form acceptable for processing. The following
fragment represents source code of the procedure with examples of its use.

In[2342]:= DefOpt[x_ /; StringQ[x]] := Module[{a = If[SymbolQ[x],
 If[SystemQ[x], b = "Null", ToString1[Definition[x]], "Null"]], b, c},
 If[! SameQ[a, "Null"], b = Quiet[Context[x]]];
 If[! Quiet[ContextQ[b]], "Null",
 c = StringReplace[a, b <> x <> "`" –> ""]; ToExpression[c]; c]]

In[2343]:= DefOpt["SystemQ"]
Out[2343]= SystemQ[S_] := If[Off[MessageName[Definition, "ssle"]];
 ! ToString[Definition[S]] === Null && SysFuncQ1[S],
 On[MessageName[Definition, "ssle"]]; True,
 On[MessageName[Definition, "ssle"]]; False]

Extension of Mathematica system functionality

 137

In[2344]:= DefFunc[$TypeProc]
Out[2344]= Attributes[$Failed] = {HoldAll, Protected}

In[2345]:= DefOpt["$TypeProc"]
Out[2345]= "$TypeProc := CheckAbort[If[$Art24$Kr17$ =
 Select[{Stack[Module], Stack[Block], Stack[DynamicModule]}, #1 != {} &];
 If[$Art24$Kr17$ == {}, Clear[$Art24$Kr17$]; Abort[], $Art24$Kr17$ =
 ToString[$Art24$Kr17$[[1]][[1]]]]; SuffPref[$Art24$Kr17$, \"Block[{\", 1],
 Clear[$Art24$Kr17$]; \"Block\", If[SuffPref[$Art24$Kr17$,
 \"Module[{\", 1] && ! StringFreeQ[$Art24$Kr17$, \"DynamicModule\"],
 Clear[$Art24$Kr17$]; \"DynamicModule\", Clear[$Art24$Kr17$];
 \"Module\"]], $Failed]"

In[2346]:= Map[DefOpt, {"If", "Sin", "Goto", "a + b", "80", 480}]
Out[2346]= {Null, Null, Null, Null, Null, DefOpt[480]}

On the other hand, our some procedures are unsuitable in case of necessity
of receiving definitions of a number of procedural variables, in particular,
$TypeProc as some illustrate examples in [33]. And only the procedure call
DefOpt[x] returns definition of an arbitrary object x in an optimum format
irrespective of type of the user object x. At that, the call DefOpt[x] not only
returns an optimum form of definition of an object x in string format, but
also evaluates it in the current session what in a number of cases is useful
enough; at the procedure call the name of the object x is coded in the string
format; while on the system functions and other string expressions the call
DefOpt[x] returns "Null". At the same time it must be kept in mind that the
DefOpt is inapplicable to the procedures / functions of the same name, i.e.
having several definitions with different headings. The previous fragment
represents source code of the DefOpt procedure with examples of its usage.

The OptDefinition procedure is an interesting enough modification of the
previous procedure; its source code with examples of usage represents the
following fragment. The call OptDefinition[x] returns the definition of a
procedure or a function x optimized in the above sense i.e. without context
associated with the user package containing the procedure or function x.

In[3298]:= OptDefinition[x_ /; Quiet[ProcQ[x] || FunctionQ[x]]] :=
 Module[{c = $Packages, a, b, d, h = Definition2[x]},
 {a, b} = {h[[1 ;; –2]], h[[–1]]}; ClearAllAttributes[x];

V.Z. Aladjev, V.A. Vaganov

 138

 d = Map[StringJoin[#, ToString[x] <> "`"] &, c];
 ToExpression[Map[StringReplace[#, GenRules[d, ""]] &, a]];
 SetAttributes[x, b]; Definition[x]]

In[3299]:= SetAttributes[ToString1, {Listable, Protected}];
 Definition[ToString1]
Out[3299]= Attributes[ToString1] = {Listable, Protected}
 ToString1[AladjevProcedures`ToString1`x_] :=
 Module[{AladjevProcedures`ToString1`a = "$Art23Kr15$.txt",
 AladjevProcedures`ToString1`b = "", AladjevProcedures`ToString1`c,
 AladjevProcedures`ToString1`k = 1},
 Write[AladjevProcedures`ToString1`a,
 AladjevProcedures`ToString1`x];
 Close[AladjevProcedures`ToString1`a];
 For[AladjevProcedures`ToString1`k,
 AladjevProcedures`ToString1`k < \[Infinity],
 AladjevProcedures`ToString1`k++,
 AladjevProcedures`ToString1`c =
 Read[AladjevProcedures`ToString1`a, String];
 If[AladjevProcedures`ToString1`c ===
 EndOfFile, Return[DeleteFile[
 Close[AladjevProcedures`ToString1`a]];
 AladjevProcedures`ToString1`b],
 AladjevProcedures`ToString1`b =
 AladjevProcedures`ToString1`b <>
 StrDelEnds[AladjevProcedures`ToString1`c, " ", 1]]]]
In[3300]:= OptDefinition[ToString1]
Out[3300]= Attributes[ToString1] = {Listable, Protected}
 ToString1[x_] := Module[{a = "$Art25Kr18$.txt", b = "", c, k = 1},
 Write[a, x]; Close[a]; For[k, k < ∞, k++, c = Read[a, String];
 If[c === EndOfFile, Return[DeleteFile[Close[a]]; b],
 b = b <> StrDelEnds[c, " ", 1]]]]

It is necessary to pay attention to use of the GenRules procedure providing
generation of the list of transformation rules for providing of replacements
in a string definition of an object x. In a number of cases such approach is a
rather effective at strings processing.

Extension of Mathematica system functionality

 139

The DefOptimum procedure realized in a different manner is full analog of
the previous procedure, whose call DefOptimum[x] returns the definition
of a function or procedure x optimized in the respect that it doesn't contain
a context of the user package containing definition of the procedure/function
x. The following fragment represents source code of this procedure with a
typical example of its usage.

In[2245]:= SetAttributes[OptDefinition, {Listable, Protected}];
 Definition[OptDefinition]
Out[2245]= Attributes[OptDefinition] = {Listable, Protected}
 OptDefinition[x_ /; ProcQ[x] || FunctionQ[x]] :=
 Module[{a = Definition2[x][[1 ;; –2]], b = Definition2[x][[–1]],
 AladjevProcedures`OptDefinition`c = $Packages,
 AladjevProcedures`OptDefinition`d,
 AladjevProcedures`OptDefinition`h},
 ClearAllAttributes[ToString1];
 AladjevProcedures`OptDefinition`d =(#1 <> (ToString[x] <> "`") &) /@
 AladjevProcedures`OptDefinition`c;
 ToExpression[(StringReplace[#1,
 GenRules[AladjevProcedures`OptDefinition`d, ""]] &) /@ a];
 SetAttributes[x, b]; "Definition"[x]]

In[2246]:= DefOptimum[x_ /; Quiet[ProcQ[x] || FunctionQ[x]]] :=
 Module[{a, c, k = 1, b = "Art$Kr.txt", d = Context[x], f = Attributes[x]},
 ClearAttributes[x, f]; Save[a = ToString[x], x];
 For[k, k < Infinity, k++, c = Read[a, String];
 If[SameQ[c, EndOfFile], Break[],
 Write[b, StringReplace[c, d <> ToString[x] <> "`" –> ""]]]];
 Map[Close, {a, b}]; Get[b]; Map[DeleteFile, {a, b}];
 SetAttributes[x, f]; Definition[x]]
In[2247]:= DefOptimum[OptDefinition]
Out[2247]= Attributes[OptDefinition] = {Listable, Protected}
 OptDefinition[x_ /; Quiet[ProcQ[x] || FunctionQ[x]]] :=
 Module[{c = $Packages, a, b, d, h = Definition2[x]},
 {a, b} = {h[[1 ;; –2]], h[[–1]]};
 ClearAllAttributes[x]; d = (#1 <> (ToString[x] <> "`") &) /@ c;
 ToExpression[(StringReplace[#1, GenRules[d, ""]] &) /@ a];

V.Z. Aladjev, V.A. Vaganov

 140

 SetAttributes[x, b]; "Definition"[x]]

In[2500]:= DefOpt1[x_] := Module[{a = ToString[x], b, c},
 If[! SymbolQ[a], $Failed, If[SystemQ[x], x,
 If[ProcQ[a]||FunctionQ[a], b = Attributes[x]; ClearAttributes[x, b];
 c = StringReplace[ToString1[Definition[x]],
 Context[a] <> a <> "`" –> ""]; SetAttributes[x, b]; c, $Failed]]]]

In[2501]:= DefOpt1[StrStr]
Out[2501]= "StrStr[x_] := If[StringQ[x], \"<>x<>\", ToString[x]]"
In[2502]:= Map[DefOpt1, {a + b, 72, Sin}]
Out[2502]= {$Failed, $Failed, Sin}

The algorithm of the above DefOptimum procedure is based on saving of
the current definition of a block/function/module x in an ASCII format file
with the subsequent its converting into the txt–datafile containing definition
of the object x without occurrences of a package context in which definition
of this object is located. Whereupon the result datafile is loaded by means of
the Get function into the current session of the Mathematica with return of
the optimized definition of the object x.

Meanwhile, the last DefOpt1 procedure of the previous fragment is seemed
as effective enough for receiving of definition of the user procedure/function
in optimized format in the above sense, i.e. without context. The procedure
call DefOpt1[x] on a system function x returns its name, on an user function
or procedure returns its optimized code in string format whereas on other
values of argument x $Failed is returned. The previous fragment represents
source code of the procedure DefOpt1 along with examples of its usage.

For a number of appendices, including appendices of system character, the
standard Definition function seems as important enough means whose call
Definition[x] returns the definition of an object x with attributes ascribed to
it; in the absence of definition the Null, i.e. nothing, or the ascribed attributes
to an undefined symbol x is returned, namely:

Attributes[x] = The list of attributes ascribed to a symbol x

As very visually illustrate the following simple examples, namely:

In[2839]:= SetAttributes[h, Listable]; Definition[h]
Out[2839]= Attributes[h] = {Listable}

Extension of Mathematica system functionality

 141

In[2840]:= Definition[Sin]
Out[2840]= Attributes[Sin] = {Listable, NumericFunction, Protected}

Meanwhile, on the other hand, many problems of processing of objects are
based strictly speaking on their definitions in their pure form. Therefore the
allotment of definition of an arbitrary object x in pure form can be provided,
in particular, by means of 2 mechanisms whose essence is explained by the
examples in [28-33] by means of the procedures Def and Def1; definition of
the procedure Def1 gives the following example, namely:

In[2526]:= Def1[x_ /; StringQ[x]] := Module[{a}, If[! SymbolQ[x] ||
 SystemQ[x], $Failed, a = Definition2[x][[1 ;; –2]];
 If[Length[a] == 1, a[[1]], a]]]

In[2527]:= B[x_] := x; B[x_, y_] := Module[{a, b, c}, x + y];
 B[x_ /; IntegerQ[x]] := Block[{a, b, c, d}, x]
In[2528]:= SetAttributes[B, {Protected}]; Attributes[B]
Out[2528]= {Protected}
In[2529]:= Def1["B"]
Out[2529]= {"B[x_ /; IntegerQ[x]] := Block[{a, b, c}, x]",
 "B[x_] := x", "B[x_, y_] := Module[{a, b, c, d}, x + y]"}
In[2530]:= Definition[B]
Out[2530]= Attributes[B] = {Protected}
 B[x_ /; IntegerQ[x]] := Block[{}, x]}
 B[x_] := x
 B[x_, y_] := Module[{}, x + y]

In event of an object x of the same name the procedure call Def1[x] returns
the list of the optimized definitions of the object x in string format without
the attributes ascribed to it. If x defines an unique name, the call returns the
optimized definition of the object x in string format without the attributes
ascribed to it. The name of an object x is given in string format; in addition,
on unacceptable values of argument x $Failed is returned.

An extension of the standard Attributes function is represented by simple
procedure, whose call Attributes1[x, y, z, t, …] unlike standard function on
objects x, y, z, t, …, that differ from admissible ones, returns the empty list,
i.e. {}, without output of any error messages what in a number of cases more
preferably from standpoint of processing of erroneous situations. While on

V.Z. Aladjev, V.A. Vaganov

 142

admissible objects x, y, z, … the call Attributes1[x, y, z, …] returns the list of
the attributes ascribed to objects x, y, z, … The following fragment represents
source code of the procedure along with typical examples of its usage.

In[2796]:= Attributes1[x__] := Module[{a=
 Map[Quiet[Check[Attributes[#], {}]] &, {x}]}, If[Length[a] == 1, a[[1]], a]]

In[2797]:= L := {42, 47, 67, 25, 18}; SetAttributes[L, {Flat, Protected, Listable}]
In[2798]:= Attributes1[L[[5]], Sin, ProcQ]
Out[2798]= {{}, {Listable, NumericFunction, Protected}, {}}
In[2799]:= Attributes1[72, a + b, Attributes1, While, If]
Out[2799]= {{}, {}, {}, {HoldAll, Protected}, {HoldRest, Protected}}

The Attributes1 procedure is a rather useful tool in a number of appendices.
Means of processing of the attributes specific to procedures/functions in the
form of procedures AttributesH and DefAttributesH are presented below.

As it was noted above, the strict differentiation of the blocks, functions and
modules in the Mathematica is carried out not by means of their names as it
is accepted in the majority of known programming languages and systems,
but by means of their headings. For this reason in a number of cases of the
advanced procedural programming, the important enough problem of the
organization of mechanisms of the differentiated processing of such objects
on the basis of their headings arises. A number of such means is presented
in the present book, here we will determine two means ensuring work with
attributes of objects on the basis of their headings. The following fragment
represents source codes of 2 means DefAttributesH and AttributesH along
with typical examples of their usage.

The call DefAttributesH[x, y, z, p, h, …] returns Null, i.e. nothing, assigning
{y = "Set"} or deleting {y = "Clear"} the attributes determined by arguments
{z, p, h, …} for an object with heading x. Whereas in attempt of assigning or
deleting of an attribute, nonexistent in the current version of the system, the
procedure call returns the list whose 1st element is $Failed, whereas the 2nd
element – the list of the expressions different from the current attributes. At
that, the call AttributesH[x] returns the list of attributes ascribed to an object
with heading x. An useful function whose call ClearAllAttributes[x, y, z, …]
returns Null, i.e. nothing, canceling all attributes ascribed to the symbols x,
y, z, … completes the given fragment.

Extension of Mathematica system functionality

 143

In[2880]:= DefAttributesH[x_ /; HeadingQ[x],
 y_ /; MemberQ[{"Set", "Clear"}, y], z___] :=
 Module[{a}, If[AttributesQ[{z}, a = Unique[g]],
 ToExpression[y <> "Attributes[" <> HeadName[x] <> ", " <>
 ToString[{z}] <> "]"], {$Failed, a}]]

In[2881]:= M[x__] := Module[{}, {x}]; M[x__, y_] := Module[{}, {x}];
 M[x___, y_, z_] := x + y + z
In[2882]:= DefAttributesH["M[x___, y_, z_]", "Set", Flat, Protected, Listable]
In[2883]:= Attributes[M]
Out[2883]= {Flat, Listable, Protected}
In[2884]:= DefAttributesH["M[x___, y_, z_]", "Set", AvzAgn]
Out[2884]= {$Failed, {AvzAgn}}

In[2930]:=AttributesH[x_ /; HeadingQ[x]] :=
 Attributes1[Symbol[HeadName[x]]]

In[2972]:= AttributesH["M[x___, y_, z_]"]
Out[2972]= {Flat, Listable, Protected}

In[2973]:= ClearAllAttributes[x__] :=
 Map[Quiet[ClearAttributes[#, Attributes[#]];] &, {x}][[1]]

In[2974]:= SetAttributes[G, {Flat, Protected}]; SetAttributes[V, {Protected}]
In[2975]:= Map[Attributes, {G, V}]
Out[2975]= {{Flat, Protected}, {Protected}}
In[2976]:= ClearAllAttributes[G, V]; Attributes[G]
Out[2976]= {}

The represented means equally with Attributes1 and SetAttributes1 [33,48]
of work with attributes that are most actual for objects of the type {Function,
Block, Module}, in some cases are rather useful. At that, these means can be
used quite effectively at programming and other means of different purpose,
first of all, of means of the system character.

The mechanism of the Mathematica attributes is quite effective tool both for
protection of objects against modifications, and for management of a mode
of processing of arguments at calls of blocks, functions and modules. So, by
means of assignment to a procedure or function of the Listable attribute can
be specified that this procedure or function has to be applied automatically

V.Z. Aladjev, V.A. Vaganov

 144

to all actual arguments as for a list elements. In the following fragment the
simple procedure is presented, whose call CallListable[x, y] returns the list
of values Map[x, Flatten [{y}]], where x – a block, function or module from
one formal argument, and y – the list or sequence of the actual arguments
that can be and empty. The fragment represents source code and the most
typical examples of usage of the CallListable procedure.

In[2977]:= ToString[{a, b, c + d, 72, x*y, (m + n)*Sin[p – t]}]
Out[2977]= "{a, b, c + d, 72, x y, (m + n) Sin[p – t]}"

In[2978]:= CallListable[x_ /; SystemQ[x] || BlockFuncModQ[x], y___] :=
 Module[{a = Attributes[x]},
 If[MemberQ[a, Listable], x[Flatten[{y}]], SetAttributes[x, Listable];
 {x[Flatten[{y}]], ClearAttributes[x, Listable]}[[1]]]]

In[2979]:= CallListable[ToString, {a, b, c + d, 80, x*y, (m + n)*Sin[p – t]}]
Out[2979]= {"a", "b", "c + d", "80", "x y", "(m + n) Sin[p – t]"}
In[2980]:= CallListable[ToString, a, b, c + d, 480, x*y, (m + n)*Sin[p – t]]
Out[2980]= {"a", "b", "c + d", "480", "x y", "(m + n) Sin[p – t]"}
In[2981]:= CallListable[ToString]
Out[2981]= {}

The approach used by the CallListable procedure is quite effective and can
be used in a number of the appendices programmed in the Mathematica.

In conclusion of this section some useful means for receiving the optimized
definitions of procedures/functions are in addition represented. So, the call
DefFunc[x] provides return of the optimized definition of an x–object whose
definition is located in the user package or nb-document and which has been
loaded into the current session. At that, the name x should define an object
without any attributes and options; otherwise the erroneous situation arises.
The fragment below represents source code of the DefFunc procedure with
typical examples of its usage.

In[2461]:= DefFunc[x_ /; SymbolQ[x] || StringQ[x]] :=
 Module[{a = GenRules[Mapp[StringJoin, {"Global`", Context[x]},
 ToString[x] <> "`"], ""],
 b = StringSplit[ToString[InputForm[Definition[x]]], "\n \n"]},
 ToExpression[Map[StringReplace[#, a] &, b]]; Definition[x]]

Extension of Mathematica system functionality

 145

In[2462]:= Definition[ListListQ]
Out[2462]= ListListQ[AladjevProcedures`ListListQ`L_] :=

 If[AladjevProcedures`ListListQ`L != {} &&

 ListQ[AladjevProcedures`ListListQ`L] &&

 Length[Select[AladjevProcedures`ListListQ`L, ListQ[#1] &&

 Length[#1] == Length[AladjevProcedures`ListListQ`L[[1]]] &]] ==

 Length[AladjevProcedures`ListListQ`L], True, False]

In[2463]:= DefFunc[ListListQ]
Out[2463]= ListListQ[L_] := If[L != {} && ListQ[L] &&

 Length[Select[L, ListQ[#1] && Length[#1] ==
 Length[L[[1]]] &]] == Length[L], True, False]

Naturally, the standard Definition function also is suitable for receiving of
definition of an object activated in the current session, but in case of a m-file
or a nb–document exists an essential distinction as is well illustrated by the
return of definition of the ListListQ function from AVZ_Package package
[48] by means of both the Definition function, and our DefFunc procedure.
In the second case the obtained definition is essentially more readably, first
of all, for large source codes of procedures and functions. With procedures
DefFunc1, DefFunc2 and DefFunc3 which are quite useful versions of the
above DefFunc procedure, the interested reader can familiarize oneself in
[28-33]; the means are presented and in our package [48]. These means also
are functionally adjoined by the ToDefOptPF procedure and the OptRes
function [28,48]. Meanwhile, the ToDefOptPF procedure is inefficient for a
case when the user packages with identical contexts have been loaded into
the current session [33]. We for the similar purposes widely use the above
Definition2 procedure.

Withal, having provided loading of the user package for instance UPackage
by the call LoadMyPackage["… \\UPackage.mx", Context], all definitions
containing in it will be in the optimized format, i.e. they will not contain the
context associated with the UPackage package. At that, processing of means
of a package loaded thus will be significantly simpler. The LoadMyPackage
procedure is considered in appropriate section. In the subsequent sections of
the presented book the means of manipulation with the main components
of definitions of the user procedures and functions are considered.

V.Z. Aladjev, V.A. Vaganov

 146

6.2. Definition of the user functions and pure functions
in software of the Mathematica system

First of all, we will notice that so–called functional programming isn't any
discovery of Mathematica system, and goes back to a number of software
means that appeared long before the above system. In this regard we quite
pertinently have focused slightly more in details the attention on the concept
of functional programming in a historical context [30-33]. Whereas here we
only will note certain moments characterizing specifics of the paradigm of
functional programming. We will note only that the foundation of functional
programming has been laid approximately at the same time, as imperative
programming that is the most widespread now, i.e. in the 30th years of the
last century. A. Church (USA) – the author of λ–calculus and one of founders
of the concept of Homogeneous structures (Cellular Automata) in connection
with his works in the field of infinite abstract automata and mathematical
logic along with H. Curry (England) and M. Schönfinkel (Germany) that have
developed the mathematical theory of combinators, with good reason can be
considered as the main founders of mathematical foundation of functional
programming. At that, functional programming languages, especially purely
functional ones such as Hope and Rex, have largely been used in academical
circles rather than in commercial software development. While prominent
functional programming languages such as Lisp have been used in industrial
and commercial applications. Today, functional programming paradigm is
also supported in some domain-specific programming languages for example
by Math-language of the Mathematica system. From rather large number
of languages of functional programming it is possible to note the following
languages which exerted a great influence on progress in this field, namely:
Lisp, Scheme, ISWIM, family ML, Miranda, Haskell, Clean, etc. [33]. By and
large, if the imperative languages are based on operations of assignment and
cycle, the functional languages on recursions. From advantages of functional
languages can be noted the following the most important, namely:

– programs on functional languagess as a rule are much shorter and simpler than
their analogs on imperative languages;
– almost all modern functional languages are strictly typified ensuring the safety of
programs; strict typification allows to generate more effective code;

Extension of Mathematica system functionality

 147

– in a functional language the functions can be transferred as an argument to other
functions or are returned as result of their call;
– in the pure functional languages (which aren't allowing by–effects for functions)
there is no an operator of assigning, objects of such language can't be modified and
deleted, it is only possible to create new objects by decomposition and synthesis of
the existing ones. In pure functional languages all functions are free from by-effects.

Meanwhile, functional languages can imitate the certain useful imperative
properties. Not all functional languages are pure forasmuch in many cases
the admissibility of by–effects allows to essentially simplify programming.
However today the most developed functional languages are as a rule pure.
With many interesting enough questions concerning a subject of functional
programming, the reader can familiarize oneself, for example, in [74]. While
with quite interesting critical remarks on functional languages and possible
ways of their elimination it is possible to familiarize oneself in [28-33,75].

A series of concepts and paradigms are specific for functional programming
and are absent in imperative programming. Meanwhile, many programming
languages, as a rule, are based on several paradigms of programming, thus
imperative programming languages can quite use and concepts of functional
programming. In particular, as an important enough concept are so–called
pure functions, whose result of performance depends only on their factual
arguments. Such functions possess certain useful properties a part of which
it is possible to use for optimization of program code and parallelization of
calculations. Questions of realization of certain properties of pure functions
in the environment of imperative Maple–language have been considered in
[28-33]. In principle, there are no special difficulties for programming in the
functional style in languages that aren't the functional. The Math–language
professing the mixed paradigm of functional and procedural programming
supports functional programming, then the Maple–language professing the
concept of especially procedural programming at the same time only allows
certain elements of functional programming.

However, first of all a few words about the system functions, i.e. functions
belonging properly to the Math–language and its environment. Generally
speaking, to call these system tools by functions is not entirely correct since
realization of many of them is based on the procedural organization, but we
stopped on such terminology inherent actually to the system.

V.Z. Aladjev, V.A. Vaganov

 148

So, the Mathematica system has very large number of the built-in functions,
at the same time it provides simple enough mechanisms for definition of the
user functions. In the simplest case a certain function F with several formal
arguments x, y, z, … has the following very simple format, namely:

F[x_, y_, z_,…] {:=|=} an expression dependent on variables x, y, z,… as a rule

So, F[x_]:=x^3+80 defines the function F(x)=x^3+80 in standard mathematical
notation; the call of such function on concrete actual argument is defined as
F[x], in particular, as illustrates the following simple example, namely:

In[2442]:= F[x_] := x^3 + 90; F[500]
Out[2442]= 125 000 090

For receiving of definition of an arbitrary function (and not only functions, but
an arbitrary definition on the basis of operator of postponed ":=" or immediate "="
assignments), excepting the built–in functions, serve the built–in Definition
function along with our means considered in the previous section, allowing
to receive the optimized definitions in the above sense of as procedures and
functions. We will consider briefly elements of functional programming in
the Mathematica in whose basis the concept of the pure function lays. So,
the pure functions – one of the basic concepts of functional programming that
is a component of all programming system in the Mathematica in general.
Further, the questions relating to this component will be considered in more
detail, here we will define only the basic concepts. In the Mathematica pure
functions are defined as follows. A pure function in the environment of the
Mathematica has the following three formats of coding, namely:

Function[x, Function body] – a pure function with one formal argument x;
Function[{x1, x2, …, xp}, Function body] – a pure function with formal
 arguments x1, x2, …, xp;
(Function body) & – a pure function with formal arguments #, #1, #2, …, #n.

At that, at using of the third format that is often called as short form of pure
function for its identification the ampersand (&) serves whose absence causes
either erroneous situations or incorrect results at impossibility to identify the
demanded pure function. The reader familiar with formal logic or the Lisp
programming language can simply identify pure functions with unnamed
functions or λ–expressions. Moreover, the pure functions are rather close to
mathematical concept of operators. In definition of a pure function so–called

Extension of Mathematica system functionality

 149

substitutes (#) of variables are used, namely:

– the first variable of a pure function;
#n – n–th variable of a pure function;
– sequence of all variables of a pure function;
##n – sequence of variables of a pure function starting with n–th variable.

At application of pure functions, unlike traditional functions and procedures,
there is no need to designate their names, allowing to code their definitions
directly in points of their call that is caused by that the results of the calls of
pure functions depend only on values of the actual arguments received by
them. So, selection from a list W of the elements meeting certain conditions
and elementwise application of a function to elements of a list can be carried
out by constructions of the format Select[W, Test[#] &] and Map[F[#] &, W]
respectively as illustrates the following simple example, namely:

In[2341]:= Select [{a, 72, 75, 42, g, 67, Art, Kr, 2015, s, 47, 500}, IntegerQ[#] &]
Out[2341]= {72, 75, 42, 67, 2015, 47, 500}
In[2342]:= Map[(#^2 + #) &, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}]
Out[2342]= {2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156}

At using of the short form of a pure function it is necessary to be careful at
its coding because the ampersand has quite low priority. For example, the
expression #1 + #2 – #3 + #2 & without parentheses is correct while, generally
speaking, they are obligatory, in particular, at using of a pure function as the
right part of a transformation rule as illustrates very simple example:

In[2392]:= {a /. a –> #1 + #2 + #3 &, a /. a –> (#1 + #2 + #3 &)}
Out[2392]= {a /. a –> #1 + #2 + #3 &, #1 + #2 + #3 &}
In[2393]:= {Replace[a, a –> #1*#2*#3 &], a /. a –> (#1*#2*#3 &)}
 Replace::reps: {a –> #1 #2 #3&} is neither a list of replacement rules
 nor a valid dispatch table, and so cannot be used for replacing. >>
Out[2393]= {Replace[a, a –> #1 #2 #3 &], #1 #2 #3 &}

In combination with a number of functions, in particular, Map, Select and
some others the using of pure functions is rather convenient, therefore the
question of converting from traditional functions into pure functions seems
a quite topical; for its decision various approaches, including creation of the
program converters can be used. We used pure functions a rather widely at
programming of a number of problems of different types of the applied and

V.Z. Aladjev, V.A. Vaganov

 150

the system character [28-33,48].

The following procedure provides converting of a function determined by
the format G[x_, y_, …]: = W(x, y, …) into pure function of any admissible
format, namely: the call FuncToPure[x] returns the pure function that is an
analog of a function x of the third format, whereas the call FuncToPure[x, p]
where p – any expression, returns pure function of the two first formats. The
fragment below represents source code of the FuncToPure procedure along
with typical examples of its usage.

In[2822]:= FuncToPure[x_ /; QFunction[ToString[x]], y___] := Module[{d, t,
 a = HeadPF[x], b = Map[ToString, Args[x]],
 c = Definition2[x][[1]], k = 1, h, g = {}, p},
 d = Map[First, Mapp[StringSplit, b, "_"]];
 p = StringTrim[c, a <> " := "];
 h = "Hold[" <> p <> "]"; {t, h} = {Length[b], ToExpression[h]};
 While[k <= t, AppendTo[g, d[[k]] <> " –> #" <> ToString[k]]; k++];
 h = ToString1[ReplaceAll[h, ToExpression[g]]];
 g = StringTake[h, {6, –2}];
 ToExpression[If[{y} != {}, "Function[" <> If[Length[b] == 1,
StringTake[ToString[d], {2, –2}], ToString[d]] <> ", " <> p <> "]", g <> " &"]]]

In[2823]:= G[x_Integer, y_Integer, z_Real] := z*(x + y) + Sin[x*y*z];
 FuncToPure[G]
Out[2823]= #3 (#1 + #2) + Sin[#1 #2 #3] &
In[2824]:= G[x_Integer, y_Integer, z_Real] := z*(x + y) + Sin[x*y*z];
 FuncToPure[G, 80]
Out[2824]= Function[{x, y, z}, z*(x + y) + Sin[x*y*z]]
In[2825]:= V[x_ /; IntegerQ[x]] := If[PrimeQ[x], True, False];
 Select[{47, 72, 25, 18, 480, 13, 7, 41, 561, 2, 123, 322, 17, 23}, FuncToPure[V]]
Out[2825]= {47, 13, 7, 41, 2, 17, 23}
In[2826]:= {S[x_] := x^2 + 23*x + 16; FuncToPure[S, 47], FuncToPure[S][80]}
Out[2826]= {Function[x, x^2 + 23*x + 16], 8256}

However, at using of the FuncToPure procedure for converting of a certain
traditional function into pure function it must be kept in mind a number of
the essential enough moments. First, the resultant pure function won't have
attributes, options and initial values of arguments along with logic tests for

Extension of Mathematica system functionality

 151

admissibility of the actual arguments. Secondly, a converting automatically
doesn't do the resultant function as a pure function if a original traditional
function such wasn't, i.e. result of the procedure call should depend only on
the obtained actual arguments. A number of useful means of operating with
pure functions will be considered in the book slightly below.

On the other hand, the following procedure in a certain measure is inverse
to the previous procedure, its call PureToFunc[x, y] where x – definition of
a pure function, and y – an unevaluated symbol – returns Null, i.e. nothing,
providing converting of definition of a pure function x into the evaluated
definition of equivalent function with a name y. In addition, on inadmissible
actual arguments the procedure call is returned unevaluated. The fragment
below represents source code of the procedure with an example of its usage.

In[2525]:= PureToFunc[x_ /; PureFuncQ[x], y_ /; ! HowAct[y]] :=
 Module[{a = Map[ToString, OP[x]], b, c, d, k = 1},
 b = Select[a, StringTake[#, {1, 1}] == "#" &];
 d = Map[StringReplace[#, "#" –> "x"] &, b]; c = ToString[y] <> "[";
 For[k, k <= Length[b], k++, c = c <> d[[k]] <> "_,"];
 c = StringTake[c, {1, –2}] <> "] := "; ToExpression[StringTake[c <>
 StringReplace[ToString1[x], GenRules[b, d]], {1, –4}]]]

In[2526]:= PureToFunc[#4*(#1 + #2)/(#3 – #4) + #1*#4 &, Gs]
In[2527]:= Definition[Gs]
Out[2527]= Gs[x1_, x2_, x3_, x4_] := (x4 (x1 + x2))/(x3 – x4) + x1 x4

Unlike FuncToPure the call ModToPureFunc[x] provides the converting of
a module or block x into pure function under following conditions: (1) the
module/block x can't have local variables or all local variables should have
initial values; (2) the module/block x can't have active global variables, i.e.
variables for which in an arbitrary object x assignments are done; (3) formal
arguments of the returned function don't save tests for their admissibility;
(4) the returned function inherits attributes and options of an object x. The
fragment below represents procedure code with examples of its application.

In[2428]:= ModToPureFunc[x_ /; QBlockMod[x]] := Module[{a, c, d, p, j, t,
 Atr = Attributes[x], O = Options[x], n = "$$$" <> ToString[x],
 b = Flatten[{PureDefinition[x]}][[1]], k = 1, q = {}},
 ToExpression["$$$" <> b]; c = LocalsGlobals1[Symbol[n]];

V.Z. Aladjev, V.A. Vaganov

 152

 a = Args[Symbol[n], 80];
 d = StringReplace[PureDefinition[n], HeadPF[n] <> " := " –> "", 1];
 ToExpression["ClearAll[" <> n <> "]"];
 If[c[[3]] != {}, Return[{$Failed, "Globals", c[[3]]}]];
 c = Map[{#, ToString[Unique[#]]} &, Join[a, c[[1]]]];
 While[k <= Length[c], p = c[[k]]; d = StringReplaceS[d, p[[1]], p[[2]]]; k++];
 d = ToString[ToExpression[d]];
 t = Map[ToString, UnDefVars[ToExpression[d]]];
 t = Map[StringTake[#, {1, If[StringFreeQ[#, "$"], –1,
 Flatten[StringPosition[#, "$"]][[1]] – 1]}] &, t]; k = 1;
 While[k <= Length[t], j = 1; While[j <= Length[c], If[t[[k]] == c[[j]][[2]],
 AppendTo[q, c[[j]][[1]]]]; j++]; k++]; k = 1;
 While[k <= Length[c], p = c[[k]]; d = StringReplaceS[d, p[[2]], p[[1]]]; k++];
 If[p = MinusList[q, a]; p != {}, {$Failed, "Locals", p},
 ToExpression["ClearAll[" <> n <> "]"]; n = "$$$" <> ToString[x];
 ToExpression[n <> " := Function[" <> ToString[a] <> ", " <> d <> "]"];
 If[Atr != {}, ToExpression["SetAttributes[" <> n <> "," <>
 ToString[Atr] <> "]"]];
 If[O != {}, ToExpression["SetOptions[" <> n <> "," <>
 ToString[O] <> "]"]]; n]]

In[2429]:= B[x_, y_] := Block[{a, b = 80, c, d}, (a + b + c)*(x + y + d)];
 B1[x_, y_] := Block[{a = 480, b = 80, c = 72}, (a + b + c)*(x + y)];
 SetAttributes[B1, {Protected, Listable}];
 B2[x_, y_] := Block[{a = 480, b = 80}, h = (a + b)*(x + y); t = 42];
 B3[x_, y_] := Block[{a = 480, b, c}, h = (a + b + c)*(x + y); g = 67];
 B4[x_, y_] := Block[{a = 480, b = 80}, h = (a + b)*(x + y); t = z];
 B5[x_, y_] := Module[{a = 480, b, c, d = 80}, (a + b)*(c + d)]

In[2430]:= ModToPureFunc[B]
Out[2430]= {$Failed, "Locals", {"a", "c", "d"}}
In[2431]:= ModToPureFunc[B1]
Out[2431]= "$$$B1"
In[2432]:= Definition["$$$B1"]
Out[2432]= Attributes[$$$B1] = {Listable, Protected}
 $$$B1 := Function[{x, y}, 632*(x + y)]

Extension of Mathematica system functionality

 153

In[2433]:= ModToPureFunc[B2]
Out[2433]= {$Failed, "Globals", {"h", "t"}}
In[2434]:= ModToPureFunc[B3]
Out[2434]= {$Failed, "Globals", {"h", "g"}}
In[2435]:= ModToPureFunc[B4]
Out[2435]= {$Failed, "Globals", {"h", "t"}}
In[2436]:= ModToPureFunc[B5]
Out[2436]= {$Failed, "Locals", {"b", "c"}}
In[2437]:= A[m_, n_, p_ /; IntegerQ[p], h_ /; PrimeQ[h]] :=
 Module[{a = 42.80}, h*(m+n+p)/a]
In[2438]:= ModToPureFunc[A]
Out[2438]= "$$$A"
In[2439]:= Definition["$$$A"]
Out[2439]= $$$A := Function[{m, n, p, h}, 0.0233645*h*(m + n + p)]
In[2440]:= M[x_, y_ /; StringQ[y]] := Module[{a, b = 80, c = 6, d}, a*x + b*y]
In[2441]:= SetAttributes[M, Protected]; ModToPureFunc[M]
Out[2441]= {$Failed, "Locals", {"a", "d"}}
In[2442]:= G[x_] := Module[{a = 90, b = 500}, a + b]; ModToPureFunc[G];
 Definition[$$$G]
Out[2442]= $$$G := Function[{x}, 590]

A successful call ModToPureFunc[x] returns the name of the resultant pure
function in the form ToString [Unique[x]], otherwise procedure call returns
the nested list of the format {$Failed, {"Locals"|"Globals"}, {list of variables in
string format}} whose the first element $Failed determines inadmissibility of
converting, second element – the type of the variables that were as a reason of
it while the third element – the list of variables of this type in string format.
At that, the name of a block or module should be as the actual argument x,
otherwise the procedure call is returned unevaluated. Along with standard
means the procedure in very essential degree uses our procedures HeadPF,
Args, LocalsGlobals1, ClearAllMinusList, PureDefinition, StringReplaceS,
QBlockMod, UnDefVars that are considered in the present book and in [28-
33], that allowed to considerably simplify programming of this procedure.
These means and at programming some other appendices are rather useful.
In general, it must be kept in mind that the mechanism of the pure functions
composes a core of the paradigm of functional programming in Mathematica.

V.Z. Aladjev, V.A. Vaganov

 154

6.3. Means of testing of procedures and functions in the
Mathematica software

Having defined procedures of two types (Module and Block) and functions,
including pure functions, at the same time we have no standard means for
identification of objects of the given types. In this regard we created a series
of means that allow to identify objects of the specified types. In the present
section non–standard means for testing of procedural and functional objects
are considered. We will note that the Mathematica – a rather closed system
in contradistinction, for example, to its main competitor – the Maple system
in which perusal of source codes of its software that are located both in the
main and in auxiliary libraries is admissible. While the Mathematica system
has no similar opportunity. In this connexion the software presented below
concerns only to the user functions and procedures loaded into the current
session from a package (m– or the mx–file), or a document (nb–file; also may
contain a package) and activated in it.

It is known that for providing a modularity of the software the procedures
are rather widely used that in the conditions of the Mathematica system the
modular and block constructions provide. Both a module (Module), and a
block (Block) provide the closed domain of variables which is supported via
the mechanism of local variables. Procedures on the basis of both modular,
and block structure provide, in general, a rather satisfactory mechanism of
the modularity. Above we attributed the modular and block objects to the
procedure type, but here not everything so unambiguously and that is why.
In procedural programming a procedure represents some kind of so–called
"black box" whose contents is hidden from the external software with which
it interacts only through arguments and global variables (if they are used by a
procedure body). Whereas action domain of the local variables is limited by a
procedure body only, without crossing with the variables of the same name
outside of procedure. Meanwhile, between procedures of modular and block
types exists a rather essential distinction which is based on mechanisms of
local variables that are used by both types of procedures. In brief the essence
of such distinction consists in the following.

Traditional programming languages at work with variables use mechanism
"lexical scope", which is similar to the modular mechanism in Mathematica,

Extension of Mathematica system functionality

 155

 while the modular mechanism is similar to "dynamic scope" that is used, for
example, in the symbolic languages like Lisp. So, if lexical scope considers
the local variables connected with a module, dynamic scope considers the
local variables connected only with a concrete segment of history of a block
execution. In books [28-33] the question of preference of procedures on the
basis of modular structure, than on the basis of block structure is considered
in details. Meanwhile, the block procedures are often convenient in case of
organization of various interactive calculations. Thus, generally, supposing
existence of procedures of the above two types (modular and block) in the
Mathematica software, for ensuring reliability it is recommended to use the
procedures of Module type. Distinctions of procedures on both basics can be
illustrated with the following typical examples, namely:

In[2254]:= B[x_] := Block[{a, b, c, d}, x*(a + b + c + d)]
In[2255]:= {a, b, c, d} = {42, 47, 67, 6}
Out[2255]= {42, 47, 67, 6}
In[2256]:= {B[100], a, b, c, d}
Out[2256]= {16200, 42, 47, 67, 6}
In[2257]:= B[x_] := Block[{a = 80, b = 480, c, d}, x*(a + b + c + d)]
In[2258]:= {B[100], a, b, c, d}
Out[2258]= {63300, 42, 47, 67, 6}
In[2259]:= M[x_] := Module[{a = 80, b = 480, c, d}, x*(a + b + c + d)]
In[2260]:= {M[100], a, b, c, d}
Out[2260]= {100 (560 + c$75395 + d$75395), 42, 47, 67, 6}
In[2261]:= {a, b, c, d} = {42, 47, 18, 25};
In[2262]:= B2[x_] := Block[{a, b, c, d}, {a,b,c,d} = {72,67,80,480}; Plus[a,b,c,d]]
In[2263]:= {B2[100], {a, b, c, d}}
Out[2263]= {699, {42, 47, 18, 25}}

From the presented fragment follows, if local variables of a modular object
aren't crossed with domain of values of the variables of the same name that
are external in relation to it, the absolutely other picture takes place in a case
with local variables of a block object, namely: if initial values or values are
ascribed to all local variables of such object in its body, they save effect in the
object body; those variables of object to which such values weren't ascribed
accept values of the variables of the same name that are external in relation
to the block object. So, at fulfillment of the listed conditions the modular and

V.Z. Aladjev, V.A. Vaganov

 156

block objects relative to local variables (and in general as procedural objects) can
quite be considered as equivalent. Naturally, told remains in force also for
block objects with empty lists of local variables. Specified reasons have been
laid to the basis of an algorithm programmed by the RealProcQ procedure
represented by the following fragment.

In[2347]:= RealProcQ[x_] := Module[{a, b = " = ", c, d, p},
 If[! ProcQ[x], False, If[ModuleQ[x], True, a = Locals1[x];
 c = PureDefinition[x]; d = Map[#[[1]] – 1 &, StringPosition[c, b]];
 p = Map[ExprOfStr[c, #, –1, {" ", "{", "["}] &, d];
 p = DeleteDuplicates[Flatten[Map[StrToList, p]]];
 If[p == a, True, False]]]]

In[2348]:= B1[x_] := Block[{a = 80, b = 480, c = 72, d = 42}, x*(a + b + c + d)];
 RealProcQ[B1]
Out[2348]= True
In[2349]:= M2[x_] := Block[{a = 80, b = 480, c, d}, {c, d} = {42, 47}; x*a*b*c*d];
 RealProcQ[M2]
Out[2349]= True
In[2350]:= M3[x_] := Block[{a = 80, b = 48, c, h}, h = 72; x*h]; RealProcQ[M3]
Out[2350]= False

Experience of usage of the RealProcQ procedure confirmed its efficiency at
testing objects of the type "Block" that are considered as real procedures. At
that, we will understand an object of type {Module, Block} as a real procedure
which in the Mathematica software is functionally equivalent to a Module,
i.e. is some procedure in its classical understanding. The call RealProcQ[x]
returns True if the symbol x defines a Module or a Block which is equivalent
to a Module, and False otherwise. At that, it is supposed that a certain block
is equivalent to a module if all its local variables have initial values or some
local variables have initial values while others obtain values by the operator
"=" in the block body. The procedure along with the standard means uses as
well procedures ProcQ, Locals1, ModuleQ, ExprOfStr, StrToList which are
considered in the present book and in [33]. From all our means solving the
problem of testing of the procedural objects, the above RealProcQ procedure

with the greatest possible reliability identifies the procedure in its classical
understanding; in addition, the procedure can be of type {Module, Block}.

Extension of Mathematica system functionality

 157

In some cases in addition to the above means of testing of the Math-objects a
rather useful and quite simple procedure can be used whose call BlockQ[x]
returns True if the symbol x defines a block object, and False otherwise. The
following fragment represents source code of the BlockQ procedure along
with the most typical examples of its usage.

In[2377]:= BlockQ[x_] := Module[{b, a = If[SymbolQ[x],
 Flatten[{PureDefinition[x]}][[1]], $Failed]},
 If[MemberQ[{$Failed, "System"}, a], False,
 b = Mapp[StringJoin, {" := ", " = "}, "Block[{"];
 If[SuffPref[a, Map3[StringJoin, HeadPF[x], b], 1], True, False]]]

In[2378]:= Sv[x_] := Module[{}, y := 72; z := 67; {y, z}];
 Agn[x_] := Block[{a = 80}, a*x]; Kr[x_] := Block[{y = a, h = b},
 (y^2 + h^2)*x]; Art[x_] := Module[{a = 72}, x*a]
In[2379]:= Map[BlockQ, {Sv, Kr, Agn, Art, a + b, 90}]
Out[2379]= {False, True, True, False, False, False}

In[2380]:= BlockQ1[x_Symbol] := If[TestBFM[x] === "Block", True, False]

In[2381]:= Map[BlockQ1, {Sv, Kr, Agn, Art, 80}]
Out[2381]= {False, True, True, False, BlockQ1[80]}

In[2382]:= ModuleQ1[x_Symbol]:= If[TestBFM[x] === "Module",True,False]

In[2383]:= Map[ModuleQ1, {Sv, Kr, Agn, Art, 90}]
Out[2383]= {True, False, False, True, ModuleQ1[90]}

In[2384]:= ModuleQ2[x_] := Module[{b, a = If[SymbolQ[x],
 Flatten[{PureDefinition[x]}][[1]], $Failed]},
 If[MemberQ[{$Failed, "System"}, a], False,
 b = Mapp[StringJoin, {" := ", " = "}, "Module[{"];
 If[SuffPref[a, Map3[StringJoin, HeadPF[x], b], 1], True, False]]]

The above fragment is completed by an example with the simple BlockQ1
function which is functionally equivalent to the previous BlockQ procedure
and is based on our TestBFM procedure; this fragment represents also not
less simple ModuleQ1 function whose call ModuleQ1[x] returns True if the
symbol x defines a modular structure, and False otherwise. The result of the
procedure call ModuleQ2[x] is analogous to the call ModuleQ1[x].

V.Z. Aladjev, V.A. Vaganov

 158

We will note, the previous means of testing of objects of type {Module, Block,
Function} support only single objects, but not objects of the same name, i.e.
for each such object in the current session of Mathematica system the only
definition should be activated. Therefore the means of testing of objects in
independence from number of the definitions standing behind them are of
special interest. Such problem is solved by the following FuncBlockModQ
procedure, whose result of a call FuncBlockModQ[x, y] returns True, if x –
the symbol defines an object of type {Function, Module, Block}; at that, in the
presence for the symbol x of several definitions the True is returned only if
all its definitions generate an object of the same type. Whereas through the
second argument y – an undefinite variable – an object type in the context of
{"Function", "Block", "Module"} is returned. If symbol x defines an object of
the same name whose definitions are associated with subobjects of different
types, the procedure call FuncBlockModQ[x, y] returns False while thru the
2nd argument y "Multiple" is returned. The following fragment represents
source code of the FuncBlockModQ procedure along with the most typical
examples of its usage.

In[2654]:= FuncBlockModQ[x_ /; SymbolQ[x], y_ /; ! HowAct[y]] :=
 Module[{b, c, m, n, a = PureDefinition[x]},
 If[MemberQ[{"System", $Failed}, a], False, a = Flatten[{a}];
 b = Flatten[{HeadPF[x]}];
 c = Join[Mapp[StringJoin, b, " := "], Mapp[StringJoin, b, " = "]];
 c = GenRules[c, ""]; c = StringReplace[a, c];
 {m, n} = Map[Length, {Select[c, SuffPref[#, "Block[{", 1] &],
 Select[c, SuffPref[#, "Module[{", 1] &]}];
 If[Length[a] == m, y = "Block"; True,
 If[Length[a] == n, y = "Module"; True,
 If[m + n == 0, y = "Function"; True, y = "Multiple"; False]]]]]

In[2655]:= Sv[x_] := Module[{}, y := 72; z := 667; {y, z}];
 Agn[x_] := Block[{a = 80}, a*x]; B[x_] := Block[{a, b, c, d}, x*(a + b + c + d)];
 B[x_, y_] := Block[{}, x + y]; M[x_] := Module[{a, b, c, d}, x*(a + b + c + d)];
 M[x_, y_] := Module[{}, x + y]; V[x_] := Module[{a, b, c, d}, x*(a + b + c + d)];
 V[x_, y_] := Block[{}, x + y]; F[x_, y_] := x + y; F[x_, y_, z_] := x + y + z
In[2656]:= {FuncBlockModQ[Sv, y], y}

Extension of Mathematica system functionality

 159

Out[2656]= {True, "Module"}
In[2657]:= {FuncBlockModQ[B, y1], y1}
Out[2657]= {True, "Block"}
In[2658]:= {FuncBlockModQ[M, y2], y2}
Out[2658]= {True, "Module"}
In[2659]:= {FuncBlockModQ[V, y3], y3}
Out[2659]= {False, "Multiple"}
In[2660]:= {FuncBlockModQ[While, y4], y4}
Out[2660]= {False, y4}
In[2661]:= {FuncBlockModQ[F, y4], y4}
Out[2661]= {True, "Function"}

This procedure along with standard means uses also our means GenRules,
HeadPF, HowAct, Mapp, PureDefinition, SuffPref and SymbolQ that are
considered in this book and in [32,33]. Below, other means of testing of the
objects of type {"Function", "Block", "Module"} will be presented too, though
already the above means allow to considerably solve the given problem.

Insofar as procedures of both types (Module, Block) along with functions of
the user are basic objects of procedural programming in the Mathematica
then a very important problem of creation of means for testing of belonging
of an object to the type {Module, Block, Function} exists. The next fragment
represents the TestBFM procedure that is successfully solving this problem.

In[2620]:= TestBFM[x_] := Module[{a = Flatten[{PureDefinition[x]}], b, d,
 h, p, k, j, t = {}},
 If[MemberQ[{$Failed, "System"}, a[[1]]], Return[$Failed],
 b = Flatten[{HeadPF[x]}];
 For[k = 1, k <= Length[a], k++, d = a[[k]];
 p = Map[b[[k]] <> # &, {" := ", " = "}];
 h = StringReplace[d, {p[[1]] –> "", p[[2]] –> ""}, 1];
 If[SuffPref[h, "Module[{", 1], t = AppendTo[t, "Module"],
 If[SuffPref[h, "Block[{", 1], t = AppendTo[t, "Block"],
 If[SuffPref[h, "DynamicModule[{", 1],
 t = AppendTo[t, "DynamicModule"],
 t = AppendTo[t, "Function"]]]]]]; If[Length[t] == 1, t[[1]], t]]

V.Z. Aladjev, V.A. Vaganov

 160

In[2621]:= M[x_] := x; M[x_, y_] := Module[{}, x + y];
 M[x_, y_, z_] := Block[{}, x + y + z];
In[2622]:= PureDefinition[M]
Out[2622]= {"M[x_] := x", "M[x_, y_] := Module[{}, x+y]",
 "M[x_, y_, z_] := Block[{}, x+y+z]"}
In[2623]:= TestBFM[M]
Out[2623]= {"Function", "Module", "Block"}
In[2624]:= Map[TestBFM, {a + b, avz, Sin, SuffPref, For, 2015}]
Out[2624]= {$Failed, $Failed, $Failed, "Module", $Failed", $Failed}

The procedure call TestBFM[x] returns the type of a functional, modular or
block object x in format "Function", "Module", "DynamicModule", "Block",
whereas on argument x of other type the procedure call returns $Failed. At
that, if an argument x defines an object of the same name, the procedure call
TestBFM[x] returns the list of types of the subobjects composing it, having
bijection with the list of definitions returned by the call PureDefinition[x].

At that, the following procedure can appear as an useful enough means of
testing of objects, its call ProcFuncBlQ[x, y] returns True if x is a procedure,
function or block, otherwise False is returned. Moreover, at return of True,
thru argument y – an undefinite variable – a x-object type is returned {"Block",
"Module", "DynamicModule", "Function", "PureFunction"}, otherwise the 2nd
argument remains undefinite. The next fragment represents source code of
the procedure along with the most typical examples of its usage.

In[3178]:= ProcFuncBlQ[x_, y_ /; ! HowAct[y]] :=
 Module[{a = ToString[HeadPF[x]], b = ToString[y] <> " = ",
 c = PureDefinition[x]},
 If[ListQ[c], False, If[SuffPref[a, "HeadPF[", 1],
 If[SuffPref[a, " &]", 2], y = "PureFunction"; True, False],
 If[HeadingQ[a],
 If[SuffPref[c, a <> " := Module[{", 1], y = "Module"; True,
 If[SuffPref[c, a <> " := Block[{", 1], y = "Block"; True,
 If[SuffPref[c, a <> " := DynamicModule[{", 1],
 y = "DynamicModule"; True, y = "Function"; True]]], False]]]]

In[3179]:= Dm[] := DynamicModule[{x}, {Slider[Dynamic[x]], Dynamic[x]}]

Extension of Mathematica system functionality

 161

In[3180]:= DPOb[] := Module[{a = 80, b = 67, c = 18, d = 25}, Plus[a, b, c, d]]
In[3181]:= B[x_] := Block[{a}, a = x]; G := Function[500 + 90*# &];
In[3182]:= Clear[g, g1, g2, g3, g4, g5]; {ProcFuncBlQ[Dm, g],
 ProcFuncBlQ[DPOb, g1], ProcFuncBlQ[B, g2], ProcFuncBlQ[G, g3],
 ProcFuncBlQ[500 + 90*# &, g4], ProcFuncBlQ[500, g5]}
Out[3182]= {True, True, True, True, True, False}
In[3183]:= {g, g1, g2, g3, g4, g5}
Out[3183]= {"DynamicModule", "Module", "Block", "PureFunction",
 "PureFunction", g5}
In[3184]:= ClearAll[t]; F[x_] := 500 + 90*x; {ProcFuncBlQ[F, t], t}
Out[3184]= {True, "Function"}

It should be noted that this procedure is correctly executed only on objects
of the above type provided that they have the single definitions, otherwise
returning the False. The procedure along with standard means uses also our
means HeadingQ, HeadPF, HowAct, PureDefinition and SuffPref that are
considered in the present book and in our previous books [32,33].

As it was already noted above, in general case between procedures of types
"Module" and "Block" exist principal enough distinctions which don't allow
a priori to consider a block structure as a full procedure. Such distinctions
are based on various used mechanisms of local variables as it was visually
illustrated with examples slightly above. It is possible to give more complex
examples of similar distinctions [30-33]. Therefore the type of a procedure
should be chosen rather circumspectly, giving preference to procedures of
the type "Module". Therefore, the BlockToModule procedure can be usefull
enough, whose call BlockToModule[x] returns Null, providing converting
of a procedure of the type "Block" into procedure of the type "Module". The
fragment below represents source code of the BlockToModule procedure
along with typical examples of its usage.

In[2468]:= BlockToModule[x_Symbol] := Module[{b, c, d, h = {}, k = 1, n, m,
 a = Definition2[x]},
 If[ListQ[a] && a[[1]] == "System" ||
 UnevaluatedQ[Definition2, x], $Failed, b = a[[–1]];
 ClearAllAttributes[x]; c = a[[1 ;; –2]]; d = Flatten[{HeadPF[x]}];
 For[k, k <= Length[d], k++, {n, m} = {c[[k]], d[[k]]};

V.Z. Aladjev, V.A. Vaganov

 162

 If[SuffPref[n, {m <> " := Block[{", m <> " = Block[{"}, 1],
 AppendTo[h, StringReplace[n, "Block[{" –> "Module[{", 1]],
 AppendTo[h, n]]]; Map[ToExpression, h]; SetAttributes[x, b]]]

In[2469]:= V[x_] := Module[{a, b}, x*(a + b)]; V[x_, y_] := Block[{}, x + y];
 V[x__] := {x}
In[2470]:= Options[V] = {agn –> 67, asv –> 47};
 SetAttributes[V, {Protected, Listable}]
In[2471]:= Definition2[V]
Out[2471]= {"V[x_] := Module[{a, b}, x*(a+b)]", "V[x_, y_] := Block[{}, x+y]",
 "V[x__] := {x}", "Options[V] = {agn –> 67, asv –> 47}", {Listable, Protected}}
In[2472]:= BlockToModule[V]
In[2473]:= Definition2[V]
Out[2473]= {"V[x_] := Module[{a, b}, x*(a+b)]", "V[x_, y_] := Module[{}, x+y]",
 "V[x__] := {x}", "Options[V] = {agn –> 67, asv –> 47}", {Listable, Protected}}

In[2474]:= G[x_] := Block[{}, x^2]; G[x_, y_] = Block[{}, x * y];
 G[x__] := Block[{}, {x}]
In[2475]:= Options[G] = {ian –> 80, rans –> 480};
 SetAttributes[G, {Protected, Listable}]
In[2476]:= Definition2[G]
Out[2476]= {"G[x_]:=Block[{}, x^2]", "G[x_, y_]=x*y", "G[x__]:=Block[{}, {x}]",
 "Options[G] = {ian –> 80, rans –> 480}", {Listable, Protected}}
In[2477]:= BlockToModule[G]; Definition2[G]
Out[2477]= {"G[x_]:=Module[{}, x^2]", "G[x_, y_]=x*y", "G[x__]:=Module[{},
 {x}]", "Options[G] = {ian –> 80, rans –> 480}", {Listable, Protected}}

The call BlockToModule[x] returns Null, i.e. nothing, simultaneously with
converting of a procedure x of block type into the procedure of modular type
of the same name with preservation of all attributes and options of a source
procedure of block type. Moreover, several definitions of modules, blocks or/
and functions also can be associated with an object x, however the procedure
call BlockToModule[x] provides converting only of block components of the
object x into modular structures. The above examples quite visually illustrate
the aforesaid.

Due to the mechanism of the global variables used by blocks and modules
it is necessary to make certain explanations. In this context it is possible to

Extension of Mathematica system functionality

 163

distinguish two types of global variables – passive and active ones. Passive
global variables are characterized by that, they are only used by an object,
without changing their values outside of the object. While the assignment of
values by means of operators {":=", "="} for active global variables is done in
an object body, changing their values and outside of the object. In view of
the above the active global variables are of interest at processing of blocks
and modules, and procedures in general. A number of our means processing
the objects of this type whose definitions contain the active global variables
consider the specified circumstance, carrying out processing of objects of the
type {"Module", "Block"} so that not to change values of active global variables
used by them outside of their scope. In this relation the procedures BlockQ,
ModuleQ, BlockFuncModQ, BlockModQ given below are rather indicative.

The call BlockFuncModQ[x] returns True, if x – a symbol defining a typical
(with heading) function, block or module, and False otherwise. While the call
BlockFuncModQ[x, y] on condition of the main return of True through the
2nd optional argument y – an undefinite variable – returns type of an object x
in the context of {"Block", "Function", "Module"}. On the other hand, the call
BlockModQ[x] returns True, if x – symbol defining a block or module, and
False otherwise. Whereas the call BlockModQ[x, y] on condition of the main
return of True through optional argument y – an undefinite variable – returns
type of an object x in the context of {"Block", "Module"}. The fragment below
submits source codes of the procedures BlockModQ and BlockFuncModQ
along with the most typical examples of their usage.

In[2612]:= BlockFuncModQ[x_, y___] := Module[{b, c,
 a = Flatten[{PureDefinition[x]}][[1]]},
 If[MemberQ[{$Failed, "System"}, a], False,
 b = StringSplit[a, {" := ", " = "}, 2];
 If[StringFreeQ[b[[1]], "["], False,
 c = If[SuffPref[b[[2]], "Module[{", 1], "Module",
 If[SuffPref[b[[2]], "Block[{", 1], "Block", "Function"]];
 If[{y} != {} && ! HowAct[y], y = c]; True]]]

In[2613]:= M[x_, y_] := Module[{a = 80, b = 480}, x*y*a*b];
 F[x_] := x; B[_] := Block[{}, x]
In[2614]:= {BlockFuncModQ[M, y], y}

V.Z. Aladjev, V.A. Vaganov

 164

Out[2614]= {True, "Module"}
In[2615]:= {BlockFuncModQ[F, y1], y1}
Out[2615]= {True, "Function"}
In[2616]:= {BlockFuncModQ[B, y2], y2}
Out[2616]= {True, "Block"}

In[2639]:= BlockModQ[x_, y___] := Module[{s = FromCharacterCode[6],
 a = Flatten[{PureDefinition[x]}][[1]], b, c},
 If[MemberQ[{$Failed, "System"}, a], False,
 b = StringReplace[a, {" := " –> s, " = " –> s}, 1];
 b = StringTake[b, {Flatten[StringPosition[b, s]][[1]] + 1, –1}];
 c = If[SuffPref[b, "Module[{", 1], "Module",
 If[SuffPref[b, "Block[{", 1], "Block"]];
 If[{y} != {} && ! HowAct[y], y = c]; If[c === Null, False, True]]]

In[2640]:= {BlockModQ[M, y3], y3}
Out[2640]= {True, "Module"}
In[2641]:= {BlockModQ[F, y4], y4}
Out[2641]= {False, Null}
In[2642]:= {BlockModQ[B, y5], y5}
Out[2642]= {True, "Block"}

From the aforesaid follows, at programming of the means that manipulate
with objects of the type {"Block", "Module"} and which use global variables,
it is necessary to consider possibility, what in the course of the call of these
means for their global variables the assignments are done what can conflict
with values of variables of the same name which have been received in the
current session earlier. Naturally, in general, that isn't so essential for the
reason that by a call of such objects, the global variables used by them and so
will receive values if is being not envisaged the contrary. In order to avoid
possible misunderstanding a procedure has to provide saving of values of
global variables which have been received by them up to the procedure call
with restoration them at exit from the procedure. Simple example illustrates
a mechanism of saving of values of a variable y of the current session that is
used as global variable of a simple procedure Kr, namely:

In[2495]:= Kr[x_] := Module[{a = 90, b = y}, y = 500; {a + y + x, y = b}[[1]]]
In[2496]:= y = 42; {Kr[100], y}

Extension of Mathematica system functionality

 165

Out[2496]= {690, 42}

Functions of the Mathematica system have a number of interesting means
for support of work with dynamic objects. We recall that dynamic module
DynamicModule[{x, y, z, ...}, W] represents an object that supports the same
local status for variables x, y, z, ... in the course of evaluation of all dynamic
objects of a W body. The variables specified in DynamicModule by default
have values throughout all current session. At that, the dynamic object can
act not only directly as an expression, but also, in particular, as coordinate in
a graphic primitive, as an object of type "slider", as a setting for an option.
Meanwhile, unlike the standard module the dynamic module directly doesn't
allow to receive its definition by the standard Definition function, only our
procedures Definition2 and PureDefinition allow to solve this problem as
it illustrates the following fragment, namely:

In[2760]:= Dm[x_, y_ /; PrimeQ[y]] := DynamicModule[{a = 90, b = 500},
 a + b*(x + y)]; Definition[Dm]
Out[2760]= Dm[x_, y_ /; PrimeQ[y]] := a$$ + b$$ (x + y)
In[2761]:= Definition2[Dm]
Out[2761]= {"Dm[x_, y_ /; PrimeQ[y]] := DynamicModule[{a = 90, b = 500},
 a + b*(x + y)]", {}}
In[2762]:= PureDefinition[Dm]
Out[2762]= "Dm[x_, y_ /; PrimeQ[y]] := DynamicModule[{a = 90, b = 500},
 a + b*(x + y)]"

In[2799]:= ModuleQ[x_Symbol, y___ /; y == Null || SymbolQ[y] &&
 ! HowAct[y]] := Module[{a = PureDefinition[x], b},
 If[ListQ[a] || a == "System" || a === $Failed, False, b = HeadPF[x];
 If[SuffPref[a, b <> " := " <> "Module[{", 1],
 If[{y} != {}, y = "Module"]; True,
 If[SuffPref[a, b <> " := " <> "DynamicModule[{", 1],
 If[{y} != {}, y = "DynamicModule"]; True, False]]]]

In[2800]:= {ModuleQ[Dm, t], t}
Out[2800]= {True, "DynamicModule"}
In[2801]:= V[x_] := Module[{a, b}, x*(a + b)]; {ModuleQ[V, t1], t1}
Out[2801]= {True, "Module"}
In[2802]:= V[x_, y_] := Block[{}, x + y]; V[x__] := {x}; {ModuleQ[V, t2], t2}

V.Z. Aladjev, V.A. Vaganov

 166

Out[2802]= {False, t2}
In[2803]:= {ModuleQ[Sin, t2], t2}
Out[2803]= {False, t2}
In[2804]:= {ModuleQ[500, t2], t2}
Out[2804]= {ModuleQ[500, t2], t2}

The rather useful ModuleQ procedure completes the given fragment whose
call ModuleQ[x] returns True if an object x, given by a symbol, is a module,
and False otherwise; while the call ModuleQ[x, y] with the second optional
argument y – an undefinite variable – through y returns module type x in the
context {"Module", "DynamicModule"}. At that, the procedure call on a tuple
of incorrect actual arguments is returned unevaluated. In other cases the call
ModuleQ[x, y] returns the False. The procedure along with standard means
uses also our means HeadPF, HowAct, PureDefinition, SymbolQ, SuffPref
that are considered in this book and in [32,33]. Meanwhile, several essential
enough moments concerning the ModuleQ procedure should be noted. First
of all, the ModuleQ procedure is oriented on a modular object x which has
single definition, returning False on the objects of the same name. Moreover,
the procedure algorithm assumes that the definition of a modular object x is
based on the operator of postponed assignment ":=", but not on the operator
"=" of the immediate assignment because in the latter case the object x will be
distinguished by the standard Definition function and our testing means as
a function. In our opinion, the ModuleQ is rather useful in programming of
various type of problems and first of all the system character.

For testing of objects onto procedural type we proposed a number of means
among which it is possible to note such as ProcQ, ProcQ1, ProcQ2. The call
ProcQ[x] provides testing of an object x be as a procedural object {"Module",
"Block"}, returning accordingly True or False; whereas the ProcQ1 procedure
is a useful enough modification of the ProcQ procedure, its call ProcQ1[x, t]
returns True, if x – an object of type Block, Module or DynamicModule, and
"Others" or False otherwise; at that, the type of object x is returned through
the actual argument t – an undefinite variable. Source codes of the mentioned
procedures, their description along with the most typical examples of their
application are presented in our books [30-33] and in AVZ_Package package
[48]. A number of receptions used at their creation can be useful enough in
practical programming. The above ProcQ procedure is quite fast, processes

Extension of Mathematica system functionality

 167

attributes and options, however has certain restrictions, first of all, in case of
objects of the same name [33]. The fragment below represents source codes
of both procedures along with typical examples of their usage.

In[2492]:= ProcQ[x_] := Module[{a, atr = Quiet[Attributes[x]], b, c, d, h},
 If[! SymbolQ[x], False, If[SystemQ[x], False,
 If[UnevaluatedQ[Definition2, x], False,
 If[ListQ[atr] && atr != {}, ClearAllAttributes[x]];
 a = Quiet[SubsDel[ToString[InputForm[Definition[x]]],
 "`" <> ToString[x] <> "`", {"[", ",", " "}, –1]];
 Quiet[b = StringTake[a, {1, First[
 First[StringPosition[a, {" := Block[{"," :=Block[{"}]– 1]]}];
 c = StringTake[a, {1, First[
 First[StringPosition[a, {" := Module[{"," :=Module[{"}] – 1]]}];
 d = StringTake[a, {1, First[First[StringPosition[a,
 {" := DynamicModule[{", " :=DynamicModule[{"}] – 1]]}]];
 If[b === ToString[HeadPF[x]], SetAttributes[x, atr]]; True,
 If[c === ToString[HeadPF[x]], SetAttributes[x, atr]]; True,
 If[d === ToString[HeadPF[x]], SetAttributes[x, atr]]; True,
 SetAttributes[x, atr]]; False]]]]]]]

In[2493]:= Map[ProcQ, {Sin, a + b, ProcQ1, ProcQ, 73, UnevaluatedQ}]
Out[2493]= {False, False, True, True, False, True}

In[2620]:= ProcQ1[x_, y___ /; y == Null || SymbolQ[y] && ! HowAct[y]] :=
 Module[{a = Quiet[Check[Flatten[{PureDefinition[x]}], $Failed]],
 b = StringLength[ToString[x]], c, g = ToString[Unique["agn"]],
 h = {}, p = $$$72, k = 1, t = {}},
 If[SubsetQ[{$Failed, "System"}, a], False,
 For[k, k <= Length[a], k++, Clear[$$$72];
 ToExpression[g <> StringTake[a[[k]], {b + 1, –1}]];
 AppendTo[h, c = ProcQ[g]]; BlockFuncModQ[g, $$$72];
 AppendTo[t, If[c && $$$72 == "Function", "DynamicModule", $$$72]];
 Clear[g]; g = ToString[Unique["agn"]]]; $$$72 = p;
 Clear["$$$72", g]; If[{y} != {}, y = {h, t}, Null];
 If[DeleteDuplicates[h] == {True}, True, False]]]

V.Z. Aladjev, V.A. Vaganov

 168

In[2621]:= V[x_] := Module[{a, b}, x*(a + b)]; V[x_, y_] := Block[{}, x + y];
 V[x__] := {x}; {ProcQ1[V, y], y}
Out[2621]= {False, {{True, True, False}, {"Module", "Block", "Function"}}}

In[2622]:= G[x_] := Module[{a = 73}, a*x^2]; G[x_, y_] := Module[{}, x*y];
 G[x__] := Module[{a = 90, b = 500}, Length[{x}] + a*b]; {ProcQ1[G, u], u}
Out[2622]= {True, {{True, True, True}, {"Module", "Module", "Module"}}}

In[2686]:= ProcBMQ[x_ /; BlockModQ[x], y___] :=
 Module[{a, b, c = " = ", d, p}, If[! SingleDefQ[x],
 "Object <" <> ToString[x] <> "> has multiple definitions",
 If[ModuleQ[x], True, {a, b} = {PureDefinition[x], Locals1[x]};
 d = Map[#[[1]] – 1 &, StringPosition[a, c]];
 p = Map[ExprOfStr[a, #, –1, {" ", "{", "["}] &, d];
 p = DeleteDuplicates[Flatten[Map[StrToList, p]]];
 If[{y} != {}, y = MinusList[b, p], Null]; If[p == b, True, False]]]]

In[2687]:= P[x_] := Block[{a = 90, b = 500, c, d, h, g}, h = (a + b)*x; h^2];
 {ProcBMQ[P, q], q}
Out[2687]= {False, {"c", "d", "g"}}

In[2688]:= T[x_] := Block[{a = 6, b = 8, c, d, h, g}, {c, d, h, g} = {1, 2, 3, 4}];
 {ProcBMQ[T, v], v}
Out[2688]= {True, {}}
In[2689]:= G[x_] := Block[{a, b}, x]; G[x_, y_] := Block[{a, b}, x + y];
 ProcBMQ[G]
Out[2689]= "Object <G> has multiple definitions"

In[2690]:= SingleDefQ[x_] := If[ListQ[PureDefinition[x]] ||
 MemberQ[{$Failed, "System"}, PureDefinition[x]], False, True]

In[2691]:= G[x_] := Block[{}, x]; G[x_, y_] := Block[{a}, x*y]; SingleDefQ[G]
Out[2691]= False
In[2692]:= a[x_] := x; a[x_, y_] := x/y; Map[SingleDefQ, {73, c/b, If, ProcQ, a}]
Out[2692]= {False, False, False, True, False}

In this context we created the ProcQ1 procedure that generalizes the ProcQ
procedure, first of all, in case of the objects of the same name. The previous
fragment represents source code of the ProcQ1 procedure with examples of

Extension of Mathematica system functionality

 169

its most typical application. The call ProcQ1[x] returns True if the symbol x
defines a procedural object of the type {Block, Module, DynamicModule} with
unique definition along with an object consisting of their any combinations
with different headings (the objects of the same name). Moreover, in case of a
separate object or an object x of the same name True is returned only when
all its components is procedural objects in the sense stated above, i.e. they
have a type {Block, DynamicModule, Module}. Meanwhile, the procedure call
ProcQ1[x, y] with the 2nd optional argument y – an undefinite variable – thru
it returns simple or the nested list of the following format, namely:

{{a1, a2, a3, a4, …, ap}, {b1, b2, b3, b4, …, bp}}

where aj∈∈∈∈{True, False} whereas bj∈∈∈∈{"Block", "DynamicModule", "Function",
"Module"}; at that, between elements of the above sublists exists one-to-one
correspondence while pairs {aj, bj} (j=1..p) correspond to subobjects of the
object x according to their order as a result of the call Definition[x].
The ProcQ1 procedure is rather widely used and is useful enough in many
appendices, it differs from the previous ProcQ procedure in the following
context, namely: (1) quite successfully processes the objects of the same name, (2)
defines procedurality in case of the objects of the same name, whose subobjects are
blocks or functions. The procedure along with standard means significantly
uses as well our means such as HowAct, PureDefinition, SymbolQ, ProcQ,
BlockFuncModQ that are considered in the present book and in [28-33].

At last, the above fragment is completed by the ProcBMQ procedure whose
call ProcBMQ[x] with one argument returns True, if a block or a module x –
a real procedure in the above context, and False otherwise; the procedure call
ProcBMQ[x, y] with the second optional argument y – an undefinite variable –
returns thru it the list of local variables of the block x in string format which
have no initial values or for which in a body of the block x the assignments
of values weren’t made. We will note, the ProcBMQ procedure is oriented
only on one-defined objects whose definitions are unique while the message
"Object <x> has multiple definitions" is returned on objects x of the same name.
The procedure along with standard means uses also our means ExprOfStr,
BlockModQ, ModuleQ, PureDefinition, Locals1, SingleDefQ, MinusList,
StrToList that are considered in this book and in [30-33]. In particular, the
procedure significantly uses rather simple and very useful function, whose
call SingleDefQ[x] returns True if the actual argument x defines a name of a

V.Z. Aladjev, V.A. Vaganov

 170

procedure, a block or a function having single definition; in other cases the
function call returns False. The above fragment contains source code of the
SingleDefQ function with the most typical examples of its application.

In addition to our means testing procedural objects, we will note the simple
procedure, whose call UprocQ[x] returns False if an object x isn’t procedure
or is object of the same name, and the 2–element list otherwise; in this case
its first element is True while the second – a type {"DynamicModule"|"Block"|

"Module"} of the object x. On functions the 2-element list of the format {False,
"Function"} is returned. On inadmissible factual argument x the procedure
call is returned unevaluated. The following fragment represents source code
of the UprocQ procedure along with typical examples of its application.

In[2515]:= UprocQ[x_ /; SymbolQ[x]] := Module[{a = Unique["agn"], b},
 If[SingleDefQ[x], b = ProcQ1[x, a]; {b, a[[2]][[1]]}, False]]

In[2516]:= a[x_] := x^3; Dm[] := DynamicModule[{x}, {Slider[Dynamic[x]],
 Dynamic[x]}]; P[x_] := Block[{a = 90, b = 500, h}, h = a*b*x; h^2]
In[2517]:= Map[UprocQ, {ProcQ, P, Dm, 73, a}]
Out[2517]= {{True, "Module"}, {True, "Block"}, {True, "DynamicModule"},
 UprocQ[73], {False, "Function"}}

Having considered the main means of testing of procedural objects that are
absent among standard means of the Mathematica system it is reasonable to
consider the means similar to them for testing of the functional objects where
under functional means we will understand objects whose definitions have
the following format, namely:

F[x_ /; Testx, y_ /; Testy, z_ /; Testz,…] := W(x, y, z, …)

or pure functions of one of the following formats, namely:

Function[Body] or short form Body & (formal arguments # (#1), #2, #3, etc.)

Function[x, Body] – a pure function with single formal argument x

Function[{x1, x2, …}, Body] – a pure function with formal arguments {x1, x2, …}

We will give some simple examples onto these types of functions, namely:

In[2325]:= y := Function[{x, y}, x + y]; y1 = Function[{x, y}, x + y];
 z := #1 + #2 &; z1 = #1 + #2 &; F[x_, y_] := x + y
In[2326]:= {y[80, 480], y1[80, 480], z[80, 480], z1[80, 480], F[80, 480]}

Extension of Mathematica system functionality

 171

Out[2326]= {560, 560, 560, 560, 560}

On objects of the above functional type the calls of procedures ProcQ1 and
ProcQ return False, therefore for testing of functional type and other means
considered below are offered. However, first of all, we will consider means
testing the system functions, i.e. functions of the Math–language along with
its environment. By and large, these system tools are called by functions not
entirely correctly, because implementation of many of them is based on the
procedural organization, meanwhile, we stopped on the given terminology,
inherent actually to the system. And in this regard it is possible to present
means of testing of the system functions, besides that, the testing of objects
regarding to be standard functions of the Mathematica system in a number
of important enough problems arises need. In this regard a simple enough
function SysFuncQ solves the given problem; its call SysFuncQ[x] returns
True if an object x is a standard function of the Mathematica system and False
otherwise; whereas simple SysFuncQ1 function is a functionally equivalent
modification of the previous SysFuncQ procedure. The following fragment
represents source codes of the above means with examples of their usage.

In[2419]:= SysFuncQ[x_] := If[UnevaluatedQ[Definition2, x], False,
 If[SameQ[Definition2[x][[1]], "System"], True, False]]

In[2420]:= Map[SysFuncQ, {Sin, Tan, While, If, Do, ProcQ, 6, Length, a/b}]
Out[2420]= {True, True, True, True, True, False, False, True, False}

In[3037]:= SysFuncQ1[x_] := MemberQ[Names["System`*"], ToString[x]]

In[3038]:= Map[SysFuncQ1, {Sin, Tan, While, If, Do, ProcQ, 6, Length, a/b}]
Out[3038]= {True, True, True, True, True, False, False, True, False}

We will consider means of testing of the user functional objects, the first of
which is the procedure QFunction that is the most general means of testing
of objects x of the functional type, whose call QFunction[x] returns True on
a traditional function x and x–objects, generated by the function Compile,
and False otherwise. At that, the construction of format J[x_, y_, …] {:= | =}
J(x, y, …) is understood as the traditional function. The fragment represents
source code of the QFunction procedure with examples of its usage. At that,
the given procedure along with standard means uses and our means such as
HeadPF, Definition2, SymbolQ, Map3, SuffPref, ToString1 and ToString3
that are considered in the present book and in [28-33]. In particular, simple

V.Z. Aladjev, V.A. Vaganov

 172

ToString3 function is presented right there and its call ToString3[x] serves
for converting of an expression x in string InputForm format. This function
has a number of useful enough appendices.

In[2393]:= QFunction[x_] := Module[{a = Quiet[Definition2[x][[1]]],
 b = ToString3[HeadPF[x]]},
 If[! SingleDefQ[x], False, If[SameQ[a, x], False,
 If[SuffPref[Quiet[ToString1[a]], "CompiledFunction[", 1], True,
 If[SuffPref[b, "HeadPF[", 1], False,
 b = Map3[StringJoin, b, {" := ", " = "}];
 If[MemberQ[{SuffPref[StringReplace[a, b –> ""], "Module[", 1],
 SuffPref[StringReplace[a, b –> ""], "Block[", 1]}, True], False, True]]]]]]

In[2394]:= V := Compile[{{x, _Real}, {y, _Real}}, x/y]; Kr := (#1^2 + #2^4) &;
 Art := Function[{x, y}, x*Sin[y]];
 GS[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := Sin[75] + Cos[42];
 Sv[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := x^2 + y^2;
 S := Compile[{{x, _Integer}, {y, _Real}}, (x + y)^3];
In[2395]:= Map[QFunction, {V, S, Art, Kr, Pi, 42.72, GS, Sv}]
Out[2395]= {True, True, False, False, False, False, True, True}
In[2396]:= G[x_Integer, y_Real, z_Real] := x*y^2 + z
In[2397]:= Map[QFunction, {#1*#2*#3 &, Function[{x,y,z}, x*y*z],G,ProcQ}]
Out[2397]= {False, False, True, False}

In[2571]:= ToString3[x_] := StringReplace[ToString1[x], "\"" –> ""]

In[2576]:= ToString3[#1^2 + #2^4 &]
Out[2576]= "#1^2 + #2^4 & "

In[2642]:= QFunction1[x_] := Module[{a, c = ToString[Unique["agn"]], b, p,
 d = {}, k = 1},
 If[UnevaluatedQ[Definition2, x], False, If[SysFuncQ[x], False,
 a = Definition2[x][[If[Options[x] == {}, 1 ;; –2, 1 ;; –3]]];
 For[k, k <= Length[a], k++, p = c <> ToString[k];
 ToExpression[p <> a[[k]]];
 AppendTo[d, If[QFunction[b = p <> ToString[x]], True, False]];
 ToExpression["ClearAll[" <> b <> "]"]];
 Clear[c]; If[DeleteDuplicates[d] == {True}, True, False]]]]

Extension of Mathematica system functionality

 173

In[2643]:= F[x_] := x^2; F[x_, y_] = x + y; F := Compile[{{x, _Real},
 {y, _Real}}, (x + y)^2]; F = Compile[{{x, _Real}, {y, _Real}}, (x + y)^2];
In[2644]:= Map[QFunction1, {"Sin", "F", "Art", "V", "Kr", "GS", "Sv", "S"}]
Out[2644]= {False, True, False, True, False, True, True, True}

In[2645]:= G[x_] := x; SetAttributes[G, Protected];
 {QFunction[G], QFunction1["G"]}
Out[2645]= {True, True}

In[2646]:= {Map[QFunction, {Art, Kr}], Map[QFunction1, {"Art", "Kr"}]}
Out[2646]= {{False, False}, {False, False}}

In[2647]:= Sv[x_] := x; Sv[x_, y_] := x+y; {QFunction[Sv], QFunction1["Sv"]}
Out[2647]= {False, True}

However, the QFunction procedure, successfully testing functional objects
which are determined both by the traditional functions with headings and
generated by the standard Compile function doesn't process pure functions;
at that, this procedure doesn't process also the functional objects of the same
name as visually illustrate the last example of the previous fragment. While
the QFunction1 procedure solves the given problem, whose source code is
represented in the second part of the previous fragment. The procedure call
QFunction1[x] returns True on a traditional function x and an object x, that
has been generated by the Compile function, and False otherwise; moreover,
on an object x of the same name True is returned only if all its components
are traditional functions and/or are generated by the Compile function. At
that, the call QFunction1[x] assumes coding of factual x argument in string
format. Both procedures enough effectively process options and attributes
of the tested objects. Meanwhile, both the QFunction1 procedure, and the
QFunction procedure can't correctly test, generally speaking, pure functions
as quite visually illustrate examples of the previous fragment.

Along with the above types of functions the Mathematica system uses also
the Compile function intended for compilation of functions which calculate
numerical expressions at certain assumptions. The Compile function has the
following four formats of coding, each of which is oriented on separate type
of compilation, namely:

Compile[{x1, x2, …}, J] – compiles a function for calculation of an expression J in
the assumption that all values of arguments xj {j=1,2,…} have numerical character;

V.Z. Aladjev, V.A. Vaganov

 174

Compile[{{x1, t1}, {x2, t2}, {x3, t3}, …}, J] – compiles a function for calculation of
an expression J in the assumption that all values of arguments xj have accordingly
type tj {j = 1, 2, 3, …};
Compile[{{x1, p1, w1}, {x2, p2, w2}, …}, J] – compiles a function for calculation
of an expression J in the assumption that values of arguments xj are ranks wj of an
array of objects, each of which corresponds to a pj type {j = 1, 2, 3, …};
Compile[s, J, {{p1, pw1}, {{p2, pw2}, …}] – compiles a function for calculation of
an expression J in the assumption that its subexpressions s which correspond to the
pj templates have the pwj types accordingly {j = 1, 2, 3, …}.

The Compile function processes procedural and functional objects, matrix
operations, numerical functions, functions of work with lists, etc. Compile
function generates a special object CompiledFunction. The call Compile[…,
Evaluate[exp]] is used to specify that exp should be evaluated symbolically
before compilation.

For testing of this type of functions a rather simple CompileFuncQ function
can be supposed whose call CompileFuncQ[x] returns True if x represents a
Compile function, and False otherwise. The following fragment represents
source code of the function with the most typical examples of its usage.

In[2367]:= V := Compile[{{x, _Real}, {y, _Real}}, x*y^2]; Kr := (#1*#2^4) &;
 Art := Function[{x, y}, x*Sin[y]]; H[x_] := Block[{}, x]; H[x_, y_] := x + y;
 SetAttributes["H", Protected]; P[x__] := Plus[Sequences[{x}]];
 GS[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := Sin[78] + Cos[42];
 Sv[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := x^2 + y^2;
 Sv = Compile[{{x, _Integer}, {y, _Real}}, (x + y)^6];
 S := Compile[{{x, _Integer}, {y, _Real}}, (x + y)^3];
 G = Compile[{{x, _Integer}, {y, _Real}}, (x + y)]; P[x_] := Module[{}, x]

In[2368]:= CompileFuncQ[x_] :=
 If[SuffPref[ToString[InputForm[Definition2[x]]],
 "Definition2[CompiledFunction[{", 1], True, False]

In[2369]:= Map[CompileFuncQ, {Sv, S, G, V, P, Art, Kr, H, GS, ProcQ}]
Out[2369]= {True, True, True, True, False, False, False, False, False, False}

In[2370]:= Map[CompileFuncQ, {80, avz, a + b, Sin, While, 42.72}]
Out[2370]= {False, False, False, False, False, False}

Extension of Mathematica system functionality

 175

The CompileFuncQ procedure expands possibilities of testing of functional
objects in the Mathematica system, representing quite certain interest, first
of all, for problems of system programming.

The PureFuncQ function presented below is oriented for testing of the pure
functions, its call PureFuncQ[f] returns True if f defines a pure function, and
False otherwise. The fragment represents source code of the function along
with examples of its typical usage.

In[2385]:= PureFuncQ[f_] := Quiet[StringTake[ToString[f], {–3, –1}] == " & "
 && ! StringFreeQ[ToString[f], "#"] ||
 SuffPref[ToString[InputForm[f]], "Function[", 1]]

In[2386]:= Map[PureFuncQ, {#1 + #2 &, Function[{x, y, z}, x+y], G, ProcQ}]
Out[2386]= {True, True, False, False}
In[2387]:= Map[PureFuncQ, {Sin, F, Art, V, Kr, GS, Sv, S}]
Out[2387]= {False, False, True, False, True, False, False, False}
In[2388]:= Z := Function[{x, y, z}, x + y + z]; SetAttributes[Z, Protected]
In[2389]:= {PureFuncQ[Z], Attributes[Z]}
Out[2389]= {True, {Protected}}

In[2390]:= FunctionQ[x_] := If[StringQ[x], PureFuncQ[ToExpression[x]]||
 QFunction1[x], PureFuncQ[x]||QFunction[x]

In[2391]:= Map[FunctionQ, {"G", "ProcQ", "Function[{x, y, z}, x + y*z] ",
 "#1 + #2*#3 &"}]
Out[2391]= {True, False, True, True}
In[2392]:= Map[FunctionQ, {"V","S","Art","Kr","Pi","42.72","GS","Sv","F"}]
Out[2392]= {True, True, True, True, False, False, True, True, True}
In[2393]:= Map[QFunction, {V, S, Art, Kr, Pi, 42.72, GS, Sv, F}]
Out[2393]= {True, True, False, False, False, False, True, True, True}

The simple enough FunctionQ function completes the previous fragment;
its call FunctionQ[x] returns True if an object x is a function of any type of
both traditional, and pure, and False otherwise. In addition, the name x of an
object can be coded both in symbolical, and in string formats; in the second
case correct testing of an object x is supported, permitting multiplicity of its
definitions, i.e. the object x can be of the same name in the above-mentioned
sense. It must be kept in mind that the means of testing that are represented

V.Z. Aladjev, V.A. Vaganov

 176

above refers to the testing means of the user functions, and aren't intended
for standard functions of the Mathematica system, returning on them, as a
rule, False. So, a number of means for the differentiated identification of the
user functions of and traditional, and pure functions has been determined,
in particular, procedures and functions FunctionQ, QFunction, QFunction1
and PureFuncQ respectively. Thus, these means provide strict differentiation
of such basic element of functional and procedural programming, as function.
These and means similar to them are useful enough in applied and system
programming in the environment of the Mathematica system.

Meantime, here it is necessary to make one very essential remark once again.
As it was already noted, unlike the majority of the known languages Math-
language identifies procedures and functions not on their names, but on the
headings, allowing not only the procedures of the same name with different
headings, but also their combinations with functions. Therefore the question
of testing of program objects in context of type {Procedure, Function} isn't so
unambiguous. The means of testing presented above {ProcQ, QFunction1,
FunctionQ, PureFuncQ, etc.} allow as argument x an object or only with one
heading or the first object returned by the system call Definition[x] as it was
illustrated above. At that, for on objects of the same name the calls of a series
of means, considered above return True only in a case when the definitions
composing them are associated with subobjects of the same type.

In this connection it is very expedient to define some testing procedure that
determines belonging of an object x to a group {Block, CompiledFunction,
Function, Module, PureFunction, ShortPureFunction}. As one of similar
approaches it is possible to offer procedure, whose call ProcFuncTypeQ[x]
returns the list of format {True, {t1,t2,…,tp}} if a simple object x or subobjects
of an object x of the same name whose name x is coded in string format have
the types tj from the set {CompiledFunction, PureFunction, ShortPureFunction,
Block, Function, Module}, otherwise the list of format {False, x, "Expression"} or
{False, x, "System"} is returned. In the case of an object x of the same name a
sublist of types {t1, t2, …, tp} (j=1..p) of subobjects composing x is returned;
whereas "System" and "Expression" determines a system function x and an
expression x respectively. So, the ProcFuncTypeQ procedure can be applied
as a group test for belonging of an object x to the above types. The following
fragment represents source code of the ProcFuncTypeQ procedure with the

Extension of Mathematica system functionality

 177

most typical examples of its usage.

In[2528]:= ProcFuncTypeQ[x_ /; StringQ[x]] := Module[{a, b, d = {}, k = 1, p},
 If[ShortPureFuncQ[x], {True, "ShortPureFunction"},
 If[SuffPref[x, "Function[{", 1], {True, "PureFunction"},
 If[UnevaluatedQ[Definition2, x], {False, x, "Expression"},
 If[SysFuncQ[x], {False, x, "System"},
 a = Definition2[x][[If[Options[x] == {}, 1 ;; –2, 1 ;; –3]]];
 For[k, k <= Length[a], k++, b = Flatten[{HeadPF[x]}];
 b = Flatten[Map[Map3[StringJoin, #, {" := ", " = "}] &, b]];
 p = StringReplace[a[[k]], GenRules[b, ""], 1];
 If[SuffPref[p, {"Compile[{", "CompiledFunction[{"}, 1],
 AppendTo[d, "CompiledFunction"],
 If[SuffPref[p, "Block[{", 1], AppendTo[d, "Block"],
 If[SuffPref[p, "Module[", 1], AppendTo[d, "Module"],
 If[SuffPref[p, "Function[{", 1], AppendTo[d, "PureFunction"],
 If[ShortPureFuncQ[p], AppendTo[d, "ShortPureFunction"],
 If[PureFuncQ[ToExpression[x]], AppendTo[d, "PureFunction"],
 AppendTo[d, "Function"]]]]]]]]; {True, d}]]]]]

In[2529]:= V := Compile[{{x, _Real}, {y, _Real}}, (x^3 + y)^2];
 Sv[x_] := Module[{}, x]; Art := Function[{x, y}, x*Sin[y]];
 GS[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := Sin[x] + y;
 Sv[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := x^2 + y^2;
 Sv = Compile[{{x, _Integer}, {y, _Real}}, (x + 6*y)^6];
 S := Compile[{{x, _Integer}, {y, _Real}}, (x + y)^3]; Kr := (#1*#2^4) &;
 G = Compile[{{x, _Integer}, {y, _Real}}, (x + y)]; H[x_] := Block[{a}, x];
 H[x_, y_] := x + y; SetAttributes["H", Protected]

In[2530]:= ProcFuncTypeQ["Sv"]
Out[2530]= {True, {"CompiledFunction", "Module", "Function"}}
In[2531]:= ProcFuncTypeQ["H"]
Out[2531]= {True, {"Block", "Function"}}
In[2532]:= ProcFuncTypeQ["G"]
Out[2532]= {True, {"CompiledFunction"}}

V.Z. Aladjev, V.A. Vaganov

 178

In[2533]:= A[x_, y_] := x + y; A[x_] := x; ProcFuncTypeQ["A"]
Out[2533]= {True, {"Function", "Function"}}
In[2534]:= ProcFuncTypeQ["Art"]
Out[2534]= {True, {"PureFunction"}}
In[2535]:= ProcFuncTypeQ["Function[{x, y}, x+y]"]
Out[2535]= {True, "PureFunction"}
In[2536]:= ProcFuncTypeQ["Kr"]
Out[2536]= {True, {"ShortPureFunction"}}
In[2537]:= ProcFuncTypeQ["a+g+s*#&"]
Out[2537]= {True, "ShortPureFunction"}
In[2538]:= ProcFuncTypeQ["GS"]
Out[2538]= {True, {"Function"}}
In[2539]:= ProcFuncTypeQ["S"]
Out[2539]= {True, {"CompiledFunction"}}

In[2543]:= ShortPureFuncQ[x_] :=
 PureFuncQ[ToExpression[If[StringQ[x], x, ToString[x]]]] &&
 StringTake[StringTrim[ToString[If[StringQ[x], ToExpression[x],
 ToString[x]]]], {–1, –1}] == "&"

In[2544]:= Map[ShortPureFuncQ, {"a+g+s*#&", Kr, "Kr", a + g + s*# &}]
Out[2544]= {True, True, True, True}
In[2545]:= ProcFuncTypeQ["2015"]
Out[2545]= {False, "2015", "Expression"}
In[2546]:= ProcFuncTypeQ["While"]
Out[2546]= {False, "While", "System"}

Along with the ProcFuncTypeQ procedure the above fragment represents a
simple and useful enough function, whose call ShortPureFuncQ[x] returns
True if x determines a pure function in short format, and False otherwise. In,
particular, this function is used by the ProcFuncTypeQ procedure too. In a
number of applications of both the applied, and system character which are
connected with processing of procedures and functions the ProcFuncTypeQ
procedure is a rather effective testing group means.

For identification of functional objects (traditional and pure functions) in the
Mathematica system exist quite limited means that are based only on calls
of the system functions Part[x, 0] and Head[x] which return the headings of

Extension of Mathematica system functionality

 179

an expression x; at that, on pure functions Function is returned, whereas on
the traditional functions Symbol is returned as a simple enough fragment a
rather visually illustrates, namely:

In[2905]:= G[x_Integer, y_Real, z_Real] := x*y^2 + z
In[2906]:= Map[Head, {#1*#2*#3 &, Function[{x, y, z}, x + y*z], G, ProcQ}]
Out[2906]= {Function, Function, Symbol, Symbol}
In[2907]:= Mapp[Part, {#1*#2*#3 &, Function[{x, y, z}, x*y*z], G, ProcQ}, 0]
Out[2907]= {Function, Function, Symbol, Symbol}
In[2908]:= Map[PureFuncQ, {#1*#2 &, Function[{x, y, z}, x*y*z], G, ProcQ}]
Out[2908]= {True, True, False, False}
In[2909]:= Map[QFunction, {#1*#2 &, Function[{x, y, z}, x/y*z], G, ProcQ}]
Out[2909]= {False, False, True, False}
In[2910]:= Map[FunctionQ, {#1*#2 &, Function[{x, y, z}, x*y*z], G, ProcQ}]
Out[2910]= {True, True, True, False}
In[2911]:= {m, n} = {#1 + #2*#3 &, Function[{x, y}, x*y]}; Map[Head, {m, n}]
Out[2911]= {Function, Function}
In[2912]:= {Mapp[Part, {m, n}, 0], Map[QFunction, {m, n}]}
Out[2912]= {{Function, Function}, {False, False}}
In[2913]:= {Map[FunctionQ, {m, n}], Map[PureFuncQ, {m, n}]}
Out[2913]= {{True, True}, {True, True}}

In this context the Head2 procedure seems as an useful enough means that
is a modification of the Head1 procedure and that is based on the previous
ProcFuncTypeQ procedure and the standard Head function. The procedure
call Head2[x] returns the heading or the type of an object x, given in string
format. In principle, the type of an object can quite be considered as a heading
in its broad understanding. The Head2 procedure serves to such problem
generalizing the standard Head function and returning the heading of an
expression x in the context of {Block, CompiledFunction, Function, Module,
PureFunction, ShortPureFunction, Symbol, System, Head[x]}. The examples
of use of both means on the same list of the tested objects that in a number of
cases confirm preference of the Head2 procedure are given as a comparison.
The following fragment represents source code of the Head2 procedure and
the most typical examples of its use. Whereas the Head3 function presented
here expands the system function Head and our procedures Head1, Head2
upon condition, that a tested expression x is considered apart from the sign;

V.Z. Aladjev, V.A. Vaganov

 180

distinction is visually illustrated by results of the call of these means on the
identical actual arguments. In general, the function call Head3[x] is similar
to the procedure call Head1[x].

In[2651]:= Head2[x_] := Module[{b,
 a = Quiet[Check[ProcFuncTypeQ[ToString[x]], {Head[x]}]]},
 If[SameQ[a[[–1]], "System"], "System",
 If[SameQ[a[[–1]], "Expression"], Head[x],
 If[ListQ[a], b = a[[–1]]]; If[Length[b] == 1, b[[1]], b]]]]

In[2652]:= Map[Head2, {"#1 + #2*#3&", "Function[{x, y, z}, x+y*z]", "G",
 "ProcQ", "a + b", "{x, y, z}", "\"ransian\"", Avz, While}]
Out[2652]= {"ShortPureFunction", "PureFunction", {"Block", "Block",
 "Module"}, "Module", String, String, String, Symbol, "System"}
In[2653]:= Map[Head2, {"V", "Art", "G", "ProcQ", "GS", "Sv", "S", "H",
 "Agn", 80, 42.47, Kr}]
Out[2653]= {"CompiledFunction", "PureFunction", {"CompiledFunction",
 "Function"}, "Module", "Function", {"CompiledFunction",
 "Module", "Function"}, "CompiledFunction", {"Block",
 "Function"}, String, Integer, Real, "ShortPureFunction"}
In[2654]:= Map[Head, {"V", "Art", "G", "ProcQ", "GS", "Sv", "S", "H",
 "Agn", 80, 42.47, Kr}]
Out[2654]= {CompiledFunction, Function, CompiledFunction, Symbol,
 Symbol, CompiledFunction, CompiledFunction, Symbol,
 Symbol, Integer, Real, Function}

In[2655]:= Head3[x_] := Symbol[If[Part[x, 1] === –1, Head1[–1*x],
 Head1[x]]]

In[2656]:= {Head[Sin[–a + b]], Head2[Sin[–a + b]], Head3[Sin[–a + b]]}
Out[2656]= {Times, Times, Sin}

At last, quite natural interest represents the question of existence of the user
procedures and functions activated in the current session. The solution of the
given question can be received by means of the procedure whose procedure
call ActBFMuserQ[] returns True if such objects in the current session exist,
and False otherwise; meanwhile, meanwhile, the call ActBFMuserQ[x] thru
optional argument x – an undefinite variable – returns the 2–element nested

Extension of Mathematica system functionality

 181

list whose the first element contains name of the user object in string format
while the second defines list of its types in string format respectively. The
fragment presents source code of the ActBFMuserQ and examples of its use.

In[2570]:= ActBFMuserQ[x___ /; If[{x} == {}, True, If[Length[{x}] == 1 &&
 ! HowAct[x], True, False]]] := Module[{b = {}, c = 1, d, h,
 a = Select[Names["`*"], ! UnevaluatedQ[Definition2, #] &]},
 For[c, c <= Length[a], c++, h = Quiet[ProcFuncTypeQ[a[[c]]]];
 If[h[[1]], AppendTo[b, {a[[c]], h[[–1]]}], Null]];
 If[b == {}, False, If[{x} != {}, x = If[Length[b] == 1, b[[1]], b]]; True]]

In[2571]:= V := Compile[{{x, _Real}, {y, _Real}}, (x^3 + y)^2];
 Art := Function[{x, y}, x*Sin[y]]; Kr := (#1^2 + #2^4) &;
 GS[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := Sin[80] + Cos[42];
 G = Compile[{{x, _Integer}, {y, _Real}}, x*y]; P[x_, y_] := Module[{}, x*y]
 H[x_] := Block[{}, x]; H[x_, y_] := x + y; SetAttributes["H", Protected]
 P[x_] := Module[{}, x]; P[y_] := Module[{}, y];
 P[x__] := Plus[Sequences[{x}]]; P[x___] := Plus[Sequences[{x}]];
 P[y_ /; PrimeQ[y]] := Module[{a = "Agn"}, y]; T42[x_, y_, z_] := x*y*z
 P[x_ /; StringQ[x]] := Module[{}, x]; P[x_ /; ListQ[x]] := Module[{}, x];
 R[x_] := Module[{a = 500}, x*a]; GSV := (#1^2 + #2^4 + #3^6) &

In[2572]:= ActBFMuserQ[]
Out[2572]= True
In[2573]:= {ActBFMuserQ[t], t}
Out[2573]= {True, {{"Art", {"PureFunction"}}, {"G", {"CompiledFunction"}},
 {"GS", {"Function"}}, {"H", {"Block", "Function"}},
 {"P1", {"Function"}}, {"W", {"Function"}}, {"R", {"Module"}},
 {"Kr", "ShortPureFunction"}, {"V", {"CompiledFunction"}},
 {"P", {"Module", "Module", "Module", "Module", "Module",
 "Function", "Function"}, {"T42", {"Function"}},
 {"GSV", "ShortPureFunction"}}}}

At that, the given procedure along with standard means uses and our means

such as Definition2, HowAct, ProcFuncTypeQ and UnevaluatedQ that are
considered in the present book and in [28-33]. The procedure is represented
as a rather useful means, first of all, in the system programming.

V.Z. Aladjev, V.A. Vaganov

 182

6.4. Headings of procedures and functions in the
Mathematica system

In many contexts, it is not necessary to know the exact value of an arbitrary
expression; it suffices to know that the given expression belongs to a certain
broad class, or group, of expressions which share some common properties.
These classes or groups are known as types. If T represents a type, then an
expression is of type T if it belongs to the class that T presents. For example,
an expression is said to be of type Integer if it belongs to the definite class of
expressions denoted by the type name Integer, which is the set of integers.
Many procedures and functions use the types to direct the flow of control in
algorithms or to decide whether an expression is a valid input. For example,
the behavior of a function or a procedure generally depends on the types of
its actual arguments. At that, the result of a number of operations is defined
by type of their arguments. The type – fundamental concept of the theory of
programming, defining an admissible set of values or operations which can
be applied to such values and, perhaps, also a way of realization of storage
of values and performance of operations.

Any objects with which the programs operate, belong to certain types. The
concept of data type in programming languages of high level appeared as
absolutely natural reflection of that fact that the data and expressions which
are processed by a program can have various sets of admissible values, be
stored in RAM of the computer in different ways, be processed by different
commands of the processor. At that, the type of any object can be defined in
2 ways, namely: by a set of all values belonging to this type, or by a certain
predicate function defining object belonging to this type. Advantages from
use of types of objects are reduced to three highlights: (1) protection against
errors of assignment, incorrect operations along with inadmissible factual
arguments passed to a procedure/function; (2) the standardization provided
by agreements on the types supported by the majority of the programming
systems, (3) documenting of software in many respects becomes simpler at
use of the standard typification of the objects and data used in them. In the
modern languages of programming are used several systems of typification
a brief characteristic of which can be found in [33] whereas more in detail it
is possible to familiarize oneself with them in a number of books on modern

Extension of Mathematica system functionality

 183

programming systems. Considering importance of typification of language
objects, this aspect is considered by us and concerning Mathematica system
in books [28-33]. In particular, in our book [30] enough in details from point
of view of development of the mechanism of typification both Mathematica
and Maple systems are considered as computer mathematics systems which
are the most developed and popular for today.

Unlike 209 types, for example, of the Maple 11 which are tested by the `type`
procedure (apart from a considerable enough set of the user types connected to the
Maple by means of our library [47]), the Mathematica 9 has only 60 testing Q–
functions whose names have the form NameQ, for example, call SyntaxQ[x]
returns True if the contents of string x is a correct Mathematica–expression,
and False otherwise. In a certain measure to this function the ToExpression
function adjoins that evaluates all expressions which are in the argument of
string format with return of Null. By results of their performance the given
functions can be considered as testing tools of correctness of the expressions
that are in a string. At that, if in the first case we receive value {True, False},
in the second case the correctness can be associated with return of Null. In
this context the ToExpression function in a certain relation is similar to the
`parse` procedure of the Maple system [10,14-16,21,25-27]. If necessary, the
user can also create own functions with names of the form NameQ which
will significantly expand the range of similar standard system tools. Below,
this question largely is detailed on specific examples of such means.

Coding of definitions of types directly in headings of procedures/functions
takes place only for the Mathematica system, allowing in the call point of a
procedure/function without execution of it and without appeal to external
tools to execute testing for an admissibility of the actual arguments received
by the procedure/function. Such approach increases efficiency of execution
of a procedure/function, doing it by the more mobile. The given approach is
especially convenient in the case where the type posesses highly specialized
character or its definition is described by small and a rather clear program
code. Indeed, in a number of cases the inclusion of definitions of the testing
means directly into headings is very conveniently. So, this approach is used
rather widely in means from the AVZ_Package package [48]. In general, this
approach allows to typify quite in details in many important applied data;
its essence rather visually illustrates the following simple fragment, namely:

V.Z. Aladjev, V.A. Vaganov

 184

In[2524]:= ArtKr[x_ /; {T[z_] := If[z <= 80 && z >= 8, True, False], T[x]}[[2]],
 y_ /; StringQ[y] && ! SuffPref[y, {"avz", "agn", "vsv"}, 1]] :=
 Module[{a = 72, b = 67}, y <> " = " <> ToString[x + a + b]]

In[2525]:= {T[6], Map7[ArtKr, Sequences, {{72, "h"}, {42, "j"}, {50, "avagvs"}}],
 T[6]}
Out[2525]= {T[6], {"h = 211", "j = 181", "avagvs = 189"}, False}
In[2526]:= Definition[T]
Out[2526]= T[z_] := If[z <= 80 && z >= 8, True, False]

The example of simple ArtKr procedure of the modular type quite visually
illustrates opportunities on the organization of typified testing of the actual
arguments of the procedure when definition of a type T is given directly in
heading of the procedure and is activated at once after the first call of ArtKr
procedure. Many of means of AVZ_Package package use similar approach
in own organization [48].

On the assumption of the general definition of a procedure, in particular, of
modular type

M[x_/; Testx, y_/; Testy, ...] := Module[{locals}, Procedure body]

and of that fact that concrete definition of the procedure is identified not by
its name, but its heading we will consider a set of the useful enough means
which provide the various manipulations with headings of procedures and
functions, and play a very important part in procedural programming and,
first of all, programming of problems of the system character.

Having defined such object rather useful in many appendices as the heading
of a procedure/function in the form "Name[The list of formal arguments with
the testing means ascribed to them]", quite naturally arises the question of the
creation of means for a testing of objects regarding their relation to the type
`Heading`. It is possible to represent the HeadingQ procedure as a such tool
whose source code with examples of its use is represented by the following
fragment. The procedure call HeadingQ[x] returns True if an object x, given
in string format, can be considered as a syntactic correct heading; otherwise
False is returned; in case of inadmissible argument x the call HeadingQ[x] is
returned unevaluated. The HeadingQ procedure is rather essentially used in
a series of means from the AVZ_Package package [48].

Extension of Mathematica system functionality

 185

In[3385]:= HeadingQ[x_ /; StringQ[x]] := Module[{a, b, c, k = 1, m = True,
 n = True}, If[StringTake[x, {–1, –1}] == "]" &&
 StringCount[x, {"[", "]"}] == 2 &&
 ! StringFreeQ[StringReplace[x, " " –> ""], "[]"], Return[m],
 If[! StringFreeQ[RedSymbStr[x, "_", "_"], "[_]"], Return[! m]]];
 Quiet[Check[ToExpression[x], Return[False]]];
 If[DeleteDuplicates[Map3[StringFreeQ, x, {"[", "]"}]] === {False},
 c = StringPosition[x, "["][[1]][[2]];
 If[c == 1, Return[False], a = StringTake[x, {c, –1}]], Return[False]];
 b = StringPosition[a, "["][[1]][[1]]; c = StringPosition[a, "]"][[–1]][[1]];
 a = "{" <> StringTake[a, {b + 1, c – 1}] <> "}";
 a = Map[ToString, ToExpression[a]];
 If[DeleteDuplicates[Mapp[StringFreeQ, a, "_"]] == {False}, Return[True]];
 If[{c, a} == {2, {}}, Return[True], If[a == {} ||
 StringTake[a[[1]], {1, 1}] == "_", Return[False],
 For[k, k <= Length[a], k++, b = a[[k]];
 If[StringReplace[b, "_" –> ""] != "" &&
 StringTake[b, {–1, –1}] == "_" || ! StringFreeQ[b, "_ "] ||
 ! StringFreeQ[b, "_:"]||! StringFreeQ[b, "_."],
 m = True, n = False]]]; m && n]]

In[3386]:= {HeadingQ["D[x_, y_/; ListQ[y], z_:75, h_]"],
 HeadingQ["D[x_, y_, z_:75, h_]"],
 HeadingQ["D[x_, y_/; ListQ[y], z_:75, _]"]}
Out[3386]= {True, True, True}
In[3387]= {HeadingQ["D[x_, y_/; ListQ[y], z_:75, h]"],
 HeadingQ["[x_, y_/; ListQ[y], z:75]"]}
Out[3387]= {False, False}
In[3388]:= {HeadingQ["g[]"], HeadingQ["t[x__]"], HeadingQ["p[x__]"],
 HeadingQ["h[_]"]}
Out[3388]= {True, True, True, False}
In[3389]:= {HeadingQ["D[_, x_]"], HeadingQ["Z[x__]"],
 HeadingQ["Q[x___]"]}
Out[3389]= {True, True, True}

V.Z. Aladjev, V.A. Vaganov

 186

In[3390]:= {HeadingQ["D[x_, y_/; ListQ[y], z_:75, h]"],
 HeadingQ["V[x_, y_/;ListQ[y], z_.]"]}
Out[3390]= {False, True}

At that, the given procedure along with standard means uses and our means

such as RedSymbStr, Map3 and Mapp which are considered in the present
book and in [28-33]. The procedure is represented as a rather useful means,
first of all, in system programming, for example, at testing of objects types
in definitions of procedures and functions similarly to the means Head1 and
Head2, considered in the present book too.

The following HeadingQ1 procedure represents a very useful expansion of
the above HeadingQ procedure concerning its opportunity of testing of the
headings onto their correctness. The procedure call HeadingQ1[x] returns
True if the actual argument x, given in string format, can be considered as a
syntactically correct heading; otherwise False is returned. The next fragment
represents source code of the HeadingQ1 procedure and examples of its use.

In[2512]:= HeadingQ1[x_ /; StringQ[x]] := Module[{b, c = {}, d, h = "F", k = 1,
 a = Quiet[StringTake[x, {Flatten[StringPosition[x, "[", 1]][[1]] + 1, –2}]]},
 If[StringFreeQ[x, "["], False, b = StringSplit1[a, ","];
 For[k, k <= Length[b], k++, d = b[[k]];
 c = Append[c, If[StringFreeQ[d, "_"], False,
 If[MemberQ[ToString /@ {Complex, Integer,
 List, Rational, Real, String, Symbol},
 StringTake[d, {Flatten[StringPosition[d, "_"]][[–1]] + 1, –1}]], True,
 HeadingQ[h <> "[" <> d <> "]"]]]]];
 If[DeleteDuplicates[c] == {True}, True, False]]]

In[2513]:= Map[HeadingQ1, {"H[s_String,x_/;StringQ[x],y_]",
 "T[x_,y_/;ListQ[y],z_List]",
 "V[x_, y_/; ListQ[y]&&Length[L] == 90]",
 "E[x__, y_/; ListQ[y], z___]"}]
Out[2513]= {True, True, True, True}
In[2514]:= {Map[HeadingQ, {"H[s_Integer]", "G[n_Integer,L_List]",
 "G[n___Integer]"}], Map[HeadingQ1, {"H[s_Integer]",
 "G[n_Integer,L_List]", "G[n___Integer]"}]}
Out[2514]= {{True, True, True}, {True, True, True}}

Extension of Mathematica system functionality

 187

In addition to the system means the HeadingQ1 procedure uses procedure
StringSplit1 that represents an useful generalization of the system function
StringSplit. It should be noted that regardless of the correct testing of quite
wide type of headings, meanwhile, the procedure HeadingQ along with the
HeadingQ1 not has comprehensive character because of a series of features
of syntactical control of Math–language. That the following simple example
very visually illustrates, from which follows, that the system testing means
perceive incorrect headings as correct expressions.

In[2567]:= ToExpression["W[x__/;_StringQ[x]]"]
Out[2567]= W[x__/; _StringQ[x]]
In[2568]:= SyntaxQ["W[x__/;_StringQ[x]]"]
Out[2568]= True

At the same time two these procedures are rather useful in many cases.

Meanwhile, on the basis of our ArgsTypes procedure serving for testing of
formal arguments of a function/procedure which has been activated in the
current session perhaps further expansion of the testing opportunities of the
HeadingQ1, allowing in certain cases to expand types of the correctly tested
headings of procedures/functions. Meanwhile, here it is possible to tell only
about expansion of opportunities at certain cases, but not about expansion
as a whole. The fragment below represents source code of the HeadingQ2
procedure along with the most typical examples of its usage.

In[2942]:= HeadingQ2[x_ /; StringQ[x]] :=
 Module[{a, b, c, d = ToString[Unique["agn"]]},
 {a, b} = Map[DeleteDuplicates,
 Map[Flatten, Map3[StringPosition, x, {"[", "]"}]]];
 If[StringLength[x] == b[[–1]] &&
 SymbolQ[c = StringTake[x, {1, a[[1]] – 1}]],
 Quiet[Check[ToExpression[
 StringReplace[x, c <> "[" –> d <> "[", 1] <> " := 72"], False]];
 c = Map[SyntaxQ, ArgsTypes[d]];
 ToExpression["Remove[" <> d <> "]"];
 If[DeleteDuplicates[c] === {True}, True, False], False]]

In[2943]:= Map8[HeadingQ1, HeadingQ2, {"V[x__/_String]"}]

V.Z. Aladjev, V.A. Vaganov

 188

Out[2943]= {True, False}
In[2944]:= Map8[HeadingQ1, HeadingQ2, {"V[x_/; StringQ[x]]"}]
Out[2944]= {True, True}

In[2945]:= Map[HeadingQ2, {"F[x_/; StringQ[x]]", "F[x/; StringQ[x]]",
 "F[x; StringQ[x]]", "F[x_/_ StringQ[x]]",
 "F[x_//; StringQ[x]]", "F[x_; y_; z_]"}]
Out[2945]= {True, True, True, False, False, True}
In[2946]:= Map[HeadingQ1, {"F[x_/; StringQ[x]]", "F[x/; StringQ[x]]",
 "F[x; StringQ[x]]", "F[x_/_ StringQ[x]]",
 "F[x_//; StringQ[x]]", "F[x_; y_; z_]"}]
Out[2946]= {True, False, False, True, False, True}
In[2947]:= Map[HeadingQ, {"F[x_/; StringQ[x]]", "F[x/; StringQ[x]]",
 "F[x; StringQ[x]]", "F[x_/_ StringQ[x]]",
 "F[x_//; StringQ[x]]", "F[x_; y_; z_]"}]
Out[2947]= {True, False, False, True, False, True}
In[2948]:= Map[#["F[x_/_ StringQ[x]]"] &, {HeadingQ, HeadingQ1}]
Out[2948]= {True, True}
In[2949]:= Map[#["F[x_/_ StringQ[x]]"] &, {HeadingQ2, HeadingQ3}]
Out[2949]= {False, False}
In[2950]:= Map[#["F[x_/_StringQ[x]]"] &, {HeadingQ, HeadingQ1}]
Out[2950]= {True, True}
In[2951]:= Map[#["F[x_/_StringQ[x]]"] &, {HeadingQ2, HeadingQ3}]
Out[2951]= {False, False}

Analogously to the procedures HeadingQ and HeadingQ1, the procedure
call HeadingQ2[x] returns True if actual argument x, set in string format, can
be considered as a syntactically correct heading; otherwise False is returned.
At that, the examples presented in the above fragment of applications of the
procedures HeadingQ, HeadingQ1 and HeadingQ2 quite visually illustrate
distinctions between their functionality. The group of these means includes
also the HeadingQ3 procedure that in the functional relation is equivalent
to the HeadingQ2 procedure; its call HeadingQ3[x] returns True if an actual
argument x, set in string format, can be considered as a syntactically correct
heading; otherwise, the call returns False. At the same time between pairs of
procedures {HeadingQ[x],HeadingQ1[x]} & {HeadingQ2[x],HeadingQ3[x]}
principal distinctions exist, in particular, on the headings {F[x_/_StringQ[x]],

Extension of Mathematica system functionality

 189

F[x_ / _StringQ[x]} the first pair returns True while the second pair returns
False as a quite visually illustrates the above fragment. It is also necessary to
note that the first pair of testing functions is more high–speed what is very
essential at their use in real programming. Meanwhile, considering similar
and some other unlikely encoding formats of the headings of functions and
procedures, the represented four procedures HeadingQ[x], HeadingQ1[x],
HeadingQ2[x] and HeadingQ3[x] can be considered as rather useful testing
means in modular programming. At that, from experience of their use and
their temporary characteristics it became clear that it is quite enough to be
limited oneself only by procedures HeadingQ[x], HeadingQ1[x] that cover
rather wide range of erroneous coding of the headings. Furthermore, taking
into account the mechanism of parse of expressions for their correctness that
the Mathematica system uses, creation of comprehensive tools of testing of
the headings is very unlikely. Naturally, it is possible to use non–standard
receptions for receiving the testing means for the headings having a rather
wide set of deviations from the standard, however such outlay do not pay
off by the received benefits.

The following procedure serves as an useful enough means at manipulating
with procedures and functions, its call HeadPF[x] returns heading in string
format of a block, module or function with a name x activated in the current
session, i.e. of function in its traditional understanding with heading. While
on other values of argument x the call is returned unevaluated. Meanwhile,
the problem of definition of headings is actual also in the case of the objects
of the above type of the same name which have more than one heading. In
this case the procedure call HeadPF[w] returns the list of headings in string
format of the subobjects composing an object w as a whole. The following
fragment represents source code of the HeadPF procedure along with the
most typical examples of its usage.

In[2942]:= HeadPF[x_ /; BlockFuncModQ[x]] := Module[{b, c = ToString[x],
 a = Select[Flatten[{PureDefinition[x]}], ! SuffPref[#, "Default[", 1] &]},
 b = Map[StringTake[#, {1, Flatten[StringPosition[#,
 {" := ", " = "}]][[1]] – 1}] &, a]; If[Length[b] == 1, b[[1]], b]]

In[2943]:= G[x_, y_] := x*Sin[y] + y*Cos[x]; s[] := 90*x; g := 500
In[2944]:= Map[HeadPF, {G, s, Sin, 2015, g}]

V.Z. Aladjev, V.A. Vaganov

 190

Out[2944]= {"G[x_, y_]", "s[]",HeadPF[Sin], HeadPF[2015], HeadPF[500]}
In[2945]:= Map[HeadPF, {If, Tan, Log, True, G, "Infinity", For, Do, ProcQ}]
Out[2945]= {HeadPF[If], HeadPF[Tan], HeadPF[Log], HeadPF[True],
 "G[x_, y_]", HeadPF["Infinity"], HeadPF[For], HeadPF[Do], "ProcQ[x_]"}
In[2946]:= M[x_ /; x == "avzagn"] := Module[{a}, a*x]; M[x_, y_, z_] := x*y*z;
 M[x_ /; IntegerQ[x], y_String] := Module[{a, b, c}, x];
 M[x_String] := x; M[x_, y_] := Module[{a, b, c}, "abc"; x + y];
In[2947]:= HeadPF[M]
Out[2947]= {"M[x_ /; x == \"avzagn\"]", "M[x_, y_, z_]",
 "M[x_ /; IntegerQ[x], y_String]", "M[x_String]", "M[x_, y_]"}

So, the call HeadPF[x] returns the heading in string format of an object with
a name x of the type {block, function, module} which has been activated in the
current session. At that, for an object x which has several various headings,
the call HeadPF[x] returns the list of the headings whose order fully meets
the order of the definitions returned by the function call Definition[x]. In
this regard testing of an object x regarding to be of the same name is enough
actually; the QmultiplePF procedure solves the problem whose source code
along with typical examples of its usage the following fragment represents.

In[2780]:= QmultiplePF[x_, y___] :=
 Module[{a = Flatten[{PureDefinition[x]}]},
 If[MemberQ[{{"System"}, {$Failed}}, a], False,
 If[{y} != {} && ! HowAct[y], y = If[Length[a] == 1, a[[1]], a]]; True]]

In[2781]:= M[x_ /; x == "avzagn"] := Module[{a, b, c}, x]; M[x_String] := x;
 M[x_, y_, z_] := x*y*z; M[x_List, y_] := Block[{a}, Length[x] + y]
 M[x_ /; IntegerQ[x], y_String] := Module[{a, b, c}, x];
 M[x_, y_] := Module[{a, b, c}, "abc"; x + y];
In[2782]:= QmultiplePF[M]
Out[2782]= True
In[2783]:= {QmultiplePF[M, s], s}
Out[2783]= {True, {"M[x_ /; x == \"avzagn\"] := Module[{a, b, c}, x]",
 "M[x_String] := x", "M[x_, y_, z_] := x*y*z",
 "M[x_List, y_] := Block[{a, b, c}, \"abc\"; Length[x] + y]",
 "M[x_ /; IntegerQ[x], y_String] := Module[{a, b, c}, x]",
 "M[x_, y_] := Module[{a, b, c}, \"abc\"; x + y]"}}

Extension of Mathematica system functionality

 191

In[2784]:= Map[QmultiplePF, {M, 90, Avz, Sin, If, a + b}]
Out[2784]= {True, False, False, False, False, False}

The procedure call QmultiplePF[x] returns True, if x – an object of the same
name (block, function, module), and False otherwise. While the procedure call
QmultiplePF[x, y] with the 2nd optional argument y – an indefinite variable –
returns through y the list of definitions of all subobjects with a name x. The
QmultiplePF procedure realization significantly uses the earlier considered
PureDefinition procedure, and also our HowAct function. In a number of
cases the QmultiplePF procedure despite the relative simplicity is a rather
convenient means at testing of objects of the specified types.

At testing of objects often arises necessity of allotment among them of the
system functions; this problem is solved by simple function, whose the call
SystemQ[x] returns True if an object x is a system function, i.e. is defined by
builtin language of the Mathematica, and False otherwise. The function very

simply is defined directly on the basis of the standard functions Definition,
Names and ToString. The following fragment represents source code of the
SystemQ function with typical examples of its application. In a number of
appendices the given function represents quite certain interest and, first of
all, giving opportunity quite effectively to differentiate means.

In[2975]:= SystemQ[S_] := If[Off[Definition::ssle];
 ! ToString[Definition[S]] === Null &&
 MemberQ[Names["System`*"], ToString[S]], On[Definition::ssle];
 True, On[Definition::ssle]; False]

In[2976]:= Map[SystemQ, {90, G, Sin, Do, While, False, ProcQ, a/b^2, M}]
Out[2976]= {False, False, True, True, True, True, False, False, False}

Above all, the SystemQ function is often used in the headings of procedures
and functions, testing the actual arguments for admissibility. In addition to
the SystemQ function it makes sense to present an useful enough function
whose call LangHoldFuncQ[x] returns True if x – a basic function of Math–
language, and False otherwise. At that, under basic function is understood a
system function with one of the attributes ascribed to it, namely: HoldFirst,
HoldAll or HoldRest. The function is represented as a quite useful means in
the case of necessity of more accurate differentiation of software. The next

V.Z. Aladjev, V.A. Vaganov

 192

fragment represents source code of the LangHoldFunc function along with
examples of its most typical usage.

In[2299]:= LangHoldFuncQ[x_] := If[SystemQ[x] &&
 Intersection[Quiet[Check[Attributes[x], False]],
 {HoldAll, HoldFirst, HoldRest}] != {}, True, False]

In[2300]:= Map[LangHoldFuncQ, {If, Goto, Do, Sin, Rule, Break, While,
 Switch, Which, For}]
Out[2300]= {True, False, True, False, False, False, True, True, True, True}

For a series of problems of system character the LangHoldFuncQ function
allows to differentiate the set of all system functions of the Math–language
according to the specified feature.

Right there pertinently to note some more means linked with the HeadPF
procedure. So, the Headings procedure – an useful enough expansion of the
HeadPF procedure in the case of the blocks/functions/modules of the same
name but with various headings. Generally the call Headings[x] returns the
nested list whose elements are the sublists defining respectively headings of
subobjects composing an object x; the first elements of such sublists defines
the types of subobjects whereas others define the headings corresponding to
them. The next fragment represents source code of the Headings procedure
along with the most typical examples of its usage.

In[2385]:= Headings[x_ /; BlockFuncModQ[x]] := Module[{n, d, h, p, t, k = 1,
 c = {{"Block"}, {"Function"}, {"Module"}},
 a = Flatten[{PureDefinition[x]}]},
 While[k <= Length[a], d = a[[k]]; n = ToString[Unique["agn"]];
 ToExpression[n <> d]; ClearAll[p];
 h = HeadPF[t = n <> ToString[x]];
 d = StringTake[h, {StringLength[n] + 1, –1}];
 BlockFuncModQ[t, p];
 If[p == "Block", AppendTo[c[[1]], d],
 If[p == "Function", AppendTo[c[[2]], d], AppendTo[c[[3]], d]]];
 ToExpression["Remove[" <> t <> "," <> n <> "]"]; k++];
 c = Select[c, Length[#] > 1 &]; If[Length[c] == 1, c[[1]], c]]

Extension of Mathematica system functionality

 193

In[2386]:= M[x_ /; SameQ[x, "avz"], y_] := Module[{a, b, c}, y];
 M[x_, y_, z_] := x + y + z; L1[x_, y_] := Block[{a, b, c}, x + y];
 M[x_ /; x == "avz"] := Module[{a, b, c}, x]; L[x_] := x;
 M[x_ /; IntegerQ[x], y_String] := Module[{a, b, c}, x];
 M[x_, y_] := Module[{a, b, c}, "agn"; x + y]; M[x_String] := x;
 M[x_ /; ListQ[x], y_] := Block[{a, b, c}, "agn"; Length[x] + y];
In[2387]:= Headings[M]
Out[2387]= {{"Block", "M[x_ /; ListQ[x], y_]"}, {"Function", "M[x_, y_, z_]",
 "M[x_String]"}, {"Module", "M[x_ /; x === \"avz\", y_]",
 "M[x_ /; x == \"avz\"]", "M[x_ /; IntegerQ[x], y_String]", "M[x_, y_]"}}
In[2388]:= V1[x_] = x; Map[Headings, {L, L1, 80, Sin, agn, V1}]
Out[2388]= {{"Function", "L[x_]"}, {"Block", "L1[x_, y_]"}, Headings[80],
 Headings[Sin], Headings[agn], {"Function", "V1[x_]"}}
In[2389]:= G[x_] := x; Headings[G]
Out[2389]= {"Function", "G[x_]"}
In[2390]:= h = 80; P[x_] := Module[{a = 80, b = 480}, h = (a + b)*x; h^2];
 {Headings[P], h}
Out[2390]= {{"Module", "P[x_]"}, 80}

On x arguments different from the block/function/module, the procedure
call Headings[x] is returned unevaluated. This tool is of interest, first of all,
from the programmer standpoint. In a number of the appendices which use
the procedural programming, the Headings procedure is useful enough. At
that, the given procedure along with standard means uses and our means
such as BlockFuncModQ, PureDefinition and HeadPF that are considered
in the present book and in [28-33]. Examples of the previous fragment very
visually illustrate structure of the results returned by the given procedure.

In a number of the appendices which widely use procedural programming,
a rather useful is the HeadingsPF procedure which is an expansion of the
previous procedure. Generally the procedure call HeadingsPF[] returns the
nested list, whose elements are the sublists defining respectively headings
of functions, blocks and modules whose definitions have been evaluated in
the current session; the first element of each such sublist defines an object
type in the context of {"Block", "Module", "Function"} while the others define
the headings corresponding to it. The procedure call returns the simple list if
any of sublists doesn't contain headings; at that, if in the current session the

V.Z. Aladjev, V.A. Vaganov

 194

evaluations of definitions of objects of the specified three types weren't made,
the procedure call returns the empty list. At that, the procedure call with any
arguments is returned unevaluated. The fragment below represents source
code of the HeadingsPF procedure along with examples of its typical usage.

In[2913]:= HeadingsPF[x___ /; SameQ[x, {}]] := Module[{a = {}, d = {}, k = 1,
 b, c = {{"Block"}, {"Function"}, {"Module"}}, t},
 Map[If[Quiet[Check[BlockFuncModQ[#], False]],
 AppendTo[a, #], Null] &, Names["`*"]];
 b = Map[Headings[#] &, a];
 While[k <= Length[b], t = b[[k]];
 If[NestListQ[t], d = Join[d, t], AppendTo[d, t]]; k++];
 Map[If[#[[1]] == "Block", c[[1]] = Join[c[[1]], #[[2 ;; –1]]],
 If[#[[1]] == "Function", c[[2]] = Join[c[[2]], #[[2 ;; –1]]],
 c[[3]] = Join[c[[3]], #[[2 ;; –1]]]]] &, d]; Select[c, Length[#] > 1&]’
 If[Length[c] == 1, c[[1]], c]]

In[2914]:= M[x_ /; SameQ[x, "avz"], y_] := Module[{a, b, c}, y]; L1[x_] := x;
 M[x_, y_, z_] := x + y + z; L[x_, y_] := x + y;
 M[x_ /; x == "avz"] := Module[{a, b, c}, x];
 M[x_ /; IntegerQ[x], y_String] := Module[{a, b, c}, x];
 M[x_, y_] := Module[{a, b, c}, "agn"; x + y]; M[x_String] := x;
 M[x_ /; ListQ[x], y_] := Block[{a, b, c}, "agn"; Length[x] + y];
 F[x_ /; SameQ[x, "avz"], y_] := {x, y}; F[x_ /; x == "avz"] := x

In[2915]:= HeadingsPF[]
Out[2915]= {{"Block", "M[x_ /; ListQ[x], y_]"},
 {"Function", "F[x_ /; x === \"avz\", y_]", "F[x_ /; x == \"avz\"]",
 "L[x_, y_]", "L1[x_]", "M[x_, y_, z_]", "M[x_String]"},
 {"Module", "M[x_ /; x === \"avz\", y_]", "M[x_, y_]",
 "M[x_ /; x == \"avz\"]", "M[x_ /; IntegerQ[x], y_String]"}}

Reloading of the system without activation of the user means of
the specified three types (Block, Function, Module)

In[2490]:= HeadingsPF[]
Out[2490]= {}

Extension of Mathematica system functionality

 195

In[2491]:= V[x_, y_] := v*y; F[x_String] := x <>"avz"; G[x_] := x^2; L[y_] := y
In[2492]:= HeadingsPF[]
Out[2492]= {"Function", "F[x_String]", "G[x_]", "L[y_]", "V[x_, y_]"}

At that, the given procedure along with standard means uses and our tools
such as BlockFuncModQ, Headings and NestListQ that are considered in
the present book and in [28-33]. Examples of the previous fragment enough
visually illustrate structure of the results returned by the procedure. But it
must be kept in mind that performance of the procedure directly depends on
stage of the current session when the HeadingsPF procedure has been called
and how many definitions for the user means of the type {Function, Module,
Block} were calculated in the Mathematica current session.

In certain problems of processing of the headings at times arises the question
of evaluation of the name of a heading whose decision a very simple function
gives whose call HeadName[x] returns the name of a heading x in the string
format provided that the heading is distinguished by procedure HeadingQ
or HeadingQ1 as a syntactically correct heading, i.e. the call HeadingQ[x] or
HeadingQ1[x] returns True; otherwise, the function call HeadName[x] will
be returned unevaluated. The following fragment represents source code of
the HeadName function along with typical examples of its usage.

In[2645]:= HeadName[x_ /; HeadingQ[x] || HeadingQ1[x]] :=
 StringTake[x, {1, StringPosition[x, "[", 1][[1]][[1]] – 1}]

In[2646]:= Map[HeadName, {"V[x_/; StringQ[x]]", "G[x_String]",
 "S[x_/; IntegerQ[x]]", "Kr[x_/; StringQ[x], y__]", "Art[]"}]
Out[2646]= {"V", "G", "S", "Kr", "Art"}
In[2647]:= Map[HeadName, {"V[j_; StringQ[j]]", "S[j/; IntegerQ[j]]"}]
Out[2647]= {HeadName["V[j_; StringQ[j]]"], HeadName["S[j/; IntegerQ[j]]"]}

In some cases of procedural programming, for example, in case of necessity
of insertion of calls of procedures/functions on the basis of their headings
into structures of string type, the HeadToCall procedure is represented as a
quite useful tool, whose call HeadToCall[h] in string format returns the call
of a procedure/function on the basis of its heading on `pure` formal arguments
(i.e. without the tests for an admissibility ascribed to them), where h – admissible
heading of a procedure/function. The following fragment represents source
code of the HeadToCall procedure along with examples of its usage.

V.Z. Aladjev, V.A. Vaganov

 196

In[2511]:= HeadToCall[j_ /; HeadingQ[j]] := Module[{a = HeadName[j], b},
 b = "{" <> StringTake[StringReplace[j, a <> "[" –> "", 1], {1, –2}] <> "}";
 b = Select[StrToList[b], ! StringFreeQ[#, "_"] &];
 b = Map[StringTake[#, {1, Flatten[StringPosition[#, "_"]][[1]] – 1}] &, b];
 a <> "[" <> StringTake[ToString[b], {2, –2}] <> "]"]

In[2512]:= HeadToCall["G[x_, y_/; StringQ[y], z_/; MemberQ[{0, 1, 2}, z],
 t_Symbol, h_/; IntegerQ[h], z__, p___]"]
Out[2512]= "G[x, y, z, t, h, z, p]"
In[2513]:= HeadToCall["V[x_List, y_/; PrimeQ[y] && y < 90,
 z_/; ! HowAct[z], t_Integer, z__, p___]"]
Out[2513]= "V[x, y, z, t, z, p]"

At that, it must be kept in mind that the procedure call returns also optional
arguments of the studied heading.

In the light of possibility of existence in the current session of Mathematica
of the procedures of the same name with different headings the problem of
removal from the session of a procedure with concrete heading represents a
certain interest; this problem is solved by the procedure RemProcOnHead,
whose source code along with examples of usage are represented below.

In[2437]:= RemProcOnHead[x_ /; HeadingQ[x] || HeadingQ1[x] ||
 ListQ[x] && DeleteDuplicates[Map[HeadingQ[#] &, x]] == {True}] :=
 Module[{b, c, d, p, a = HeadName[If[ListQ[x], x[[1]], x]]},
 If[! MemberQ[Names["`*"]||! HowAct[a], a], $Failed,
 b = Definition2[a]; c = b[[1 ;; –2]]; d = b[[–1]];
 ToExpression["ClearAttributes[" <> a <> "," <> ToString[d] <> "]"];
 y = Map[StandHead, Flatten[{x}]]; p = Select[c, ! SuffPref[#, x, 1] &];
 ToExpression["Clear[" <> a <> "]"]; If[p == {}, "Done", ToExpression[p];
 ToExpression["SetAttributes[" <> a <> "," <> ToString[d] <> "]"]; "Done"]]]

In[2438]:= M[x_ /; SameQ[x, "avz"], y_] := Module[{a, b, c}, y]; L1[x_] := x;
 M[x_, y_, z_] := x + y + z; L[x_, y_] := x + y;
 M[x_ /; x == "avz"] := Module[{a, b, c}, x];
 M[x_ /; IntegerQ[x], y_String] := Module[{a, b, c}, x];
 M[x_, y_] := Module[{a, b, c}, "agn"; x + y]; M[x_String] := x;
 M[x_ /; ListQ[x], y_] := Block[{a, b, c}, "agn"; Length[x] + y];

Extension of Mathematica system functionality

 197

 F[x_ /; SameQ[x, "avz"], y_] := {x, y}; F[x_ /; x == "avz"] := x

In[2439]:= Definition[M]
Out[2439]= M[x_ /; x === "avz", y_] := Module[{a, b, c}, y]
 M[x_, y_, z_] := x + y + z
 M[x_ /; x == "avz"] := Module[{a, b, c}, x]
 M[x_ /; IntegerQ[x], y_String] := Module[{a, b, c}, x]
 M[x_ /; ListQ[x], y_] := Block[{a, b, c}, "agn"; Length[x] + y]
 M[x_, y_] := Module[{a, b, c}, "agn"; x + y]
 M[x_String] := x
In[2440]:= RemProcOnHead[{"M[x_,y_,z_]", "M[x_ /;ListQ[x],y_]"}]
Out[2440]= "Done"
In[2441]:= Definition[M]
Out[2441]= M[x_ /; x === "avz", y_] := Module[{a, b, c}, y]
 M[x_ /; x == "avz"] := Module[{a, b, c}, x]
 M[x_ /; IntegerQ[x], y_String] := Module[{a, b, c}, x]
 M[x_, y_] := Module[{a, b, c}, "agn"; x + y]
 M[x_String] := x

In[2530]:= G[x_, y_ /; IntegerQ[y]] := x + y
In[2531]:= RemProcOnHead["G[x_,y_ /;IntegerQ[y]]"]
Out[2531]= "Done"
In[2532]:= Definition[G]
Out[2532]= Null

In[2533]:= Definition[F]
 F[x_ /; x === "avz", y_] := {x, y}
 F[x_ /; x == "avz"] := x
In[2534]:= RemProcOnHead["F[x_ /;x==\"avz\"]"]
Out[2534]= "Done"
In[2535]:= Definition[F]
Out[2535]= F[x_ /; x === "avz", y_] := {x, y}

In[2541]:= V[x_] := Module[{}, x^6]; V[x_Integer] := x^2; Definition[V]
Out[2541]= V[x_Integer] := x^2
 V[x_] := Module[{}, x^6]
In[2542]:= {RemProcOnHead["V[x_Integer]"], RemProcOnHead["V[x_]"]}
Out[2542]= {"Done", "Done"}
In[2543]:= Definition[V]

V.Z. Aladjev, V.A. Vaganov

 198

Out[2543]= Null
In[2544]:= Map[RemProcOnHead, {"L[x_, y_]", "L1[x_]"}]
Out[2544]= {"Done", "Done"}

In[2545]:= {Definition[L1], Definition[L]}
Out[2545]= {Null, Null}

In[2508]:= StandHead[x_ /; HeadingQ[x] || HeadingQ1[x]] :=
 Module[{a = HeadName[x], b},
 b = StringReplace[x, a <> "[" –> "", 1];
 b = ToString1[ToExpression["{" <> StringTake[b, {1, –2}] <> "}"]];
 a <> "[" <> StringTake[b, {2, –2}] <> "]"]

In[2509]:= StandHead["V[x_,y_Integer,z_/;StringQ[z]]"]
Out[2509]= "V[x_, y_Integer, z_ /; StringQ[z]]"
In[2510]:= StandHead["F[x_/;x===\"avz\",y_]"]
Out[2510]= "F[x_ /; x === \"avz\", y_]"

The successful call of the procedure RemProcOnHead[x] returns "Done",
having removed from the current session a procedure/function or their list
with heading or accordingly with list of the headings x that are given in the
string format; at that, on inadmissible factual argument x the procedure call
returns $Failed or is returned unevaluated. At the same time, the remaining
subobjects with the name of the object x which have been processed by the
procedure RemProcOnHead save and options, and attributes, except in the
case when the object x is removed completely. At that, it is necessary to do
2 remarks, namely: (1) the means of this fragment that are used as examples
have only formally correct code, no more, and (2) heading in the procedure
call RemProcOnHead[x] is coded according to the format ToString1[x].

The previous fragment contains source code of the RemProcOnHead with
examples of its usage along with control of the obtained results. It must be
kept in mind that realization of algorithms of a number of the procedures
that significantly use the headings requires the coding of headings in the
format corresponding to the system agreements at evaluation of definitions
of a procedure/function/block. For automation of representation of a heading
in the standard format the StandHead procedure can be quite useful whose
source code along with examples of its application completes the previous

Extension of Mathematica system functionality

 199

fragment. The procedure call StandHead[h] returns the heading of a block/
procedure/function in the format corresponding to the system agreements at
evaluation of its definition.

So, if in the Maple the identifier of a procedure/function is its name, then in
the Mathematica system this function is carried out by its heading, i.e. the
construction of kind "Name[List of formal arguments]" that it is necessary to
consider at programming of means for processing of the specified objects.
Therefore the Names function needs to be applied in combination with the
Definition function because the first returns only the names of procedures
and functions and tells nothing about existence in the current session of the
user procedures/functions of the same name with different headings as nice
illustrates the following simple fragment, namely:

In[2620]:= G[x_] := Module[{a = 90}, x^2 + a];
 G[x_ /; PrimeQ[x]] := Module[{a = 90}, x + a];
 V[x_ /; ListQ[x]] := Module[{}, Length[x]];
 V[x_] := Module[{}, x^2]
In[2621]:= Select[Names["`*"], ProcQ1[#] &]
Out[2621]= {"G", "V"}
In[2622]:= Definition[G]

Out[2622]= G[x_ /; PrimeQ[x]] := Module[{a = 90}, x + a]
 G[x_] := Module[{a = 90}, x^2 + a]
In[2623]:= Definition[V]
Out[2623]= V[x_ /; ListQ[x]] := Module[{}, Length[x]]
 V[x_] := Module[{}, x^2]

In[2624]:= MdP[x___] := Module[{b = {}, c, d,
 a = Select[Names["`*"], BlockFuncModQ[#] &]},
 d = Flatten[Map[ToString, {x}]];
 a = If[a == {}, {}, If[d == {}, a, If[MemberQ4[a, d], Intersection[a, d], {}]]];
 If[a == {}, $Failed,
c = Map[AppendTo[b, {#, Length[Flatten[{PureDefinition[#]}]]}] &, a][[-1]];
 If[Length[c] > 1, c, c[[1]]]]]

In[2625]:= MdP[]
Out[2625]= {{"G", 2}, {"V", 2}}

V.Z. Aladjev, V.A. Vaganov

 200

In[2626]:= MdP[G, V, H]
Out[2626]= {{"G", 2}, {"V", 2}}

In[2627]:= Clear[G, V]; MdP[]
Out[2627]= $Failed

In[2628]:= MdP[G1, V1, H]
Out[2628]= $Failed

In[3502]:= MdP[]
Out[3502]= {{"F", 2}, {"G", 2}, {"L", 1}, {"L1", 1}, {"M", 7}}

The previous fragment defines the procedure, whose call MdP[x] returns a
simple 2–element list, in which the first element – an object name in string
format and the second element – number of headings with such name (if x
defines a procedure/function/block activated in the current session; in the absence
of similar object $Failed is returned); the nested list whose 2–element sublists
have the structure described above (if an object x defines the list of the modules/
functions/blocks activated in the current session), the nested list of the previous
format (if x is empty, defining the list of all functions/blocks/modules activated in
the current session); in the absence of the functions/modules/blocks activated
in the current session the call MdP returns $Failed. At that, the procedure
along with standard means uses and our means such as BlockFuncModQ,
PureDefinition and MemberQ4 which are considered in the present book
and in [28-33]. Examples of the previous fragment rather visually illustrate
structure of the results returned by the given procedure.

As it was already noted, the current session may contain several different
definitions of a procedure/function/block with the same name which differ
only at the level of their headings. The procedure call Definition2[x] in an
optimum format returns the list of all definitions in string format of a block/
procedure/function with a name x, accompanying it with options and the
list of the attributes that are ascribed to a symbol x. According to the system
agreements the procedures/functions/blocks of the same name have the same
ascribed options and attributes as illustrates the following fragment:

In[3389]:= G[x_, y_] := x^2*y^2
In[3390]:= Options[G] = {Art –> 25, Kr –> 18};
In[3391]:= SetOptions[G, Art –> 25, Kr –> 18]
Out[3391]= {Art –> 25, Kr –> 18}

Extension of Mathematica system functionality

 201

In[3392]:= Definition2[G]
Out[3392]= {"G[x_, y_] := x^2*y^2", "Options[G] := {Art –> 25, Kr –> 18}", {}}
In[3393]:= G[x_] := x^2; G[x_, y_, z_] := x + y + z;
 SetAttributes[G, {Protected, Listable}]
In[3394]:= Definition2[G]
Out[3394]= {"G[x_, y_] := x^2*y^2", "G[x_] := x^2", "G[x_, y_, z_] := x+y+z",
 "Options[G] := {Art –> 25, Kr –> 18}", {Listable, Protected}}

In[3395]:= DefOnHead[x_ /; HeadingQ[x]] := Module[{a, b, c, d,
 h = RedSymbStr[StringReplace[StandHead[x], "," –> ", "], " ", " "]},
 a = HeadName[h]; b = Definition2[ToExpression[a]];
 c = Select[b, SuffPref[#, Map3[StringJoin, h, {" := ", " = "}], 1] &];
 d = Select[b, SuffPref[#, Quiet[Map3[StringJoin,
 "Options[" <> a <> "]", {" = ", " := "}]], 1] &];
 If[MemberQ[b, "Undefined"], $Failed,
 If[d == {}, AppendTo[c, b[[–1]]], Join[c, {d[[1]], b[[–1]]}]]]]

In[3396]:= DefOnHead["G[x_,y_,z_]"]
Out[3396]= {"G[x_, y_, z_] := x + y + z", "Options[G] := {Art –> 24, Kr –> 17}",
 {Listable, Protected}}
In[3397]:= DefOnHead["G[x_,y_]"]
Out[3397]= {"G[x_, y_] := x^2*y^2", "Options[G] := {Art –> 24, Kr –> 17}",
 {Listable, Protected}}
In[3398]:= DefOnHead["G[x_]"]
Out[3398]= {"G[x_] := x^2", "Options[G] := {Art –> 24, Kr –> 17}",
 {Listable, Protected}}

For receiving of definition of a procedure/function/block x with the given
heading (the main identifier) a number of means one of which is presented by
the previous fragment is created; more precisely the DefOnHead procedure
whose call DefOnHead[j] returns the list whose the first element – definition
in string format of a procedure/function/block with the given heading j (or
the list of definitions for the subobjects of the same name) whereas other elements
are options (if they are) and list of attributes ascribed to the function/block/
procedure x. At that, the following defining relation HeadName[j] = x takes
place. As a whole, it is recommended to use a certain unique name for each
definition, for providing of such possibility the system functions Clear and

V.Z. Aladjev, V.A. Vaganov

 202

ClearAll can be used at modifications of means if their headings change.

Thus, at the call of a procedure/function/block from the list of definitions
of its subobjects a definition with the heading corresponding to the actual
arguments, i.e. that are admissible for formal arguments with the ascribed
tests for an admissibility is chozen. Moreover, a heading of the format G[x_,
y_, z_, …] has the minimum priority among the headings of other formats
irrespective of the evaluation order in the current session of definitions of
procedures/functions/blocks of the same name as very visually illustrates
the following rather simple fragment, namely:

In[2863]:= G[x_, y_] := StringJoin[x, y] <> "RansIan"
In[2864]:= G[x_Integer, y_Integer] := x + y
In[2865]:= G[x_String, y_Integer] := y*StringLength[x]
In[2866]:= Definition2[G]
Out[2866]= {"G[x_Integer, y_Integer] := x + y", "G[x_String, y_Integer] :=
 y*StringLength[x]",
 "G[x_, y_] := StringJoin[StringJoin[x, y], \"RansIan\"]", {}}
In[2867]:= {G[80, 90], G["AvzAgnVsvArtKr", 500]}
Out[2867]= {170, 7000}
In[2868]:= G["AvzAgnVsvArtKr", "Tallinn"]
Out[2868]= "AvzAgnVsvArtKrTallinnRansIan"
In[2869]:= G[x_, y___] := If[{y} == {}, x^2, {y} = {x}; x^2]; G[500]
Out[2869]= 250 000
In[2870]:= G["90", "500"]
Out[2870]= "90500RansIan"
In[2871]:= ClearAll[G]
In[2872]:= G[x_] := x^2; G[x_, y_ /; ! HowAct[y] === Null] := {y = x, x^2}[[2]]
In[2873]:= Definition2[G]
Out[2873]= {"G[x_] := x^2", "G[x_, y_ /; !HowAct[y] === Null] :=
 {y = x, x^2}[[2]]", {}}

Above, it was already noted that in the most cases is expedient to use only
one definition of a procedure/function/block, that at times quite significantly
simplifies its processing. Meanwhile, in certain cases is quite convenient the
usage of a number of the procedures/functions/blocks of the same name, for
example, for the purpose of simplification of their program realization. So,
realization of the G function from undefinite number of formal arguments

Extension of Mathematica system functionality

 203

of the 2nd part of the previous fragment can serve as an example. Definition
of two G functions covering all cases of the function G in some cases allows
to simplify realization. In this example such simplification isn't so obvious
since it only illustrates reception while in case of rather complex procedures
which in the body have to execute processing of undefinite quantity of the
received actual arguments such approach can be very effective.

As it was noted above, generally the user procedure/function/block can has
both the ascribed attributes, and options. At that, some of earlier considered
means were based, mainly on the call of our Definition2[x] of our procedure
returning the list whose last element contains the list of attributes ascribed to
symbol x whereas the sublist of Definition2[x][[1 ;; –2]] contains definitions
of a procedure/function/block together with options if those exist. The next
PureDefinition procedure solves the problem of receiving of pure definitions
of a procedure/function/block without options and the ascribed attributes.

In[2826]:= G[x_] := x; G[x_, y_ /; ! HowAct[y] === Null] := {y = x, x^2}[[2]]
In[2827]:= Options[G] = {Art –> 25, Kr –> 18};
 SetOptions[G, Art –> 25, Kr –> 18]
Out[2827]= {Art –> 25, Kr –> 18}

In[2828]:= SetAttributes[G, {Listable, Protected}]; Definition2[G]
Out[2828]= {"G[x_] := x", "G[x_, y_ /; !HowAct[y] === Null] := {y = x, x}[[2]]",
 "Options[G] := {Art –> 25, Kr –> 18}", {Listable, Protected}}

In[2834]:= PureDefinition[x_, t___] := Module[{b, c, d,
 h = ToString[x] <> " /: Default[",
 a = If[UnevaluatedQ[Definition2, x], $Failed, Definition2[x]]},
 If[a === $Failed, Return[$Failed]]; b = a[[1 ;; –2]];
 c = If[SuffPref[b[[–1]], Map3[StringJoin,
 "Options[" <> ToString[x] <> "]", {" = ", " := "}], 1], b[[1 ;; –2]], b];
 If[{t} != {} && ! HowAct[t], d = MinusList[a, c];
 Join[If[Length[d] > 1, d, Flatten[d]], Select[a, SuffPref[#, h, 1] &]]];
 c = Select[c, ! SuffPref[#, h, 1] &]; If[Length[c] == 1, c[[1]], c]]

In[2835]:= {PureDefinition[G, t], t}
Out[2835]= {{"G[x_] := x", "G[x_, y_ /; !HowAct[y] === Null] := {y = x, x}[[2]]"},
 {"Options[G] := {Art –> 25, Kr –> 18}", {}}}

V.Z. Aladjev, V.A. Vaganov

 204

The procedure call PureDefinition[x] returns definition in string format or
their list of a block/function/module x without options, ascribed attributes
and values by default for formal arguments while the call PureDefinition[x,
t] with the second optional argument t – an undefinite variable – through it
returns the list of the options, attributes and values by default attributed to
symbol x. In the case of inadmissible argument x the procedure call returns
$Failed, including also a call on the Compile functions. The fragment above
represents source code of the PureDefinition procedure with examples of
its application. The PureDefinition procedure is represented as useful tool
in various processings of definitions of blocks/functions/modules. Procedure
is rather widely used in series of means of our package AVZ_Package [48].

The concept of the Mathematica allows existence of a few blocks, functions
or procedures, of the same name that are identified by their headings but not
names. Operating with these objects is supported by a number of the means
presented in the given book and in the package AVZ_Package [48]. In this
connection the procedure ExtrProcFunc represents a certain interest, whose
call ExtrProcFunc[h] returns an unique name of a generated block/function/
procedure that in the list of definitions has a heading h; otherwise, $Failed
is returned. The procedure is characteristic in that leaves all definitions of a
symbol HeadName[h] without change. At that, the returned object saves all
options and attributes ascribed to the symbol HeadName[h]. The following
fragment represents source code of the ExtrProcFunc procedure along with
the most typical examples of its application.

In[2860]:= ExtrProcFunc[x_ /; HeadingQ[x]] := Module[{a = StandHead[x],
 c, d, b = HeadName[x], g, p}, c = Definition2[ToExpression[b]];
 If[c[[1]] == "Undefined", $Failed,
 d = Select[c, SuffPref[#, a <> " := ", 1] &]; c = ToString[Unique[b]];
 If[d != {}, ToExpression[c <> d[[1]]]; g = AttrOpts[b];
 p = c <> b; Options[p] = g[[1]]; SetOptions[p, g[[1]]];
 ToExpression["SetAttributes[" <> p <> "," <> ToString[g[[2]]] <> "]"];
 Clear[c]; p, Clear[c]; $Failed]]]

In[2861]:= H[x_] := x^2; H[x_, y_] := x + y; H[x_, y_, z_] := x + y + x;
 H[x_Integer] := x; H[x_, y_Integer] := x + y; H[x_String] := x <> “Agn”

Extension of Mathematica system functionality

 205

 Options[H] = {Art –> 25, Kr –> 18};
 SetOptions[H, {Art –> 25, Kr –> 18}];
 SetAttributes[H, {Listable, Protected}]
In[2862]:= Definition2[H]
Out[2862]= {"H[x_Integer] := x", "H[x_String] := StringJoin[x, \"Agn\"]",
 "H[x_] := x^2", "H[x_, y_Integer] := x + y", "H[x_, y_] := x + y",
 "H[x_, y_, z_] := x + y + x",
 "Options[H11H] = {Art –> 25, Kr –> 18}", {Listable, Protected}}
In[2863]:= ExtrProcFunc["H[x_,y_,z_]"]
Out[2863]= "H11H"
In[2864]:= Definition["H11H"]
Out[2864]= Attributes[H11H] = {Listable, Protected}
 H11H[x_, y_, z_] := x + y + x
 Options[H11H] = {Art –> 25, Kr –> 18}
In[2865]:= ExtrProcFunc["H[x_,y_,z_String]"]
Out[2865]= $Failed
In[2866]:= ExtrProcFunc["H[x_String]"]
Out[2866]= "H12H"
In[2867]:= Definition["H12H"]
Out[2867]= Attributes[H12H] = {Listable, Protected}
 H12H[x_String] := x <> "Agn"
 Options[H12H] = {Art –> 25, Kr –> 18}
In[2868]:= H12H["AvzAgnVsvArtKr"]
Out[2868]= "AvzAgnVsvArtKrAgn"
In[2869]:= H11H[42, 2014, 72]
Out[2869]= 2098

In[3543]:= AttrOpts[x_ /; BlockFuncModQ[x]] := Module[{b, c, d,
 a = Definition2[x]}, b = a[[–1]];
 c = Select[a, SuffPref[#,"Options[" <> ToString[x] <> "]", 1] &];
 If[c == {}, d = c, d = StringSplit[c[[1]], " := "][[2]]]; {ToExpression[d], b}]

In[3544]:= AttrOpts[H]
Out[3544]= {{Art –> 25, Kr –> 18}, {Listable, Protected}}
In[3545]:= Sv[x_, y_] := x^2 + y^2; AttrOpts[Sv]
Out[3545]= {{}, {}}

V.Z. Aladjev, V.A. Vaganov

 206

At that, the procedure along with standard means uses and our means such
as HeadingQ, Definition2, HeadName, StandHand, SuffPref and AttrOpts
which are considered in the present book and in [28-33]. Moreover, the last
AttrOpts procedure completes the previous fragment. The procedure call
AttrOpts[x] returns the 2-element nested list whose first element determines
options whereas the second element defines the list of the attributes ascribed
to a symbol x of type {Block, Funcion, Module}. On a symbol x without options
and attributes ascribed to it, the call AttrOpts[x] returns {{}, {}}. Examples of
the previous fragment rather visually illustrate structures of the results that
are returned by both the procedure ExtrProcFunc, and the AttrOpts.

At that, in definition of the ExtrProcFunc procedure one artificial reception
essential in practical programming has been used. So, direct application of
our and standard means {Attributes, ClearAllAttributes, SetAttributes} for
processing of attributes in body of a procedure in certain cases doesn’t give
of the desired result therefore it is necessary to use special constructions the
organization of which is rather transparent and doesn’t demand any special
explanations. The reception represented in source code of the ExtrProcFunc
procedure from the previous fragment is used in some other means that are
represented in the present book and in our package AVZ_Package [48]. So,
the procedure RemProcOnHead, considered above, also significantly uses
the given reception.

The call ActBFM[] of the next rather simple function returns the list of names
in string format of the user blocks, functions and modules, whose definitions
have been activated in the current Mathematica session. The next fragment
represents source code of the function along with an example of its usage.

In[2824]:= ActBFM[] := Select[Names["Global`*"], ! TemporaryQ[#] &&
 BlockFuncModQ[#] &]
In[2825]:= ActBFM[]
Out[2825]= {"ActBFM", "Agn", "Avz", "B", "f", "F", "M", "Name", "RansIan"}

The above ActBFM function has a number of interesting enough appendices
at programming of various problems, first of all, of the system character. In
particular, the ActBFM function plays a rather essential part at search of the
user objects, whose definitions have been evaluated in the current session of
the Mathematica system.

Extension of Mathematica system functionality

 207

6.5. Formal arguments of procedures and functions; the
means of processing them in the Mathematica software

Having considered in the previous two sections the means of manipulation
with definitions of blocks/functions/modules, and also their headings, we
pass to consideration of means whose scope of interests includes a number
of important problems connected with manipulation by formal arguments
that compose headings of definitions of the user procedures and functions.
At that, these components are extremely important and their total absence
in headings doesn't allow system in general to consider objects with similar
headings as procedures or functions. In the previous section the means of
processing of headings of procedures/blocks/functions have been considered
from which procedure HeadingQ1 in the best way tests an arbitrary string
as a heading what very visually illustrates the following simple example:
In[2546]:= Map[HeadingQ1, {"G[]", "G[]", "G[]"}]
Out[2546]= {False, False, False}
In[2547]:= G[] := x; {FunctionQ[G], Clear[G]}[[1]]
Out[2547]= False
In[2548]:= G[x_ /; SameQ[{x}, {}]] := x; FunctionQ[G]
Out[2548]= True
In[2549]:= HeadingQ["G[x_ /; SameQ[{x}, {}]]"]
Out[2549]= True
In[2550]:= G[x___] := {x}; G[]
Out[2550]= {}
In[2551]:= {HeadingQ["G[x___]"], HeadingQ1["G[x___]"]}
Out[2551]= {True, True}

Of the represented example follows, that strings of the type "G[]" can't be
considered as syntactic correct headings, and definitions on their basis can't
be considered as procedures or functions. Meanwhile, in case of necessity to
define procedures or functions whose calls make sense on the empty list of
actual arguments, it is possible to code their headings as it is stated above; in
this case our means identify them properly. Further consideration of means
of manipulation with formal arguments of procedures, blocks and functions
assumes short introduction into templates concept; in more detail the given
question is considered in help on the system and, in particular, in book [33].

V.Z. Aladjev, V.A. Vaganov

 208

Templates (patterns) are used in the Mathematica for representation of the
classes of expressions. Very simple example of a template is an expression
h[x_] that represents a class of expressions of type h[any expression]. As the
prerequisite of introduction of the concept "Template" into the Mathematica
the fact served, what many enough operations support work not only with
separate expressions but also with templates representing the whole classes
of expressions. So, in particular, it is possible to use the templates in rules of
transformation for the indicating of that how properly to transform classes
of expressions. The templates can be used for calculation of positions of all
expressions in some certain class along with a number of other applications
of the sufficiently developed templates mechanism.

The basic identifier that defines, practically, all templates in Mathematica is
the "_" symbol (symbol of underlining) that is being ascribed to some symbol
on the right. In this case the Mathematica system considers such symbol as
any admissible expression used as its value. The call Head[x] of the earlier
mentioned function on a pattern x returns Pattern while the call PatternQ[x]
of very simple function returns True if x – a template, and False otherwise:

In[2570]:= PatternQ[x_] := If[Head[x] === Pattern, True, False]

In[2571]:= Map18[{PatternQ, Head}, {agn_, _, _a _, x_, _^_, avz___, __}]
Out[2571]= {{True, False, False, True, False, True, False},
 {Pattern, Blank, Times, Pattern, Power, Pattern, BlankSequence}}

In[2572]:= Map18[x_ /; ListQ[x] && DeleteDuplicates[Map[SymbolQ[#] &,
 x]] == {True}, y_ /; ListQ[y]] := Map[Map[#, y] &, x]

In[2573]:= Map18[{X, Y, Z}, {a, b, c}]
Out[2573]= {{X[a], X[b], X[c]}, {Y[a], Y[b], Y[c]}, {Z[a], Z[b], Z[c]}}

Along with the PatternQ function and comparative examples for it and the
standard Head function the previous fragment represents quite simple and
useful Map18 function in many appendices in addition to the represented
means of the Map–group. The call Map18[x, y], where x – the list {x1, x2, …,
xn} of symbols and y – the list {y1, y2, …, yp} of any expressions, returns the
nested list of the following format, namely:

{{x1[y1], x1[y2], …, x1[yp]}, {x2[y1], x2[y2],…, x2[yp]}, …,
 {xn[y1], xn[y2], …, xn[yp]}}

Extension of Mathematica system functionality

 209

The result returned by the function call Map18[x, y] is transparent enough
and of ant special explanations doesn't demand. In principle, it is possible to
place the "_" symbol in any place of an expression, defining thus the pattern
corresponding to some group of the expressions received by replacement of
this symbol by any expression. Several simple enough examples of patterns
are given below, namely:

h[x_] – heading of a block/function/procedure h with one formal argument x where
x – an arbitrary expression;
h[x_, y_] – heading of a block/function/procedure h with two formal arguments x,
y where x, y – arbitrary expressions;
h[x_, x_] – heading of a block/function/procedure h with two identical arguments
x where x – an arbitrary expression;
x^n_ – defines an arbitrary expression x in an arbitrary degree n;
x_^n_ – defines an arbitrary expression x in an arbitrary degree n;
x_ + y_ + z_ – определяет сумму трех произвольных выражений x, y и z;
{x_, y_, z_} – determines the list of three arbitrary expressions x, y and z;
90 x_^y_ + 500 x_*y_ + z_ – defines an expression with five patterns.

Basic patterns in the Mathematica are the following three patterns, namely:

_ or Blank[] (in the full form) – the pattern defining an arbitrary expression;
_t or Blank[t] (in the full form) – the pattern defining an arbitrary expression with
a heading t;
__ (2 symbols "_") or BlankSequence[] (in the full form) – the pattern defining an
arbitrary expression or sequence of arbitrary expressions;
__t or BlankSequence[t] (in the full form) – the pattern determining an arbitrary
expression or sequence of arbitrary expressions with a heading h each;
___ (3 symbols "_") or BlankNullSequence[] (in the full form) – the pattern that
determines absence of expressions, or sequence of arbitrary expressions;
___t or BlankNullSequence[t] (in the full form) – the pattern which determines
absence of expressions, or sequence of arbitrary expressions with heading t each.

At that, in the full form the expressions containing patterns of types {"___",
"__", "_"} are represented in the formats illustrated by the next example:

In[2500]:= Map[FullForm, {x_, x__, x___}]
Out[2500]= {Pattern[x, Blank[]], Pattern[x, BlankSequence[]],
 Pattern[x, BlankNullSequence[]]}

V.Z. Aladjev, V.A. Vaganov

 210

The simple enough ExprPatternQ function provides testing of an expression
regarding existence in it of patterns of types {"_", "__", "___"}, whose the call
ExprPatternQ[x] returns True if an expression x contains at least one of the
patterns {"_", "__", "___"}, and False otherwise. The next fragment represents
source code of the ExprPatternQ function with typical examples of its use:

In[2502]:= ExprPatternQ[x_] := ! StringFreeQ[ToString[FullForm[x]],
 {"BlankSequence[]", "BlankNullSequence[]", "Blank[]"}]

In[2503]:= Map[ExprPatternQ, {a*Sin[x], 6 x_^y_+a x_*y_, x_^y_, x__, z___}]
Out[2503]= {False, True, True, True, True}

The user has possibility to create patterns for expressions with an arbitrary
structure, however the most widespread way of use of templates is a block/
function/procedure definition when formal arguments are specified in its
heading. At that, the coding of formal arguments without the above patterns
doesn't allow to consider these objects as the blocks/functions/procedures
as illustrates a simple enough example:

In[2589]:= G[x, y] := x^2 + y^2; G1[x_, y_] := x^2 + y^2
In[2590]:= {G[90, 500], G1[90, 500]}
Out[2590]= {G[90, 500], 258 100}

Once again it is necessary to emphasize that patterns in the Math-language
represent classes of expressions with the given structure when one pattern
corresponds to a certain expression and if the structure of pattern coincides
with structure of an expression, i.e. by a filling of the patterns it is possible
to receive an expression. Moreover, even two expressions, mathematically
equivalent, can't be presented by the same template if they don't have the
same structure. For example, expression (a + b)^2 is equivalent to expression
a^2 + 2*a*b + b^2 however these expressions aren't equivalent at the level of
patterns representing them, for the reason, that both have various full form
as illustrates a simple example:

In[2507]:= FullForm[(a + b)^2]
Out[2507]//FullForm =
 Power[Plus[a, b], 2]
In[2508]:= FullForm[a^2 + 2*a*b + b^2]
Out[2508]//FullForm =
 Plus[Power[a, 2], Times[2, a, b], Power[b, 2]]

Extension of Mathematica system functionality

 211

The fact that patterns define structure of expressions, is very important for
the solution of the problem of determination of the transformation rules of
changing of structure of expressions without change of their mathematical
equivalence. The system has not other general criterion which would allow
to define equivalence of two expressions. For realization of algorithm of the
comparison of expressions the system uses reduction them upto the full form
determined by the FullForm function. In the reference on the Mathematica
a number of important mechanisms of creation of patterns for a quite wide
class of expressions is discussed while in other manuals the receptions used
by the Mathematica for the purpose of expansion and restriction of classes
of expressions represented by patterns are being considered. For definition
of the expressions coinciding with the given pattern it is possible to apply
the Cases function allowing five coding formats [68]; so, the call Cases[a, p]
according to the first format returns the elements-expressions of a list a that
are structurally corresponded to a pattern p as very visually illustrates the
following simple example, namely:

In[2610]:= Cases[{a+b*c^5, 5+6*y^7, a+b*p^m, a+b*m^(–p)}, a+b*x_^n_]
Out[2610]= {a + b c^5, a + b p^m, a + b m^–p}

Meanwhile, without being distracted by details, we only will note that the
Mathematica has a number of the functions providing the functioning with
expressions at the level of the patterns representing them as in general, and
at the level of the subexpressions composing them; furthermore, the reader
can familiarize oneself with these means, in particular, in [51,60,65,68,71].

As it was noted, it is possible to apply the Cases function for determination
of the expressions coinciding with a given pattern, however not all problems
of expressions comparison with patterns are solved by the standard means.
For solution of the problem in broader aspect the EquExprPatt procedure can
be rather useful whose call EquExprPatt[x,p] returns True if an expression x
corresponds to a given pattern p, and False otherwise. The fragment below
represents source code of the procedure with examples of its application.

In[3395]:= EquExprPatt[x_, y_ /; ExprPatternQ[y]] := Module[{c, d = {}, j, t,
 v = {}, k = 1, p, g = {}, s = {}, a = Map[FullForm, Map[Expand, {x, y}]],
 b = Mapp[MinusList, Map[OP, Map[Expand, {x, y}]], {FullForm}],
 z = SetAttributes[ToString, Listable], w}, {b, c} = ToString[{b, a}];

V.Z. Aladjev, V.A. Vaganov

 212

 p = StringPosition[c[[2]], {"Pattern[", "Blank[]]"}];
 While[k = 2*k – 1; k <= Length[p],
 AppendTo[d, StringTake[c[[2]], {p[[k]][[1]], p[[k + 1]][[2]]}]]; k++];
 {t, k} = {ToExpression[d], 1};
 While[k <= Length[t],
 AppendTo[v, StringJoin[ToString[Op[t[[k]]]]]]; k++];
 v = ToString[v]; v = Map13[Rule, {d, v}]; v = StringReplace[c[[2]], v];
 b = Quiet[Mapp[Select, b, ! SystemQ[#] ||
 BlockFuncModQ[ToString[#]] &]];
 {b, k, j} = {ToString[b], 1, 1};
 While[k <= Length[b[[1]]], z = b[[1]][[k]];
 AppendTo[g, {"[" <> z <> "," –> "[w", " " <> z <> "," –> " w",
 "[" <> z <> "]" –> "[w]", " " <> z <> "]" –> " w]"}]; k++];
 While[j <= Length[b[[2]]], z = b[[2]][[j]];
 AppendTo[s, {"[" <> z <> "," –> "[w", " " <> z <> "," –> " w",
 "[" <> z <> "]" –> "[w]", " " <> z <> "]" –> " w]"}]; j++];
 ClearAttributes[ToString, Listable];
 z = Map9[StringReplace, {c[[1]], v}, Map[Flatten, {g, s}]];
 SameQ[z[[1]], StringReplace[z[[2]],
 Join[GenRules[Flatten[Map[# <> "," &, Map[ToString, t]]], "w"],
 GenRules[Flatten[Map[# <> "]" &, Map[ToString, t]]], "w]"],
 GenRules[Flatten[Map[# <> ")" &, Map[ToString, t]]], "w)"]]]]]

In[3396]:= EquExprPatt[a*Sin[x] – 5*b*c^5, a*Sin[x] – 5*b*x_^n_]
Out[3396]= True
In[3397]:= EquExprPatt[a*Sin[x] – 5*b*c^5, 90*Sin[x] – 500*b*x_^n_]
Out[3397]= True
In[3398]:= EquExprPatt[a^2 + 2*a*b + b^2, (x_ + y_)^2]
Out[3398]= True
In[3399]:= Mapp[EquExprPatt, {a + b*c^5, 5 + 6*y^7, a + b*p^m,
 a + b*m^p}, a + b*x_^n_]
Out[3399]= {True, True, True, True}
In[3400]:= Mapp[Cases, {{a + b*c^5}, {5 + 6*y^7}, {a + b*p^m},
 {a + b*m^p}}, a + b*x_^n_]

Extension of Mathematica system functionality

 213

Out[3400]= {{a + b c^5}, {}, {a + b p^m}, {a + b m^p}}
In[3401]:= EquExprPatt1[a^2 + 2*a*b + b^2, (a + b)^2]
Out[3401]= True

At that, the definition of the EquExprPatt along with standard means uses
and our means such as ExprPatternQ, Map9, Map13, Mapp, MinusList, Op,
OP, ProcQ, QFunction, SystemQ, which are considered in the present book
and in [28-33]. The last examples of the fragment illustrate as well the more
ample opportunities of the EquExprPatt procedure concerning the standard
Cases function. As the algorithm of the procedure is based on presentation
of expressions and patterns in the full form (FullForm), in principle, as the
second argument of the EquExprPatt procedure it is possible to apply any
expression, having encoded the second argument as y_ in definition of the
EquExprPatt, having modified it in the EquExprPatt1 procedure different
from the EquExprPatt only by this condition. In this case it is possible to test
two any expressions regarding their structural equivalence what represents
a quite important question in a number of tasks of the expressions analysis.
Note, in realization of the procedure a quite useful reception of temporary
endowing of the system ToString function by Listable–attribute is used. In
[33] the questions of manipulations with patterns are considered in detail.

Determination of types of expression in patterns. For this purpose it is quite
possible to use headings of expressions w (they are determined by the function
call Head[w]), which define their main essence. So, the patterns _h and x_h
will represent expressions with a heading h, the next headings from which
are the most often used, namely:

x_h – an expression x with heading h:

x_Integer – an expression x with heading Integer (integer)
x_Real – an expression x with heading Real (real number)
x_Complex – an expression x with heading Complex (complex number)
x_List – an expression x with heading List (list)
x_String – an expression x with heading String (string)
x_Symbol – an expression x with heading Symbol (symbol)
x_Plus – an expression x with heading Plus (addition, subtraction)
x_Times – an expression x with heading Times (product, division)
x_Power – an expression x with heading Power (power)

V.Z. Aladjev, V.A. Vaganov

 214

In principle, any admissible heading can act as some heading as a part of a
pattern. We will give examples of such patterns, namely:

In[2415]:= G[x_Plus] := x^2; S[x_Power] := x^2; {G[90], G[a + b], S[500],
 S[a^b], G[c – d], 5^(–1)}
Out[2415]= {G[90], (a + b)^2, S[500], a^(2 b), (c – d)^2, 1/5}

Meanwhile, in certain cases of standardly defined headings isn't enough for
assignment of patterns, quite naturally bringing up the question of addition
to their list of the headings determined by the user. Since for evaluation of a
heading, the standard Head function is used, therefore naturally to modify
this function regarding testing by it of wider class of the headings. For this
purpose the RepStandFunc procedure has been determined, whose the call
RepStandFunc[x, y, z] returns the call of a function y of the same name with
a standard function y and whose definition is given in string format by the
argument x, on the list z of its actual arguments. At the same time such call
of the RepStandFunc procedure is once–only in the sense that after the call
the initial state of a standard function y is restored. The following fragment
presents source code of the RepStandFunc procedure and examples of its
application and of testing of aftereffect of result of its call; along with that, in
other part of the fragment the means illustrating the aforesaid are presented.

In[3380]:= RepStandFunc[x_/; StringQ[x], y_/; SymbolQ[y], z_/; ListQ[x]] :=
 Module[{c, d, b = Attributes[y], a = ToString[y] <> ".mx"},
 DumpSave[a, y]; ClearAllAttributes[y]; Clear[y];
 ToExpression[x]; d = y[Sequences[z]]; Clear[y];
 Get[a]; SetAttributes[y, b]; DeleteFile[a]; d]

In[3381]:= x = "Sin[x_, y_, z_] := x^2 + y^2 + z^2";
 RepStandFunc[x, Sin, {73, 90, 500}]
Out[3381]= 263 429

In[3382]:= x = "Sin[x_] := x^5"; RepStandFunc[x, Sin, {47}]
Out[3382]= 229 345 007

In[3383]:= Definition[Sin]
Out[3383]= Attributes[Sin] = {Listable, NumericFunction, Protected}

In[3384]:= Sin[73.50090]
Out[3384]= –0.947162

Extension of Mathematica system functionality

 215

In[3390]:= Headd := "Head[x_] := Module[{b = {ListListQ, ProcQ, SystemQ,
 NestListQ, QFunction},
 c = {ListList, Procedure, System, NestList, Function},
 h = SetAttributes[SetAttributes, Listable], d = 90, k = 1},
 SetAttributes1[c, Protected];
 Quiet[For[k = 1, k <= Length[b], k++, If[b[[k]][x], d = c[[k]]; Break[]]]];
 ClearAttributes[SetAttributes, Listable]; If[d === 90, x[[0]], d]]"

In[3391]:= RepStandFunc[Headd, Head, {{{a}, {b, c}, {d}}}]
Out[3391]= NestList
In[3392]:= Definition[Head]
Out[3392]= Attributes[Head] = {Protected}
In[3393]:= Head[{{a}, {b, c}, {d}}]
Out[3393]= List
In[3394]:= G[h_NestList] := Length[h]
In[3395]:= G[{{a}, {b}, {c}, {d, t}, {f}, {g}, {v}}]
Out[3395]= G[{{a}, {b}, {c}, {d, t}, {f}, {g}, {v}}]
In[3396]:= G[h_List] := Length[h]
In[3397]:= G[{{a}, {b}, {c}, {d, t}, {f}, {g}, {v}}]
Out[3397]= 7
In[3398]:= ClearAllAttributes[Head]; Clear[Head]; ToExpression[Headd]
In[3399]:= G[h_ListList] := Length[h]
In[3400]:= G[{{a}, {b}, {c}, {d, t}, {f}, {g}, {v}}]
Out[3400]= 7

In[3795]:= SetAttributes1[x_, y_] :=
ToExpression["SetAttributes[SetAttributes, Listable];
 SetAttributes[" <> ToString[x] <> ", " <> ToString[y] <> "];
 ClearAttributes[SetAttributes, Listable]"]

In[3796]:= t = {x, y, z}; SetAttributes1[t, Listable];
 Map[Attributes, Flatten[{t, SetAttributes}]]
Out[3796]= {{Listable}, {Listable}, {Listable}, {HoldFirst, Protected}}

In the previous fragment a string structure Headd has been presented which
represents definition of the Head procedure of the same name with standard
Head function with expansion of functionality of the last. As an example the

V.Z. Aladjev, V.A. Vaganov

 216

call RepStandFunc[Headd, Head, {{{a},{b,c},{d}}}] is presented whose result
is a modification of the Head (Headd) function whose once-only application
to a list of NestList–type returns the heading NestList on such list, whereas
the Head function on this list returns the heading List. Modifications of the
Head procedure in string structure Headd are quite simple (by an appropriate
extension of the lists represented by local variables b and c), in principle allowing
to expand the list of headings arbitrarily widely. However, these headings
aren't distinguished by the Mathematica as components of "x_h" patterns as
the fragment example with function G very visually illustrates. Moreover,
this result takes place both at using of the RepStandFunc procedure, and at
the prolonged replacement (for the duration of the Mathematica current session)
of the standard Head function by its modification which is located in string
structure Headd. As a result of similar procedure the Mathematica restart is
required for recovery of the original version of the Head function if before,
it wasn't kept in a datafile of mx–format from which it could be loaded into
the current session as that the RepStandFunc procedure does. At that it is
supposed that a block/procedure/function replacing a standard function x
shouldn't contain calls of the initial function x; otherwise, emergence of the
special or erroneous situations up to the looping is a quite real, demanding
the restart of the Mathematica system.

At last, the SetAttributes1 function completes the previous fragment; its call
SetAttributes1[x, y] expands the standard SetAttributes function onto the
form of presentation of the first argument x, for which the indexed variables,
lists, etc. can be used, for example, providing the ascribing of attributes y to
elements of a list x. Meanwhile, the above mechanism of once-only use of the
substitutes of the same name of standard functions in certain cases is rather
effective method, however prolongation of such substitutes on the current
session can cause conflict situations with its functions that significantly use
originals of the replaced means. So, the given mechanism should be used a
rather circumspectly.

The question of processing of the formal arguments with good reason can be
considered as the first problem relating to the calculation of tuple of formal
arguments of the user functions/modules/blocks that have been activated
in the current session directly or on the basis of download of the packages
containing their definitions. In the previous works [30-33,48] certain means

Extension of Mathematica system functionality

 217

for the solution of this task have been offered in the form of the procedures
Args, Args0, Args1, Args2, below we will present similar means in narrower
assortment and with the improved functional characteristics. First of all, as
a very useful means, we will present the Args procedure whose call Args[x]
returns the list of formal arguments of the user module/block/function x.
The following fragment represents sourse code of the Args procedure with
the most typical examples of its usage.

In[2322]:= V := Compile[{{x, _Real}, {y, _Real}}, (x^3 + y)^2];
 Kr := (#1^2 + #2^4 – 90*#3) &; H[x_] := Block[{}, x];
 Art := Function[{x, y}, x*Sin[y]]; P[y_] := Module[{}, y];
 P[x__] := Plus[Sequences[{x}]]; H[x_, y_] := x + y;
 GS[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := Sin[90] + Cos[42];
 Sv[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := x^2 + y^2;
 Sv = Compile[{{x, _Integer}, {y, _Real}}, (x + y)^6];
 S := Compile[{{x, _Integer}, {y, _Real}}, (x + y)^3];
 G = Compile[{{x, _Integer}, {y, _Real}}, (x + y)];
 T := Compile[{{x, _Real}}, (x + y)]; SetAttributes[H, Protected];

In[2323]:= Args[P_, z___] := Module[{a, b, c, d = {}, k = 1, Vt},
 If[CompileFuncQ[P] || BlockFuncModQ[P],
 Vt[y_/; ListQ[y]] := Module[{p = 1, q = {}, t},
 While[p <= Length[y], q = Append[q, t = ToString[y[[p]]];
 StringTake[t, {1, StringPosition[t, "_"][[1]][[1]] – 1}]]; p++]; q];
 If[CompileFuncQ[P],
 a = StringSplit[ToString[InputForm[Definition2[P]]], "\n \n"][[1]];
 b = Quiet[SubStrSymbolParity1[a, "{", "}"]];
 b = Select[b, ! StringFreeQ[#, "_"]||! StringFreeQ[a, " Function[" <> #] &];
 b = Mapp[StringSplit, b, ", "];
 b = Mapp[StringReplace, b, {"{" –> "", "}" –> ""}];
 b = Mapp[Select, b, StringFreeQ[#, "Blank$"] &]; c = b[[2]];
 For[k, k <= Length[c], k++, d = Append[d, c[[k]] <> b[[1]][[k]]]];
 d = ToExpression[d];
 If[{z} == {}, d, Flatten[Map[Vt, {d}]]],
 If[BlockFuncModQ[P], a = Flatten[{HeadPF[P]}];

V.Z. Aladjev, V.A. Vaganov

 218

 For[k, k <= Length[a], k++, d = Append[d,
 If[{z} != {}, Vt[ToExpression["{" <> StringTake[a[[k]],
 {StringLength[ToString[P]] + 2, –2}] <> "}"]],
 ToExpression["{" <> StringTake[a[[k]],
 {StringLength[ToString[P]] + 2, –2}] <> "}"]]]];
 If[Length[d] == 1, d[[1]], d],
 a = StringTake[StringReplace[ToString[InputForm[Definition2[P]]],
 "Definition2[" –> "", 1], {1, –2}];
 If[SuffPref[a, "Function[{", 1],
 b = SubStrSymbolParity1[a, "{", "}"];
 b = Select[b, ! StringFreeQ[a, "Function[" <> #] &][[1]];
 a = StringSplit[StringTake[b, {2, –2}], ", "],
 a = StringReplace[a, "#" –> "$$$$$"];
 a = Map[ToString, UnDefVars[ToExpression[a]]];
 Map[ToString, ToExpression[Mapp[StringReplace, a,
 "$$$$$" –> "#"]]]]]], $Failed]]

In[2324]:= Map[Args, {V, S, Sv, T}]
Out[2324]= {{x_Real,y_Real}, {x_Integer,y_Real}, {x_Integer,y_Real}, {x_Real}}
In[2325]:= Mapp[Args, {V, S, Sv, T}, gs]
Out[2325]= {{"x", "y"}, {"x", "y"}, {"x", "y"}, {"x"}}
In[2326]:= Map[Args, {H, P, GS}]
Out[2326]= {{{x_}, {x_, y_}}, {{y_}, {x__}}, {x_ /; IntegerQ[x], y_ /; IntegerQ[y]}}
In[2327]:= Mapp[Args, {H, P, GS}, gs]
Out[2327]= {{{"x"}, {"x", "y"}}, {{"y"}, {"x"}}, {"x", "y"}}
In[2328]:= Map[Args, {Art, Kr}]
Out[2328]= {{"x", "y"}, {"#1", "#2", "#3"}}
In[2329]:= Mapp[Args, {Art, Kr}, gs]
Out[2329]= {{"x", "y"}, {"#1", "#2", "#3"}}
In[2330]:= Map[Args, {avz, 50090, a + b}]
Out[2330]= {$Failed, $Failed, $Failed}

In[2556]:= Args1[x_ /; BlockFuncModQ[x]] := Module[{b = 1, c = {}, d, p, t,
 a = Flatten[{PureDefinition[x]}]},
 For[b, b <= Length[a], b++, t = ToString[Unique["agn"]];

Extension of Mathematica system functionality

 219

 p = t <> ToString[x]; ToExpression[t <> a[[b]]]; d = Unique["avz"];
 AppendTo[c, {Args[p], BlockFuncModQ[p, d]; d}];
 d = ToUpperCase[d];
 ToExpression["Clear[" <> p <> "," <> t <> "," <> d <> "]"]];
 If[Length[c] == 1, c[[1]], c]]

In[2557]:= Args1[H]
Out[2557]= {{{x_}, "Block"}, {{x_, y_}, "Function"}}
In[2558]:= Args1[GS]
Out[2558]= {{x_ /; IntegerQ[x], y_ /; IntegerQ[y]}, "Function"}
In[2559]:= Args1[P]
Out[2559]= {{{y_}, "Module"}, {{x__}, "Function"}}

At that, the format of the result returned by a call Args[x] is defined by type
of an object x, namely:

– the list of formal arguments with the types ascribed to them is returned on
the Compile function;
– the list of formal arguments with the tests for an admissibility of the actual
arguments ascribed to them or without them is returned on {module, block,
typical function}; at that, the Args procedure processes the situation "objects
of the same name with various headings", returning the nested list of the formal
arguments concerning all subobjects composing an object x in the order that
is determined by the call Definition2[x];
– the list of slots {#1,…,#n} in string format of formal arguments is returned
on pure function in short format while for standard pure function the list of
formal arguments in string format is returned.

Moreover, the call Args[Wg, h] with the second optional argument h – any
admissible expression or any their sequence – returns the result similar to the
call with the first argument, with that difference that all formal arguments
are encoded in string format, but without types ascribed to arguments and
tests for admissibility. On an inadmissible actual argument the call Args[x]
returns $Failed. Told very visually is looked through in the examples which
are represented in the previous fragment.

At that, the definition of the Args along with standard means uses and our
means such as BlockFuncModQ, CompileFuncQ, Definition2, SuffPref,

V.Z. Aladjev, V.A. Vaganov

 220

HeadPF, Mapp, SubStrSymbolParity1 and UnDefVars that are considered
in the present book and in [28-33]. This procedure is used quite widely, first
of all, in problems of system programming in the Mathematica, significantly
expanding the above–mentioned procedures Args, Args0, Args1, Args2. In
the same context we will note that a number of the means presented in [32]
are absent in the present book because of replacement their by more quick–
acting and functionally developed means; like this, the ArgsProc procedure

whose functions are overlapped by the Args procedure.

The Args1 procedure completes the previous fragment, whose call Args1[x]
returns simple or the nested list, whose elements are 2–element lists, whose
first element represents the list of formal arguments with the types and tests,
ascribed to them while the second – an object type in the context {"Module",
"Block","Function"}. As argument x the objects on which BlockFuncModQ[x]
returns True are allowed. On an unacceptable argument x the procedure call
Args1[x] is returned unevaluated.

The ArgsBFM procedure is quite useful means in addition to the procedures
Args and Args1; it is intended for evaluation of formal arguments of a block/
function/module. The next fragment represents source code of the procedure
ArgsBFM along with typical examples of its usage.

In[2396]:= ArgsBFM[x_ /; BlockFuncModQ[x], y___] := Module[{b, c = {}, p,
 a = Flatten[{HeadPF[x]}], d = {}, n = ToString[x] <> "[", k = 1},
 b = Map[ToExpression["{" <> StringTake[#,
 {StringLength[n] + 1, –2}] <> "}"] &, a];
 c = Map[Map[ToString, #] &, b];
 While[k <= Length[c], p = c[[k]]; AppendTo[d,
 Map[StringTake[#, {1, Flatten[StringPosition[#,
 "_"]][[1]] – 1}] &, p]]; k++];
 If[{y} != {} && ! HowAct[y], y = c]; d]

In[2397]:= G[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := x + y; G[x_, y__] := x + y;
 G[x_, y_ /; IntegerQ[y], z_] := x + y + z; G[x_Integer, y__] := x + y;
 G[x_ /; x == {42, 47, 67}, y_ /; IntegerQ[y]] := Length[x] + y;
 G[x_ /; IntegerQ[x]] := x
In[2398]:= ArgsBFM[G]
Out[2398]= {{"x", "y"}, {"x", "y", "z"}, {"x", "y"}, {"x", "y"}, {"x", "y"}, {"x"}}

Extension of Mathematica system functionality

 221

In[2399]:= ArgsBFM[G, gs]
Out[2399]= {{"x", "y"}, {"x", "y", "z"}, {"x", "y"}, {"x", "y"}, {"x", "y"}, {"x"}}
In[2400]:= gs
Out[2400]= {{"x_ /; IntegerQ[x]", "y_ /; IntegerQ[y]"},
 {"x_", "y_ /; IntegerQ[y]", "z_"}, {"x_Integer", "y__"},
 {"x_ /; x == {42, 47, 67}", "y_ /; IntegerQ[y]"}, {"x_", "y__"},
 {"x_ /; IntegerQ[x]"}}

The procedure call ArgsBFM[x] returns the list of formal arguments in string
format of a block/function/module x whereas the call ArgsBFM[x, y] with
the second optional argument y – an undefinite variable – in addition returns
thru it the list of formal arguments of the block/function/module x with the
tests for admissibility in string format that are ascribed to them.

The next ArgsTypes procedure serves for testing of the formal arguments of
a block/function/module activated in the current session. The procedure
call ArgsTypes[x] returns the nested list, whose 2–element sublists in string
format define names of formal arguments and their admissible types (and in
a broader sense the tests for their admissibility along with initial values by default)
respectively. At absence for an argument of type it is defined as "Arbitrary"
that is characteristic for arguments of pure functions and arguments without
the tests and/or initial values ascribed to them, and also which have format
patterns {"__", "___"}. The following fragment represents source code of the
ArgsTypes procedure along with typical examples of its usage.

In[2775]:= V := Compile[{{x, _Real}, {y, _Real}}, (x^3 + y)^2];
 Kr := (#1^2 + #2^4 – 90*#3) &; H[x_] := Block[{}, x];
 Art := Function[{x, y}, x*Sin[y]]; H[x_, y_] := x + y;
 P[x__] := Plus[Sequences[{x}]]; GS[x__] := x;
 P[x_ /; StringQ[x], y_] := StringLength[x];
 GS[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := Sin[90] + Cos[42];
 Sv[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := x^2 + y^2;
 Sv = Compile[{{x, _Integer}, {y, _Real}}, (x + y)^6];
 S := Compile[{{x, _Integer}, {y, _Real}}, (x + y)^3];
 G = Compile[{{x, _Integer}, {y, _Real}}, (x + y)];
 P[y_] := Module[{}, y]; P[x__] := Plus[Sequences[{x}]];
 T := Compile[{{x, _Real}}, (x + y)]; GS[x_, y_String] := {x, y}

V.Z. Aladjev, V.A. Vaganov

 222

In[2776]:= ArgsTypes[x_ /; CompileFuncQ[x] || BlockFuncModQ[x]] :=
 Module[{a = Args[x], c = {}, d = {}, k = 1},
 If[CompileFuncQ[x], a = Mapp[StringSplit, Map[ToString, a], "_"];
 If[Length[a] == 1, a[[1]], a],
If[PureFuncQ[x], a = Map[{#, "Arbitrary"} &, a]; If[Length[a] == 1, a[[1]], a],
 SetAttributes[ToString, Listable]; a = Map[ToString, a];
 ClearAttributes[ToString, Listable]; a = If[NestListQ[a], a, {a}];
 For[k, k <= Length[a], k++, c = Append[c,
 Mapp[StringSplit, Mapp[StringSplit, a[[k]], "_ /; "], {"___", "__", "_"}]]]; c;
 For[k = 1, k <= Length[c], k++, d = Append[d, Map[Flatten, c[[k]]]]]; c = {};
 For[k = 1, k <= Length[d], k++, c = Append[c,
 Map[If[Length[#] == 1, {#[[1]], "Arbitrary"},
 {#[[1]], StringReplace[#[[2]], "\\" –> ""]}] &, d[[k]]]]];
 c = Map[If[Length[#] == 1, #[[1]], #] &, c]; If[Length[c] == 1, c[[1]], c]]]]

In[2777]:= Map[ArgsTypes, {GS, Args}]
Out[2777]= {{{{"x", "IntegerQ[x]"}, {"y", "IntegerQ[y]"}},
 {{"x", "Arbitrary"}, {"y", "String"}}, {"x", "Arbitrary"}},
 {{"P", "Arbitrary"}, {"z", "Arbitrary"}}}

In[2778]:= ArgsTypes[P]
Out[2778]= {{{"x", "StringQ[x]"}, {"y", "Arbitrary"}},
 {"y", "Arbitrary"}, {"x", "Arbitrary"}}

In[2779]:= Map[ArgsTypes, {Art, Kr}]
Out[2779]= {{{"x", "Arbitrary"}, {"y", "Arbitrary"}},
 {{"#1", "Arbitrary"}, {"#2", "Arbitrary"}, {"#3", "Arbitrary"}}}

In[2780]:= Map[ArgsTypes, {V, Sv, S, G, T}]
Out[2780]= {{{"x", "Real"}, {"y", "Real"}}, {{"x", "Integer"}, {"y", "Real"}},
 {{"x", "Integer"}, {"y", "Real"}},
 {{"x", "Integer"}, {"y", "Real"}}, {"x", "Real"}}

Moreover, the ArgsTypes procedure successfully processes the mentioned
situation "objects of the same name with various headings", returning the nested
2–element lists of formal arguments concerning the subobjects composing
an object x, in the order determined by the Definition function. And in this
case 2–element lists have the format, represented above whereas for objects

Extension of Mathematica system functionality

 223

with empty list of formal arguments the empty list is returned, i.e. {}. Unlike
ArgsTypes of the same name [29,30] the given procedure processes blocks/
modules/functions, including pure functions and Compile functions. At that,
the call ArgsTypes[x] on an illegal argument x is returned unevaluated.

Multiple patterns of formats x__ and x___ allow to determine any number
of admissible factual arguments of a block/function/module; at that, if the
first pattern defines not less than one argument, the second pattern allows
absence of the actual arguments. The mentioned patterns formats of formal
arguments allow to determine the objects of the specified type, allowing any
number of the actual arguments at their calls. This circumstance is the basis
for programming of the means that define arity of the user block/function/
module, i.e. number of the actual arguments allowed at the object calls of a
specified type that doesn't cause special (unevaluated calls) or the erroneous
situations caused by discrepancy between number of the received factual
arguments and of admissible at determining of an object. The question of
calculation of arity of the user block/function/module is rather important
in many appendices and, first of all, of system character, but Mathematica
has no means for its solution therefore certain procedures for the solution of
the question have been created such as Arity, Arity1, Arity2, ArityM, ArityPF
that solve this problem with one or another degree of generality [30-32]. The
next fragment presents source code of the Arity procedure that generalizes
all above–mentioned means solving the arity problem along with examples
of its more typical applications.

In[2565]:= V := Compile[{{x, _Real}, {y, _Real}}, (x^3 + y)^2];
 Kr := (#1^2 + #2^4 – 500*#3) &; H[x_, y_] := x + y;
 Art := Function[{x, y}, x*Sin[y]]; H[x_] := Block[{}, x];
 P[x__] := Plus[Sequences[{x}]]; SetAttributes[H, Protected];
 GS[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := Sin[500] + Cos[42];
 Sv[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := x^2 + y^2;
 Sv = Compile[{{x, _Integer}, {y, _Real}}, (x + y)^6];
 S := Compile[{{x, _Integer}, {y, _Real}}, (x + y)^3];
 G = Compile[{{x, _Integer}, {y, _Real}}, (x + y)];
 P[y_] := Module[{}, y]; T := Compile[{{x, _Real}}, (x + y)];
 Vs[x_ /; SameQ[{x}, {}]] := {x}; W[x_] := x; W[x_, y_] := x + y;
 W[x_, y_, z_, t_] := Module[{}, x*y*z*t; W[x_, y_Integer] := x + y

V.Z. Aladjev, V.A. Vaganov

 224

In[2566]:= Arity[P_ /; SystemQ[P] || CompileFuncQ[P] || PureFuncQ[P]
 ||BlockFuncModQ[P]] := Module[{a},
 If[SystemQ[P], "System", a = Args[P];
 Mapp[SetAttributes, {ToString, StringFreeQ}, Listable];
 a = Map[ToString, a];
 a = Map[If[DeleteDuplicates[StringFreeQ[#, "__"]] === {True},
 Length[#], "Undefined"] &, If[NestListQ[a], a, {a}]];
 Mapp[ClearAttributes, {ToString, StringFreeQ}, Listable];
 If[Length[a] == 1, a[[1]], a]]]

In[2567]:= Map[Arity, {V, S, Sv, T}]
Out[2567]= {2, 2, 2, 1}
In[2568]:= Map[Arity, {H, P, GS}]
Out[2568]= {{1, 2}, {1, "Undefined"}, 2, 1}
In[2569]:= Map[Arity, {Art, Kr, ProcQ, Sin, For}]
Out[2569]= {2, 3, 1, "System", "System"}
In[2570]:= Map[Arity, {avz, 500, a + b}]
Out[2570]= {Arity[avz], Arity[500], Arity[a + b]}
In[2571]:= Arity[W]
Out[2571]= {4, 2, 1, 2}

In[2666]:= Arity1[P_ /; SystemQ[P] || CompileFuncQ[P] ||
 PureFuncQ[P] || BlockFuncModQ[P]] :=
 Module[{a}, If[SystemQ[P], "System", a = Args[P];
 a = Mapp1[ToString, a];
 a = Map[If[DeleteDuplicates[StringFreeQ[#, "__"]] ===
 {True}, Length[#], "Undefined"] &, If[NestListQ[a], a, {a}]];
 If[Length[a] == 1, a[[1]], a]]]

In[2667]:= Map[Arity1, {V, S, Sv, T}]
Out[2667]= {2, 2, 2, 1}
In[2668]:= Map[Arity1, {H, P, GS}]
Out[2668]= {{1, 2}, {1, "Undefined"}, 2, 1}
In[2669]:= Map[Arity1, {Art, Kr, ProcQ, Sin, For}]
Out[2669]= {2, 3, 1, "System", "System"}
In[2670]:= Arity1[W]

Extension of Mathematica system functionality

 225

Out[2670]= {4, 2, 1, 2}
In[2671]:= Map[Arity1, {avz, 500, a + b}]
Out[2671]= {Arity1[avz], Arity1[500], Arity1[a + b]}

On blocks/functions/modules with undefinite number of arguments the call
Arity[x] returns "Undefined", on the system functions the call Arity[x] returns
"System" while on the objects having the fixed number of actual arguments
their number is returned, in other cases the call is returned unevaluated. We
will note that the Arity procedure processes the special situation "objects of
the same name with various headings", returning the list of arities of subobjects
composing an object x. At that, between this list and the list of definitions of
subobjects which is returned on the call Definition[x] there is one–to–one
correspondence. The definition of the Arity procedure along with standard
means uses and our means such as Args, BlockFuncModQ, CompileFuncQ,
Mapp, SystemQ, PureFuncQ, NestListQ that are considered in the present
book and in [28-33]. Moreover, at programming of the Arity in the light of
simplification of its algorithm is expedient for the period of a procedure call
to ascribe to the system functions ToString and StringFreeQ the attribute
Listable, allowing to considerably reduce source code of the Arity. At last,
the Arity1 procedure – a rather effective equivalent analog of Arity procedure –
completes the previous fragment.

The ArityBFM procedure defining arity of objects of type {module, classical
function, block} serves as quite useful addition to the procedures Arity and
Arity1. The following fragment represents source code of the ArityBFM and
the most typical examples of its usage.

In[2474]:= ArityBFM[x_ /; BlockFuncModQ[x]] := Module[{b,
 a = Flatten[{HeadPF[x]}]},
 b = Map[If[! StringFreeQ[#, {"__", "___"}], "Undefined",
 Length[ToExpression["{" <> StringTake[StringReplace[#,
 ToString[x] <> "[" –> "", 1], {1, –2}] <> "}"]]] &, a];
 If[Length[b] == 1, b[[1]], b]]

In[2475]:= G[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := x + y;
 G[x_Integer, y__] := x*y; G[x_, y_ /; IntegerQ[y], z_] := x + y + z;
 G[x_, y__] := x + y; G[x_ /; IntegerQ[x]] := x;
 G[x_ /; x == {42, 47, 67}, y_ /; IntegerQ[y]] := Length[x] + y;

V.Z. Aladjev, V.A. Vaganov

 226

In[2476]:= ArityBFM[G]
Out[2476]= {2, 3, "Undefined", 2, "Undefined", 1}
In[2477]:= S[x_, y_] := x*y; V[x__] := {x}; Map[ArityBFM, {S, V}]
Out[2477]= {2, "Undefined"}
In[2478]:= V[a_, b_, c_, d_, h_] := N[h*(3*a*b + (c – b)*d + (d – a)*c)/3000]
In[2479]:= {V[25, 18, 47, 72, 67], ArityBFM[V]}
Out[2479]= {126.116, {5, "Undefined"}}

The procedure call ArityBFM[x] returns arity (number of arguments) of an
object x of type {block, function, module}; at that, a function of classical type is
understood as function x, i.e. some function with heading. In the presence in
heading of formal arguments with patterns {"__", "___"} arity is defined as
undefinite ("Undefined") because arity is understood as a real number of the
factual arguments, admissible at a call of an object x which in that case can
be undefinite. At that, on objects x of type, different from the specified, the
procedure call is returned unevaluated.

Like the Maple system, the Mathematica system doesn't give a possibility
to test inadmissibility of all actual arguments in a block/function/module in
a point of its call, interrupting its call already on the first inadmissible actual
argument. Meanwhile, in view of importance of definition of all inadmissible
actual arguments only for one pass, the TestArgsTypes procedure solving
this important enough problem and presented in our book [30] and package
AVZ_Package [48] has been created. At that, the emergence of new means
and updating of our existing functional means allows to update also and the
given means, presented by the procedure of the same name. The following
fragment presents source code of the TestArgsTypes procedure along with
one its useful modification TestArgsTypes1 and examples of their usage.

In[2760]:= TestArgsTypes[P_ /; ModuleQ[P] || BlockQ[P] ||
 QFunction[P], y_] := Module[{c, d = {}, h, k = 1,
 a = Map[ToString, Args[P]], b = ToString[InputForm[y]]},
 ClearAll["$TestArgsTypes"];
 If[! SuffPref[b, ToString[P] <> "[", 1], Return[y], c = Map[ToString1,
 ToExpression["{" <> StringTake[b,
 {StringLength[ToString[P]] + 2, –2}] <> "}"]]];
 If[Length[a] != Length[c], $TestArgsTypes =

Extension of Mathematica system functionality

 227

 "Quantities of formal and factual arguments are different"; $Failed,
 For[k, k <= Length[a], k++, d = Append[d,
 ToExpression["{" <> c[[k]] <> "}" <> " /. " <>
 a[[k]] <> " –> True"]]]; d = Map[If[ListQ[#], #[[1]], #] &, d];
 h = Flatten[Map3[Position, d, Cases[d, Except[True]]]];
 h = Map[{#, If[ListQ[d[[#]]], Flatten[d[[#]], 1], d[[#]]]} &, h];
 $TestArgsTypes = If[Length[h] == 1, h[[1]], h]; $Failed]]

In[2761]:= P[x_, y_String, z_ /; If[z === 90, True, False]] := {x, y, z}
In[2762]:= TestArgsTypes[P, P[agn, "ArtKr", 90]]
Out[2762]= {agn, "ArtKr", 90}
In[2763]:= TestArgsTypes[P, P[x, y, z]]
Out[2763]= $Failed
In[2764]:= $TestArgsTypes
Out[2764]= {{2, y}, {3, z}}
In[2765]:= TestArgsTypes[P, P[x, y, z, h]]
Out[2765]= $Failed
In[2766]:= $TestArgsTypes
Out[2766]= "Quantities of formal and factual arguments are different"
In[2767]:= TestArgsTypes[P, P[x, "y", {500}]]
Out[2767]= $Failed
In[2768]:= $TestArgsTypes
Out[2768]= {3, {500}}
In[2769]:= TestArgsTypes[P, P[x, a + b, {500}]]
Out[2769]= $Failed
In[2770]:= $TestArgsTypes
Out[2770]= {{2, a + b}, {3, {500}}}

In[2771]:= VS[x_, n_ /; IntegerQ[n], y_, z_/; StringQ[z], L_ /; ListQ[L] &&
 MemberQ[{{0}, {1}, {0, 1}}, Sort[DeleteDuplicates[Flatten[L]]]]] :=
 Block[{}, L[[StringLength[y <> z] + n]]]

In[2772]:= VS[6, –4, "A", "vz", {0, {1, 0, 1}, {1, 0, 0, 0, 1, 1, 1, 0, 0, 1}}]
Out[2772]= {1, 0, 0, 0, 1, 1, 1, 0, 0, 1}
In[2773]:= VS[6, 7.2, A, "vz", {0, {1, 0, 1}, {1, 0, 0, 0, 1, 1, 1, 0, 0, 1}}]
Out[2773]= VS[6, 7.2, A, "vz", {0, {1, 0, 1}, {1, 0, 0, 0, 1, 1, 1, 0, 0, 1}}]
In[2774]:= TestArgsTypes[VS, VS[9, 7.2, A, "v", {0, {1, 0, 1}, {1, 0, 1, 1, 0, 1}}]]

V.Z. Aladjev, V.A. Vaganov

 228

Out[2774]= $Failed
In[2775]:= $TestArgsTypes
Out[2775]= {2, 7.2}
In[2776]:= TestArgsTypes[VS, VS[9, 7.2, A, vz, {0, {1, 0, 1}, {2, 0, 0, 0, 7, 2}}]]
Out[2776]= $Failed
In[2777]:= $TestArgsTypes
Out[2777]= {{2, 7.2}, {4, vz}, {5, {0, True, 2, 0, 0, 0, 7, 2}}}
In[2778]:= TestArgsTypes[VS, VS[9, 0, "A", "v", {0, {1, 0, 0,1}, {1, 0, 1, 0, 1}}]]
Out[2778]= {1, 0, 0, 1}
In[2779]:= $TestArgsTypes
Out[2779]= $TestArgsTypes

In[2862]:= TestArgsTypes1[P_ /; ModuleQ[P] || BlockQ[P] ||
 QFunction[P], y_] := Module[{c, d = {}, h, k = 1, n, p, w, w1,
 a = Quiet[ArgsTypes[P]], g = Map[ToString1, Args[P]],
 b = ToString[InputForm[y]]},
 a = Map[{#[[1]], StringReplace[#[[2]], "\\\\" –> ""]} &, a];
 ClearAll["$TestArgsTypes", "$$Art$Kr$$"];
 If[! SuffPref[b, ToString[P] <> "[", 1], Return[y], c = Map[ToString1,
 ToExpression["{" <> StringTake[b,
 {StringLength[ToString[P]] + 2, –2}] <> "}"]]];
 If[Length[a] != Length[c], Return[$TestArgsTypes =
 "Quantities of formal and factual arguments are different"; $Failed],
 w = Map[StringTake[#, {1, StringPosition[#, "_"][[1]][[1]] – 1}] &, g];
 w1 = Map[ToString, Unique[w]];
 While[k <= Length[w], ToExpression[w1[[k]] <> " = " <> w[[k]]]; k++];
 Map[ClearAll, w]; For[k = 1, k <= Length[a], k++, p = a[[k]];
 If[p[[2]] === "Arbitrary", d = Append[d, True],
 If[StringFreeQ[g[[k]], " /; "],
 If[ToExpression["Head[" <> c[[k]] <> "] === " <> p[[2]]],
 d = Append[d, True], d = Append[d, False]],
 $$Art$Kr$$ = ToExpression[p[[1]]];
 n = ToExpression[{p[[1]] <> " = " <> c[[k]], p[[2]]}];
 ToExpression[p[[1]] <> " = " <> "$$Art$Kr$$"];

Extension of Mathematica system functionality

 229

 If[n[[–1]], d = Append[d, True], d = Append[d, False]]]]]];
 h = DeleteDuplicates[Flatten[Map3[Position, d, Cases[d, Except[True]]]]];
 h = Map[{#, If[ListQ[c[[#]]], Flatten[c[[#]], 1], c[[#]]]} &, h];
 $TestArgsTypes = If[Length[h] == 1, h[[1]], h]; k = 1;
 While[k <= Length[w], ToExpression[w[[k]] <> " = " <>
 w1[[k]]]; k++]; ClearAll["$$Art$Kr$$"]; $Failed]

In[2863]:= TestArgsTypes1[P, P[x, a + b, {500}]]
Out[2863]= $Failed
In[2864]:= $TestArgsTypes
Out[2864]= {{2, "a + b"}, {3, "{500}"}}
In[2865]:= TestArgsTypes1[P, P[agn, "ArtKr", 90]]
Out[2865]= {agn, "ArtKr", 90}
In[2866]:= TestArgsTypes1[P, P[x, y, z, h]]
Out[2866]= $Failed
In[2867]:= $TestArgsTypes
Out[2867]= "Quantities of formal and factual arguments are different"
In[2868]:= TestArgsTypes1[P, P[x, y, z]]
Out[2868]= $Failed
In[2869]:= $TestArgsTypes
Out[2869]= {{2, "y"}, {3, "z"}}
In[2870]:= TestArgsTypes1[VS, VS[9, 7.2, A, vz, {0, {1, 0, 1}, {2, 0, 1, 5, 6, 2}}]]
Out[2870]= $Failed
In[2871]:= $TestArgsTypes
Out[2871]= {{2, "7.2"}, {4, "vz"}, {5, "{0, {1, 0, 1}, {2, 0, 1, 5, 6, 2}}"}}

In[2920]:= TestArgsTypes2[x_ /; ModuleQ[x]||BlockQ[x]||QFunction[x],
 y__] := Module[{a = Quiet[ArgsTypes[x]],
 b = Map[ToString1, {y}], c = {y}, d = {}, k = 1, p},
 If[Length[c] != Length[a],
 "Quantities of formal and factual arguments are different",
 For[k, k <= Length[c], k++, p = a[[k]];
 AppendTo[d, If[p[[2]] === "Arbitrary", True,
 If[SymbolQ[p[[2]]], ToString[Head[c[[k]]]] === p[[2]],
 ToExpression[StringReplace[p[[2]],
 {"[" <> p[[1]] <> "]" –> "[" <> b[[k]] <> "]",

V.Z. Aladjev, V.A. Vaganov

 230

 " " <> p[[1]] <> " " –> " " <> b[[k]] <> " ",
 " " <> p[[1]] <> "]" -> " " <> b[[k]] <> "]"}]]]]]];
 If[MemberQ[d, False], Partition[Riffle[{y}, d], 2], {True, x[y]}]]]

In[2921]:= TestArgsTypes2[VS, 90, 50]
Out[2921]= "Quantities of formal and factual arguments are different"
In[2922]:= F[x_, y_String, z_Integer, t_ /; ListQ[t]] :=
 Module[{}, x*z + StringLength[y]*Length[t]]
In[2923]:= TestArgsTypes2[F, 90, 500, 72, a + b]
Out[2923]= {{90, True}, {500, False}, {72, True}, {a + b, False}}
In[2924]:= TestArgsTypes2[F, 50, "Agn", 500, {r, a, n, s}]
Out[2924]= {True, 25012}
In[2925]:= TestArgsTypes2[P, x, y, z]
Out[2925]= {{x, True}, {y, False}, {z, False}}

In[2932]:= TrueCallQ[x_ /; BlockFuncModQ[x], y__] :=
 Quiet[Check[If[UnevaluatedQ[x, y], False, x[y]; True], False]]

In[2933]:= TrueCallQ[VS, 9, 7.2, A, vz, {0, {1, 0, 1}, {2, 0, 1, 5, 6, 2}}]
Out[2933]= False
In[2934]:= TrueCallQ[P, x, y, z, h]
Out[2934]= False
In[2935]:= TrueCallQ[VS, 9, 7.2, A, "vz", {0, {1, 0, 1}, {1, 0, 0, 0, 1, 1, 1, 0, 0, 1}}]
Out[2935]= False
In[2936]:= TrueCallQ[P, agn, "ArtKr", 90]
Out[2936]= True

Call of the above procedure TestArgsTypes[x, x[...]] processes a procedure
x call in way that returns result of a procedure call x[...] in case of absence of
inadmissible actual arguments and equal number of the factual and formal
arguments in a point of procedure call x; otherwise $Failed is returned. At
that through the global variable $TestArgsTypes the nested list is returned,
whose two-element sublists define the set of inadmissible actual arguments,
namely: the first element of a sublist defines number of inadmissible actual
argument while the second element – its value. At discrepancy of number of
formal arguments to number of actual arguments through $TestArgsTypes
the appropriate diagnostic message is returned, namely: "Quantities of formal
and factual arguments are different".

Extension of Mathematica system functionality

 231

Meanwhile, for simplification of the testing algorithm realized by the above
procedure it is supposed that formal arguments of a certain procedure x are
typified by the pattern "_" or by construction "Argument_/; Test". Moreover,
it is supposed that the unevaluated procedure call x is caused by discrepancy
of types of the actual arguments to the formal arguments or by discrepancy
of their quantities only. So, the question of testing of the actual arguments is
considered at the level of the heading of a block/function/module only for
a case when their number is fixed. If a procedure/function allows optional
arguments, their typifying assumes correct usage of any expressions as the
actual values, i.e. the type of the format "x_" is supposed. In this regard at
necessity, their testing should be made in the body of a procedure/function
as it is illustrated by useful enough examples in [32]. So, at difficult enough
algorithms of check of the received actual arguments onto admissibility it is
recommended to program them in the body of blocks/modules what is more
appropriate as a whole.

Meanwhile, as an expansion of the TestArgsTypes procedure the possibility
of testing of the actual arguments onto admissibility on condition of existence
in headings of formal arguments of types {"x__", "x___"} can be considered.
The receptions, used in the TestArgsTypes1 procedure which is one useful
modification of the above TestArgsTypes procedure is a rather perspective
prerequisite for further expansion of functionality of these means. A result
of call TestArgsTypes1[x, x[...]] is similar to the call TestArgsTypes[x, x[...]]
only with difference that values of inadmissible actual arguments are given
in string format. At that without reference to smaller reactivity of the second
procedure, the algorithm used at its programming is rather interesting for a
number of applications, first of all, of system character; its analysis can be a
rather useful to the interested reader who wishes to learn Math–language
more deeply. This remark concerns some other means of the present book.

Meanwhile, it must be kept in mind that use by procedures TestArgsTypes
and TestArgsTypes1 of the global variable $TestArgsTypes through which
information on the inadmissible actual arguments received by a tested block/
procedure at its calls is returned, should be defined in the user's package that
contains definitions of these procedures, i.e. to be predetermined, otherwise
diagnostic information isn't returned thru it. It can be done, for example, by
means of inclusion in the AVZ_Package package of the following block:

V.Z. Aladjev, V.A. Vaganov

 232

Begin["`$TestArgsTypes`"]
$TestArgsTypes = 50090
End[]

with obligatory providing a reference (usage) for this variable, for example,
of the kind:

$TestArgsTypes::usage = "The global variable $TestArgsType defined by
the procedures TestArgsTypes and TestArgsTypes1."

This remark should be considered at programming of the procedures which
use the global $–variables for additional return of results, i.e. such variables
should be initiated, in particular, in a package containing the definitions of
means with their usages.

In some cases the TestArgsTypes2 procedure which is a modification of the
previous procedures TestArgsTypes and TestArgsTypes1 is a rather useful
means; the call TestArgsTypes2[P, y], where P – a block, function with the
heading, or module, and y – a nonempty sequence of the actual arguments
passed to the P, returns the list of the format {True, P[y]} if all arguments y
are admissible; the call returns the nested list whose elements are 2-element
sublists whose first element defines an actual argument whereas the second
element defines its admissibility {True, False}; at last, in case of discrepancy
of quantities of formal and actual arguments the next message is returned:
"Quantities of formal and factual arguments are different". The above fragment
contains source code of the TestArgsTypes2 procedure with examples.

At last, in contrast to the above procedures TestArgsTypes - TestArgsTypes2
that provide the differentiated testing of the actual arguments received by a
tested object for their admissibility, the simple function TrueCallQ provides
testing of correctness of the call of an object of type {Block, Function, Module}
as a whole; the call TrueCallQ[x, arg] returns True if the call x[arg] is correct,
and False otherwise. At that, the lack of the fact of the unevaluated call, and
lack of the special or erroneous situations distinguished by Mathematica is
understood as a correctness of the call. The source code of the function with
typical examples of its use completes the previous fragment. It is necessary
to note the interesting possibilities of further development of the procedures
TestArgsTypes – TestArgsTypes2 in a number of the important directions,
in particular, in case of variable number of the actual arguments, which we

Extension of Mathematica system functionality

 233

leave to the interested reader.

To the procedures TestArgsTypes – TestArgsTypes2 and the TrueCallQ
function in a certain degree the TestArgsCall procedure adjoins whose call
allows to allocate definitions of a block/function or a module on which the
call with the given actual arguments is quite correct. The following fragment
represents source code of the TestArgsCall procedure with typical examples
of its application.

In[2889]:= TestArgsCall[x_ /; BlockFuncModQ[x], y___] := Module[{d, p,
 h = {}, k = 1, a = Flatten[{PureDefinition[x]}],
 b = Flatten[{HeadPF[x]}], c = "$$$", n = ToString[x]},
 While[k <= Length[b], d = c <> n; ToExpression[c <> b[[k]] <> ":=90"];
 p = Symbol[d][y]; ToExpression["Clear[" <> d <> "]"];
 If[p === 90, AppendTo[h, a[[k]]]]; k++]; If[Length[h] == 1, h[[1]], h]]

In[2890]:= G[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := x + y;
 G[x_Integer, y__] := x + y; G[x_, y__] := x+y;
 G[x_, y_ /; IntegerQ[y], z_] := x+y+z; G[x_ /; IntegerQ[x]] := x;
 G[x_ /; x == {42, 47, 67}, y_ /; IntegerQ[y]] := Length[x] + y;
In[2891]:= TestArgsCall[G, 19.42, 90]
Out[2891]= "G[x_, y__] := x + y"
In[2892]:= V[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := x + y;
 TestArgsCall[V, 19.42, 90]
Out[2892]= {}
In[2893]:= TestArgsCall[Avz, 19.42, 90]
Out[2893]= TestArgsCall[Avz, 19.42, 90]

The procedure call TestArgsCall[x, y] returns a definition or the definitions
list of a block/function/module x on which the call with the tuple of actual
arguments y is correct, i.e. their types correspond to admissible types of the
formal arguments. Otherwise, the procedure call returns the empty list, i.e.
{}; on inadmissible argument x, different from a block/function module, the
call is returned unevaluated.

Whereas the procedure call TestFactArgs[x, y] returns the list from True and
False that defines who of the actual arguments determined by a sequence y
will be admissible in the call x[y], where x – an object name with a heading
(block, function, module). The procedure assumes equal number of the formal

V.Z. Aladjev, V.A. Vaganov

 234

and actual arguments defined by a sequence y, along with existence for an
object x of the fixed number of arguments; otherwise, the call TestFactArgs
returns $Failed. The next fragment represents source code of the procedure
TestFactArgs along with typical examples of its usage.

In[2535]:= TestFactArgs[x_ /; ProcQ[x] || QFunction[x], y__] :=
 Module[{b, c = {}, d, p = {y}, k = 1, a = Flatten[{HeadPF[x]}][[1]]},
 b = StrToList["{" <> StringTake[a,
 {StringLength[ToString[x]] + 2, –2}] <> "}"];
 b = Map[StringSplit[#, "_"] &, b];
 If[Length[b] == Length[p] && StringFreeQ[a, "__"],
 While[k <= Length[b], d = b[[k]];
 If[Length[d] == 1, AppendTo[c, True],
 If[Length[d] == 2 && SymbolQ[d[[2]]],
 AppendTo[c, Head[p[[k]]] === Symbol[d[[2]]]],
 If[SuffPref[d[[2]], " /; ", 1],
 AppendTo[c, ToExpression[StringReplace3[
 StringTake[d[[2]], {5, –1}], d[[1]],
 ToString[p[[k]]]]]]]]]; k++]; c, $Failed]]

In[2536]:= VGS[x_, y_Integer, z_ /; ListQ[z]] := Flatten[{x, y, z}]
In[2537]:= TestFactArgs[VGS, avz, 72, {g, s, a, k}]
Out[2537]= {True, True, True}
In[2538]:= TestFactArgs[VGS, 42, ag, a + b]
Out[2538]= {True, False, False}
In[2539]:= TestFactArgs[VGS, 42, ag, a + b, 500]
Out[2539]= $Failed

The TestFactArgs procedure is a generalization of the CheckArgs procedure
of the Maple system in case of determination of admissibility of the factual
arguments for the blocks/functions/modules. The presented tools of testing
of the factual arguments at calls of procedures can be useful enough at the
organization of robust program systems of a rather large size. In particular,
these means allow rather effectively beforehand to test the correctness of the
procedures calls on those or other tuples of factual arguments.

Extension of Mathematica system functionality

 235

6.6. Local variables of modules and blocks; the means of
manipulation by them in the Mathematica software

Having considered in the previous two sections the means of manipulation
with definitions of the blocks/functions/modules along with their headings,
we move on to consideration of means whose circle of interests includes the
problems linked with manipulation with the following major component of
definitions of blocks and modules – the local variables. So, this component
defines the first leading variable in a block/module definition, as a function
from two variables – the list of local variables, and its body. Local variables
take place only for procedural objects (Module and Block) of Math-language
whereas for functions such concept is absent. The local variables have only a
module body as an area of their action, without crossing with the variables
of the same name outside of its environment. Meanwhile, namely between
objects of types of {Block and Module} there is very essential distinction that
is based on mechanisms of local variables which are used by both types of
objects and which are considered in [30-33] enough in detail. In view of the
importance of the given component for which the Mathematica has no tools
of manipulation it is very desirable to have similar means. Meanwhile, pre
has the meaning to consider the given component of modules and blocks in
more detail.

First of all, as for admissibility of the local variables for traditional functions.
The statement about their inadmissibility isn't absolutely right, namely. The
local variables shouldn't have crossing with the variables of the same name,
outside of the body of an object in which they are defined. Using the given
postulate, on the basis of an artificial reception it is possible to solve also this
problem. Basic principle of this reception is presented on a simple example.

In[2617]:= PrevNextVar[x_ /; SymbolQ[x], t_ /; IntegerQ[t], y___] :=
 Module[{a = ToString[x], b, c = {}, d, k, n}, b = Characters[a]; n = Length[b];
 For[k = n, k >= 1, k––, If[IntegerQ[ToExpression[b[[k]]]],
 AppendTo[c, b[[k]]], d = StringJoin[b[[1 ;; k]]]; Break[]]];
 k = ToExpression[c = StringJoin[Reverse[c]]];
 If[SameQ[k, Null] || {y} == {} && k – t <= 0, x,
 If[c == "", x, ToExpression[d <> ToString[k + If[{y} != {}, t, –t]]]]]]

V.Z. Aladjev, V.A. Vaganov

 236

In[2618]:= PrevNextVar[avz1942, 2, 5]
Out[2618]= avz1944
In[2619]:= PrevNextVar[avz1942, 2]
Out[2619]= avz1940
In[2620]:= PrevNextVar[ab90xyz, 5]
Out[2620]= ab90xyz

In[2621]:= G[x_, y_] := {ListAssignP[{Unique["a"]}, 1, 72],
 ListAssignP[{Unique["b"]}, 1, 67],
 PrevNextVar[Unique["a"], 2]*x + PrevNextVar[Unique["b"], 2]*y}[[–1]]
In[2622]:= G[90, 500]
Out[2622]= 39 980

Above all, we will need the PrevNextVar procedure for a special processing
of the symbols of the format <symbol><integer> which end with an integer.
The procedure call PrevNextVar[x, t] on a symbol x of the mentioned format
<symbol><integer> returns the symbol of the format <symbol><integer – t>
while the call PrevNextVar[x, t, h] where h – an arbitrary expression returns
symbol of the format <symbol><integer + t>. At condition `integer – t <= 0`
or in case of the format x different from the mentioned the source symbol x
is returned. The previous fragment represents source code of the procedure
with examples of its usage. The given procedure represents as independent
interest, and is essentially used for solution of the problem of local variables
in case of definition of the user traditional functions.

For solution of the problem of use of local variables for functions along with
the previous PrevNextVar procedure our ListAssignP procedure providing
assignment of a value to a list element with the given number, and system
Unique function generating the symbols new for the current session every
time at its call are used. The general format of definition of a function with
local variables can be presented as follows.

F[x_, y_, …] := {ListAssignP[{Unique["a1"]}, 1, b1],
 ListAssignP[{Unique["a2"]}, 1, b2],
 ===========================
 ListAssignP[{Unique["at"]}, 1, bt],
 BODY[x, y, …, PrevNextVar[Unique["a1"], j], …,
 PrevNextVar[Unique["at"], j]}[[–1]]; j = kt (k=1..n)

Extension of Mathematica system functionality

 237

According to the above format, a function is defined in the form of the list,
whose first t elements define the local variables with initial values ascribed
to them whereas the body of this function is a certain function from formal
arguments and local variables whose each encoding has the following view
PrevNextVar[Unique["ap"], j], j = kt (k=1..n), where n – number of usages
of a local variable "ap" in the function body. At that, the last element of such
list determines result of the call of a function given in similar format as very
visually illustrates example of the G function of the previous fragment. So,
еhe described artificial reception allows to use local variables in functions,
however their opportunities are rather limited. At that, each call of function
of this kind generates the mass of variables which aren't crossed with the
previous variables of the current session, but they can enough significantly
litter the area of variables of the current session; in this the reader can rather
simply make sure by the means of call Names["'*"]. Therefore, the artificial
possibility of use of local variables by functions, and the expedience of this
is not entirely the same. Meanwhile, the presented reception can be a rather
useful at programming of certain problems, first of all, of system character.

Blocks and modules in the Mathematica function as follows. At each call of
a module for its local variables the new symbols determining their names,
unique in the current session are generated. Each local variable of a module
is identified by a symbol of the form Name$num where Name – the name of
a local variable determined in a module, and num – its current number in the
current session. At that, the number is defined by variable $ModuleNumber
as it illustrates the following rather simple fragment, namely:

In[2572]:= G[x_, y_, z_] := Module[{a, b, c}, h = a*x + b*y + c*z; {h, a, b,
 Symbol["a" <> "$" <> ToString[$ModuleNumber – 1]]}]
In[2573]:= {$ModuleNumber, G[72, 67, 47], $ModuleNumber}
Out[2573]= {4477, {72 a$4477 + 67 b$4477 + 47 c$4477, a$4477, b$4477,
 a$4477}, 4478}
In[2574]:= {$ModuleNumber, G[72, 67, 47], $ModuleNumber}
Out[2574]= {4479, {72 a$4479+ 67 b$4479+ 47 c$4479, a$4479, b$4479,
 a$4479}, 4480}
In[2575]:= G[x_, y_, z_] := Block[{a, b, c}, h = a*x + b*y + c*z; {h, a, b,
 Symbol["a" <> "$" <> ToString[$ModuleNumber – 1]]}]
In[2576]:= {$ModuleNumber, G[72, 67, 47], $ModuleNumber}

V.Z. Aladjev, V.A. Vaganov

 238

Out[2576]= {2386, {72 a + 67 b + 47 c, a, b, a$4480}, 4480}
In[2577]:= n = 1; While[n <= 3, Print[$ModuleNumber]; n++]
 4489
 4489
 4489
In[2578]:= {$ModuleNumber, $ModuleNumber}
Out[2578]= {4490, 4490}

Of the given example the principle of assignment of current numbers to the
local variables quite accurately is traced at each new reference to a module
containing them. Also from the fragment follows that increase of the current
numbers for local variable blocks at their calls isn't done in view of different
mechanisms of processing of modules and blocks. At that, on condition of
knowledge of the current numbering for local variables of a module there is
an opportunity to dynamically receive their values outside of the module
after each its call as illustrates the following rather simple and very evident
fragment, namely:

In[2555]:= S[x_, y_] := Module[{a = $ModuleNumber – 1,
 b = $ModuleNumber – 1, c = $ModuleNumber – 1}, h := a*x + b*y + c;
 {h, Symbol["a$" <> ToString[$ModuleNumber – 1]],
 Symbol["b$" <> ToString[$ModuleNumber – 1]],
 Symbol["c$" <> ToString[$ModuleNumber – 1]], a b, c}]

In[2556]:= S[77, 67]
Out[2556]= {347420, 2396, 2396, 2396, 5740816, 2396}
In[2557]:= g := {a$2397, b$2397, c$2397}
In[2558]:= S[72, 67]
Out[2558]= {338520, 2418, 2418, 2418, 5846724, 2418}
In[2559]:= d := {g, {a$2419, b$2419, c$2419}}
In[2560]:= S[72, 67]
Out[2561]= {339500, 2425, 2425, 2425, 5880625, 2425}
In[2562]:= {d, {a$2426, b$2426, c$2426}}
Out[2562]= {{{2396, 2396, 2396}, {2418, 2418, 2418}}, {2425, 2425, 2425}}

Thus, the user has opportunity to work with the local variables and outside
of a module containing them, i.e. as a matter of fact at the level of the global
variables what in certain cases can be used quite effectively at programming

Extension of Mathematica system functionality

 239

of the different problems and, first of all, of problems of system character.

In[2587]:= Kr[x_, y_] := Module[{a, b}, h := a*x + b*y; {{a, b, h}, h}]

In[2588]:= Kr[18, 25]
Out[2588]= {{a$2436, b$2436, 18 a$2436 + 25 b$2436}, 18 a$2436 + 25 b$2436}
In[2589]:= %[[1]][[1]]^2 + Take[%[[1]], {2, 2}]^2
Out[2589]= {a$2436^2 + b$2436^2}

In[2590]:= Kr[x_, y_] := Module[{a, b}, a = 96; b = 89; h := a*x + b*y;
 Print[{"a$" <> ToString[$ModuleNumber – 1],
 "b$" <> ToString[$ModuleNumber – 1]}];
 {Symbol["a$" <> ToString[$ModuleNumber – 1]],
 Symbol["b$" <> ToString[$ModuleNumber – 1]]}]

In[2591]:= Kr[18, 25]
 {a$2446, b$2446}
Out[2591]= {96, 89}
In[2592]:= %[[1]]^2 + %[[–1]]^2
Out[2592]= 17 137

The previous simple fragment rather visually illustrates the aforesaid. As a
rule, the user shouldn't operate with values of local variables outside of the
module; meanwhile, in case of work with a module in the dialogue mode or
at using for monitoring of a module performance of a function, for example,
Trace these local variables are visualized. Moreover, such opportunity can
be used for non–standard calculations, only the effect from it is completely
defined by experience and skills of the user, his knowledge of the system. In
the Maple system the similar explicit mechanism of operating with the local
variables outside of procedures is absent though the similar mechanism can
be realized by some special receptions, in particular, on the basis of so-called
method of "disk transits" [22]. However, such approach does variables of a
procedure as really local variables with the scope limited by the procedure.
In this case local variables are inaccessible outside of the procedure, what in
certain respects it is possible to consider as some prerequisite for definition
of a "black box" and quite natural transition to the paradigm of the modular
organization in programming.

In some cases it is necessary to generate object names that are unique to the
current session. For this purpose, the afore–mentioned Unique function is

V.Z. Aladjev, V.A. Vaganov

 240

designed, that generates the names without the attributes ascribed to them.
At that, for ensuring of uniqueness of the generated symbols each call of the
Unique function provides an increment for a value of the system variable
$ModuleNumber. The mechanism of functioning of the Unique is similar to
the mechanism of generating of names for local variables of a module. The
simple example illustrates one of approaches to software realization of the
Unique by means of the Un procedure, whose source code with examples
are given below, while useful procedure Unique2 completes the fragment;
the call Unique2[x, y] returns an unique name in string format that depends
on the second argument or its absence, at the same time ascribing to the name
an arbitrary value x.

In[2555]:= Un[x___] := Module[{a},
 If[{x} == {}, Symbol["$" <> ToString[$ModuleNumber]],
 a[y_] := If[StringQ[y], Symbol[y <> ToString[$ModuleNumber]],
 If[Head[y] == Symbol, Symbol[ToString[y] <> "$" <>
 ToString[$ModuleNumber]], y]]; If[ListQ[x], Map[a, Flatten[x]], a[x]]]]

In[2556]:= {Un[], Un[S], Un["G"], Un[{x, y, z}], Un[V]}
Out[2556]= {$1063, S$1064, G1065, {x$1066, y$1066, z$1066}, V$1067}

In[2570]:= Unique1[x_, y___] := Module[{a = Unique[y], b}, b = ToString[a];
 ToExpression[ToString[a] <> "=" <> ToString1[x]]; b]

In[2571]:= {Unique1[90, agn], Unique1[500]}
Out[2571]= {"agn$1086", "$27"}
In[2572]:= ToExpression[{"agn$1086", "$27"}]
Out[2572]= {90, 500}

By the standard call ?Name it is possible to obtain information on all symbols
with the given Name that have been generated in modules or by the Unique
function as illustrates the following very simple fragment, namely:

In[2699]:= n = 1; Clear[x, y, z]; While[n < 5, Unique[{x, y, z}]; n++]
In[2700]:= ?x*
 ▼Global`
 x$4602

 ▼AladjevProcedures`
 x x$ x$6012 x$6013 x$6014 x$6015

Extension of Mathematica system functionality

 241

Thus, the names generated by the module behave in the same way, as other
names concerning calculations. However, these names have the temporary
character which defines, that they have to be completely removed from the
system in the absence of need for them. Therefore, the majority of the names
generated in modules will be removed after performance of these modules.
Only names returned by modules explicitly remain. Moreover, outside of
modules their local variables remain undefinite even if in the modules they
received initial values. Meanwhile, it must be kept in mind that usage of the
names of the form name$nnn is the agreement of the Mathematica for the
local variables generated by modules. Thus, in order to avoid any conflict
situations with names of the specified form the user isn't recommended to
use names of such format in own programs. It must be kept in mind that the
variables generated by modules are unique only during the current session.
The mechanism of use of local variables at the call of a module is considered
rather in details in [30]. The local variables of modules allow assignment to
them of initial values in the form of any expressions, including expressions,
whose values can depend on the actual arguments received at a module call
or from external variables, for example:

In[2943]:= G[x_, y_] := Module[{a = If[PrimeQ[x], NextPrime[y],
 If[PrimeQ[y], NextPrime[x], z]]}, a*(x + y)]
In[2944]:= z = 90; {G[7, 500], G[6, 18], G[72, 67]}
Out[2944]= {255 021, 2 160, 10 147}

Meanwhile, at the level of the local variables not exists of any opportunity
immediate (without execution of offers of the body of a procedure) of an exit from
the procedure, for example, in case of calculation of the initial expressions
ascribed to the local variables as it illustrates simple enough fragment, the
exception is the use of the call Abort[] that initiates return by the procedure
the value $Aborted:

In[2487]:= G[x_, y_] := Module[{a = If[PrimeQ[x], NextPrime[y],
 Return[x]]}, a*(x + y)]
In[2488]:= G[90, 500]
Out[2488]= 53 100
In[2489]:= G[x_, y_] := Module[{a = If[PrimeQ[x], NextPrime[y],
 Defer[G[x]]]}, a*(x + y)]
In[2490]:= G[90, 500]

V.Z. Aladjev, V.A. Vaganov

 242

Out[2490]= 590 G[90]
In[2491]:= G[x_, y_] := Module[{a = If[PrimeQ[x], NextPrime[y], Abort[]]},
 a*(x + y)]
In[2492]:= G[90, 500]
Out[2492]= $Aborted

The concept of modules in the context of the mechanism of local variables
quite closely is adjoined the objects of block type, whose organization has
the following kind, namely:

Block[{a, b, c, ...}, Body] – Body is evaluated, using local values for variables
{a, b, c, ...};
Block[{a = a0, b = b0, c = c0, …}, Body] – Body at initial values for variables
{a, b, c, ...} localized in the block is evaluated.

In modular structure local variables are such by definition whereas in block
structure the variables, defined as local, operates only within the block. At
that, if to them in the block aren't ascribed values, they accept values of the
variables of the same name that are external with respect to the block, while
in case of assignment of values by it in the block, values of the variables of
the same name outside of the block remain without change. Therefore, by
this circumstance the mechanisms of local variables of modules and blocks
enough significantly differ.

For this reason, speaking about procedures of types {"Module", "Block"},
we have to analyze block objects regarding character of their local variables,
namely: lack of local variables or existence for each local variable of initial
value says that this object can be considered as the procedure that receives
at a call an information only from the actual arguments. On such principle
our tests considered here and in our books [30-32] for check of a block to be
as an actual procedure are built. Thus, the general rule for a block structure
is defined by the principle – the variables located outside of a block, until
the block and after the block, save the values, acting in relation to the block
as global variables whereas in the block the variables of the same name can
arbitrarily change the values according to the demanded algorithm.

As it was noted above, the local variable b in a structure Module[{b}, Body]
correlates with a unique symbol that is modified every time when the given
module is used; the given symbol differs from the global name b. Whereas

Extension of Mathematica system functionality

 243

the variable b in a structure Block[{b}, Body] is global variable outside of the
block, it in the course of performance of the block can accept any values but
by exit from the block restores a value that it had on entrance to the block. If
in case of a Module–construction the local variables in such procedure body
are especially temporary, in a Block–construction they aren't considered as
such. Without going into detail, we only will note that for providing of the
robustness of procedures it is recommended to program them, generally, on
the basis of Module-constructions, or on the basis of Block-constructions for
which there are no local variables or all local variables have initial values.

Meanwhile, it should be noted, within of modular structure a mechanism of
localization of global variables can be quite realized similarly to mechanism
used in a block structure; two variants have been offered in [32]. Moreover,
also other variants of realization of the mechanism of localization of global
variables that are used by blocks, and on the basis of other approaches one
of which is considered in [30] are possible. In this regard quite appropriate
to note, that there is quite simple and universal mechanism of work with
global variables in the body of procedures keeping their values at the time
of an entrance to procedure and of an exit from it. Formally its essence can
be presented visually on the basis of the following rather simple scheme:

h = x; G[x_, y_, …] := Module[{b = h, …}, Body<h, …, {h = b, Res}[[–1]]>]

Suppose, outside of the body of a procedure G the global variable h, used in
the procedure as a local variable, received a value x. The local variable b of
the procedure G receives x as an initial value, keeping it upto each potential
exit from the procedure. In the future, the algorithm realized by procedure
body can use the variable h arbitrarily, and only each possible exit from the
procedure G along with return of a result (Res) has to provide assignment to
variable h of its initial value x upto exit from the procedure. A quite simple
example rather visually illustrates the described mechanism of use of global
variables in a procedure body at the local level, namely:

In[2517]:= h = 90; P[x_] := Module[{a = h, R}, h = 6; R = h*x; {h = a, R}[[–1]]]
In[2518]:= {P[500], h}
Out[2518]= {3000, 90}

Thus, the block constructions allow to determine effectively "environment" in
which it is temporarily possible to change values of global variables; global

V.Z. Aladjev, V.A. Vaganov

 244

variables are used by a block body as local variables, and only on exit from
the block they restore own values upto entrance to the block. In the general
understanding, the block structures serve as certain "fields" of the current
session in which the values changes of the variables located outside of these
areas without change of their values outside of such areas is admissible, i.e.
some kind of localization of global variables of the current session in certain
fields of computing space in general is provided. The given possibility was
used rather effectively in a number of means composing our AVZ_Package
package [48]. At that, the block structure is implicitly used in realization of
a number of the Mathematica functions, e.g. Do, Table, Product, Sum, etc.,
mainly, of iterative type for localization of variables of indexing as visually
illustrates a very simple example, namely:

In[2520]:= n := 90; {{Sum[n^2, {n, 18}], n}, {Product[n, {n, 25}], n}}
Out[2520]= {{2109, 90}, {15 511 210 043 330 985 984 000 000, 90}}

As a rule, the system considers any variable, determined by the user in the
current session if the opposite isn't specified as a global variable. However,
in certain cases is required to localize a global variable for some period, that
the block structure quite successfully allows to make. At the same time it
should be noted once again, the variables localized in a block only then are
ноу local variables if in the block the values are ascribed to them; otherwise
their values in the block will coincide with values of the variables of the same
name that are external relative to the block. Thus, if for a localized variable
in a block an initial value wasn't defined, real localization for such variable
isn't made. Thus, in certain cases it makes sense to create procedural objects
on a basis of both the modular, and the block organization. Therefore, in a
general sense under procedural objects in the Mathematica system it is quite
possible to consider the objects, created as on the basis of the modular, and
block organizations on condition of fulfillment by the block organization of
the mentioned conditions – absence for it of the local variables or existence
for each local variable of an initial value. We will represent some means of
manipulation with local variables of modules and blocks playing essential
enough part in various problems of procedural programming.

First of all, it is very desirable to have the means for determination of local
variables of blocks and modules which are absent among standard means
of the Mathematica system. As the similar means, it is possible to consider

Extension of Mathematica system functionality

 245

Locals procedure whose source code with examples of usage the following
fragment represents. This procedure is intended for evaluation of the local
variables of the user blocks and modules.

In[2538]:= M[x_, y_] := Module[{a = 90, b = 500}, (x + y)*(a + b)];
 M[x_] := x; M[x_/; IntegerQ[x]] := Block[{}, x^2];
 M[x_Integer, y_ /; ListQ[y]] := Block[{a, b = 90}, x^2];
 P[x__] := Module[{a = h, R}, h = 90; R = h*x; {h = a, R}[[–1]]]

In[2539]:= Locals[x_ /; BlockFuncModQ[x], R___] := Module[{c, d = {}, p, t,
 a = Flatten[{PureDefinition[x]}], b = Flatten[{HeadPF[x]}], k = 1, Sg},
 Sg[y_String] := Module[{h = 1, v = {}, j, s = "", z = StringLength[y] – 1},
 Label[avz]; For[j = h, j <= z, j++, s = s <> StringTake[y, {j, j}];
 If[! SameQ[Quiet[ToExpression[s]], $Failed] &&
 StringTake[y, {j + 1, j + 1}] == ",", AppendTo[v, s];
 h = j + 3; s = ""; Goto[avz]]];
 AppendTo[v, s <> StringTake[y, {–1, –1}]];
Map[If[Quiet[StringTake[#, {1, 2}]] === ", ", StringTake[#, {3, –1}], #] &, v]];
 c = Flatten[Map[Map3[StringJoin, #, {" := ", " = "}] &, b]];
 c = Map[StringReplace[#, Map[Rule[#, ""] &, c]] &, a];
 For[k, k <= Length[a], k++, p = c[[k]];
 If[SuffPref[p, "Module[{", 1], t = 8,
 If[SuffPref[p, "Block[{", 1], t = 7, t = 0; AppendTo[d, "Function"]]];
 If[t != 0, AppendTo[d, SubStrSymbolParity1[StringTake[p,
 {t, –1}], "{", "}"][[1]]]]; Continue[]];
 d = Map[StringReplace[#, {"{" –> "{$$90$$", ", " –> ", $$90$$",
 "= " –> "= $$90$$"}] &, d];
 d = Map[If[MemberQ[{"Function", "{}"}, #], #,
 Sg[StringTake[#, {2, –2}]]] &, d];
 d = Map[If[FreeQ[Quiet[ToExpression[#]],
 $Failed], #, StringJoin1[#]] &, d];
 d = Map[If[# === {""}, "{}", #] &,
 Mapp[StringReplace, d, {"$$90$$" –> "", "\\" –> ""}]];
 Map[Remove, Names["`$$90$$*"]]; d = If[Length[d] == 1, Flatten[d], d];

V.Z. Aladjev, V.A. Vaganov

 246

 If[{R} != {} && ! HowAct[R], If[d === {"{}"}, R = {}, {b, k, R} = {d, 1, {}};
 While[k <= Length[b], p = b[[k]]; AppendTo[R, If[MemberQ[{"{}",
 "Function"}, p], p,
 If[StringQ[p], If[StringFreeQ[p, " = "], {p, "No"}, StringSplit[p, " = "]],
 Map[If[StringFreeQ[#, " = "], {#, "No"},
 StringSplit[#, " = "]] &, p]]]]; k++];
 R = If[NestListQ[R] && Length[R] == 1, R[[1]], R]]]; If[d === {"{}"}, {}, d]]

In[2540]:= Locals[M]
Out[2540]= {{"a", "b = 90"}, {"a = 90", "b = 500"}, "{}", "Function"}
In[2541]:= Locals[P]
Out[2541]= {"a = h", "R"}
In[2542]:= Map[Locals, {ModuleQ, Definition2, Locals}]
Out[2542]= {{"a = PureDefinition[x]", "b"}, {"a", "b = Attributes[x]", "c"},
 {"c", "d = {}", "p", "t", "a = Flatten[{PureDefinition[x]}]",
 "b = Flatten[{HeadPF[x]}]", "k = 1", "Sg"}}
In[2543]:= G[x_, y_] := Module[{a = If[PrimeQ[x], NextPrime[y],
 If[PrimeQ[y], NextPrime[x], z]]}, a*(x + y)]; Locals[G]
Out[2543]= {"a = If[PrimeQ[x], NextPrime[y], If[PrimeQ[y],
 NextPrime[x], z]]"}
In[2544]:= Locals[P, t]
Out[2544]= {"a = h", "R"}
In[2545]:= t
Out[2545]= {{"a", "h"}, {"R", "No"}}
In[2546]:= Locals[M, t1]
Out[2546]= {{"a", "b = 90"}, {"a = 90", "b = 500"}, "{}", "Function"}
In[2547]:= t1
Out[2547]= {{{"a", "No"}, {"b", "90"}}, {{"a", "90"}, {"b", "500"}}, "{}", "Function"}
In[2548]:= Z[x_] := x; Z[x_, y_] := x + y; Z[x_, y_, z_] := x + y + z; Locals[Z, t2]
Out[2548]= {"Function", "Function", "Function"}
In[2549]:= t2
Out[2549]= {"Function", "Function", "Function"}
In[2550]:= Locals[G, t3]
Out[2550]= {"a = If[PrimeQ[x], NextPrime[y],
 If[PrimeQ[y], NextPrime[x], z]]"}

Extension of Mathematica system functionality

 247

In[2551]:= t3
Out[2551]= {"a", "If[PrimeQ[x], NextPrime[y],
 If[PrimeQ[y], NextPrime[x], z]]"}

In[2552]:= B[x_] := Module[{a}, x]; {Locals[B, t4], t4}
Out[2552]= {{"a"}, {"a", "No"}}

In[2553]:= V[x_] := Module[{a, b, c, d}, x]; Locals[V, t5]
Out[2553]= {"a", "b", "c", "d"}

In[2554]:= t5
Out[2554]= {{"a", "No"}, {"b", "No"}, {"c", "No"}, {"d", "No"}}

In[2555]:= B1[x_] := Module[{}, x]; {Locals[B1, t6], t6}
Out[2555]= {{}, {}}

The presented Locals procedure on functionality covers both the procedure
of the same name, and the Locals1 procedure that are considered in [30-32].
The procedure call Locals[x] returns the list whose elements in string format
represent local variables of a block or a module x together with their initial
values. While the call Locals[x, y] with the second optional argument y – an
undefinite variable – provides in addition return through y or of the simple
2-element list, or the list of ListList-type with 2-element sublists whose first
elements determine names of local variables of a block/module x in string
format, whereas the second element – the initial values, ascribed to them in
string format; absence of initial values is defined by the "No" symbol. If an
object x has no local variables, the procedure call Locals[x, y] returns empty
list, i.e. {}, the same result is returned thru the second optional argument y.
Moreover, on typical function the call of the procedure returns "Function".
The procedure is widely used in problems of manipulation by local variables.

In[2352]:= StringJoin1[x_ /; ListQ[x] &&
 DeleteDuplicates[Map[StringQ, x]] == {True}] :=
 Module[{a = x, b = Length[x], c = "", k = 1},
 While[k <= b – 1, c = c <> a[[k]] <> ", "; k++]; c <> a[[–1]]]

In[2353]:= StringJoin1[{"Avz", "Agn", "Vsv", "Art", "Kr"}]
Out[2353]= "Avz, Agn, Vsv, Art, Kr"

In[2354]:= StringJoin1[{"Avz", 90, x + y, "Art", Sin}]
Out[2354]= StringJoin1[{"Avz", 90, x + y, "Art", Sin}]

V.Z. Aladjev, V.A. Vaganov

 248

The definition of the Locals procedure along with standard means uses and
our means such as BlockFuncModQ, PureDefinition, SuffPref, HowAct,
HeadPF, Mapp, Map3, NestListQ, SubStrSymbolParity1 considered in the
present book and in [28-33]. At that, for realization of this procedure along
with the mentioned means the expediency became clear to define a simple
StringJoin1 procedure for the purpose of special processing of strings lists
which is a modification of the standard StringJoin function. The procedure
call StringJoin1[x] returns result of consecutive concatenation of the string
elements of a list x that are separated by commas as very visually illustrates
a example of the previous fragment with source code of this procedure. The
StringJoin1 procedure belongs to group of the means operating with string
structures, however it is considered exactly here in the context of the Locals
procedure; the given procedure has a rather wide range of appendices.

Meanwhile, in certain cases it is required to define only the list of names of
local variables irrespectively from the initial values ascribed to them. The
Locals1 procedure replacing 2 former procedures Locals1 and Locals2 [30]
can be used for this purpose. The call Locals1[x] returns the list of names in
string format of local variables of a block or a module x; in case of absence
of local variables for an object x the procedure call returns the empty list, i.e.
{}. Furthermore, in case of an object of the same name x which contains the
subobjects of the same name with different headings a nested list is returned
whose elements are bijective with subobjects x, according to their order at
application of the PureDefinition procedure to the object x. The following
fragment represents source code of the Locals1 procedure along with the
most typical examples of its usage.

In[2587]:= Locals1[x_ /; BlockFuncModQ[x]] := Module[{a, b = {}, c, k = 1, kr},
 kr[y_List] := Module[{d = {}, v = Flatten[y], j = 1},
 While[j <= Length[v]/2, AppendTo[d, v[[2*j – 1]]]; j++]; d];
 ClearAll[a]; Locals[x, a];
 If[NestListQ1[a], For[k, k <= Length[a], k++, c = a[[k]];
 AppendTo[b, If[MemberQ[{"{}", "Function"}, c], c, kr[c]]]];
 If[StringQ[PureDefinition[x]], Flatten[b], b], kr[a]]]

In[2588]:= Locals1[P]
Out[2588]= {"a", "R"}

Extension of Mathematica system functionality

 249

In[2589]:= Locals1[G]
Out[2589]= {"a"}
In[2590]:= Locals1[M]
Out[2590]= {{"a", "b"}, {"a", "b"}, "{}", "Function"}

For examples of this fragment the means, given in the fragment above, that
represents the Locals procedure, have been used. Right there we will note
that the Locals1 procedure represents one of the most effective means in the
problems of processing of local variables of blocks and modules.

As one more useful means of this kind it is possible to note also the Locals2
procedure that should be preceded by the procedure, in many cases useful
and intended for testing of the objects of the same name which have several
definitions of various type. The procedure call QBlockMod[x] returns True
if definitions of an object x have type {Module, Block}, and False otherwise.
This procedure assumes that in the presence among definitions of x of the
definitions of other type, such object in general can't be considered by the
object of type {Module, Block}. It allows to allocate from the objects of the
same name the objects of type {Module, Block}. The fragment represents
source code of the QBlockMod procedure with examples of its typical use.

In[2585]:= M[x_, y_] := Module[{a = 90, b = 500}, (x + y)*(a + b)]; M[x_] := x;
 A[m_, n_] := Module[{a = 42.72, b = {m, n=90}}, h*(m+n+p)/(a+b)];
 A[m_] := Block[{a = 42.72, b = {m, n = 90}, q, t}, h*(m+n+p)/(a+b)]

In[2586]:= QBlockMod[x_] := Module[{a = Flatten[{PureDefinition[x]}], b,
 c = True, k = 1},
 If[MemberQ[{"System", $Failed}, a[[1]]], False, b = Flatten[{HeadPF[x]}];
 While[k <= Length[a],
 If[! SuffPref[StringReplace[a[[k]], b[[k]] <> " := " –> "", 1],
 {"Module[{", "Block[{"}, 1], c = False; Break[]]; k++]; c]]

In[2587]:= A[x_] := Block[{}, x^3]; QBlockMod[M]
Out[2587]= False
In[2588]:= Map[QBlockMod, {ProcQ, A, ToString1, StrStr, 500, Sin}]
Out[2588]= {True, True, True, False, False, False}

In the context of the previous QBlockMod procedure the following Locals2
procedure on objects x of the type {Module, Block} returns the nested list of

V.Z. Aladjev, V.A. Vaganov

 250

their local variables in string format without initial values assigned to them
if the object x contains several definitions, otherwise simple list is returned.
The following fragment represents the procedure code along with examples
of its usage; these examples are tooken from the previous fragment.

In[2710]:= Locals2[x_ /; QBlockMod[x]] := Module[{c={}, d, p, h={}, k=1, j=1,
 a = Flatten[{PureDefinition[x]}], b = Flatten[{HeadPF[x]}]},
 While[k <= Length[a], AppendTo[c, d = StringReplace[a[[k]],
 Mapp[Rule, Map[b[[k]] <> " := " <> # &, {"Module[", "Block["}], ""], 1];
 Quiet[SubStrSymbolParity[d, "{", "}", 1][[–1]]]]; k++];
 While[j <= Length[c], p = c[[j]];
 p = Map[ToString, ToExpression[StringReplace[p,
 {", " –> "$$90$$, ", " = " –> "$$90$$ –> "}]]];
 p = If[Length[p] == 1, p[[1]], p]; p = Map[If[StringFreeQ[#, " –> "],
 StringReplace[#,"$$90$$" –> ""], StringReplace[StringTake[#,
 {1, Flatten[StringPosition[#, " –> "]][[1]] – 1}], ""$$90$$" –> ""]] &, p];
 AppendTo[h, p]; j++]; If[Length[h] == 1, h[[1]], h]]

In[2711]:= Locals2[A]
Out[2711]= {{"a", "b"}, {"a", "b"}, {"a", "b", "q", "t"}}
In[2712]:= Locals2[M]
Out[2712]= Locals2[M]

In a number of cases there is a need of dynamic extension of the list of local
variables for a block/module that is activated in the current session, without
change of the object code on the storage medium. The ExpLocals procedure
presented by the following fragment solves the problem. So, the procedure
call ExpLocals[x, y] returns the list of local variables in string format with
the initial values ascribed to them on which local variables of an object x are
expanded. At that, generally speaking this list can be less than a list y given
at the procedure call (or at all empty) because the variables that are available
in the object x as formal arguments or local variables are excluded from it.

In[2757]:= ExpLocals[P_ /; ModuleQ[P] || BlockQ[P], L_ /; ListQ[L] &&
 DeleteDuplicates[Map[StringQ, L]] == {True}] :=
 Module[{a = Flatten[{PureDefinition[P]}][[1]], b = Locals1[P],
 c = Args[P, 90], d, p, p1, h, Op = Options[P], Atr = Attributes[P]},

Extension of Mathematica system functionality

 251

 Quiet[d = Map[If[StringFreeQ[#, {" = ", "="}], #,
 StringSplit[#, {" = ", "="}][[1]]] &, L];
 p = Locals[P]; h = MinusList1[d, Flatten[{b, c}]];
 If[h == {}, Return[{}]];
 h = Flatten[Map[Position[d, #] &, h]];
 d = Join[p, c = Map[L[[#]] &, h]];
 ToExpression["ClearAllAttributes[" <> ToString[P] <> "]"]; ClearAll[P];
 ToExpression[StringReplace[a, ToString[p] –> ToString[d], 1]]];
 If[Op != {}, SetOptions[P, Op]]; SetAttributes[P, Atr]; c]

In[2758]:= Avz[x_] := Module[{a = 90, b, c}, a + x^2];
 SetAttributes[Avz, Protected]; Agn[x_] := Module[{}, {x}];
 Z[x_ /; IntegerQ[x]] := Module[{a, b, c, d}, {a, b, c, d}[[x]]]
In[2759]:= ExpLocals[Agn, {"x", "a = c + d", "b", "Art = 25", "Sv", "Kr = 18"}]
Out[2760]= {"a = c + d", "b", "Art = 25", "Sv", "Kr = 18"}
In[2761]:= Definition[Agn]
Out[2761]= Agn[x_] := Module[{a = c + d, b, Art = 25, Sv, Kr = 18}, {x}]
In[2762]:= ExpLocals[Avz, {"x", "a = c+d", "b", "Art = 25", "Sv", "Kr = 18"}]
Out[2762]= {"Art = 24", "Sv", "Kr = 16"}
In[2763]:= Definition[Avz]
Out[2763]= Attributes[Avz] = {Protected}
 Avz[x_] := Module[{a = 90, b, c, Art = 25, Sv, Kr = 18}, a + x^2]
In[2764]:= ExpLocals[Avz, {"x", "a = c+d", "b", "Art = 25", "Sv", "Kr = 18"}]
Out[2764]= {}
In[2765]:= ExpLocals[Z, {"m = 90", "n = 500", "p = 72"}]
Out[2765]= {"m = 90", "n = 500", "p = 72"}
In[2766]:= Definition[Z]
Out[2766]= Z[x_ /; IntegerQ[x]] := Module[{a, b, c, d, m = 90, n = 500, p = 72},
 {a, b, c, d}[[x]]]

The above fragment contains source code of the ExpLocals procedure with
examples of its application to very simple procedures Agn, Avz and Z for
the purpose of extension of their list of local variables the part of which has
initial values; at that, in the second procedure the list of local variables is the
empty whereas for the first procedure there is a nonempty crossing of the
joint list of formal arguments and local variables with the list of variables on

V.Z. Aladjev, V.A. Vaganov

 252

which it is necessary to expand the list of local variables of the procedure. If
the joint list coincides with a list y, the procedure call returns the empty list,
i.e. {}, without changing an initial object x in the current session. It must be
kept in mind that elements of the list y need to be coded in string format in
order to avoid assignment of values to them of variables of the same name
of the current session and/or calculations according to initial values ascribed
to them. The result of a modification of an initial object x preserves options
and attributes of the initial object x.

It is known that activation in the current session of a module or a block in
the field of names of variables of the system adds all their local variables as
illustrates a simple example, namely:

In[2582]:= Mb[x_] := Block[{Art = 25, Kr = 18, Sv = 47}, x]; Mb[90];
In[2583]:= B[x_] := Block[{Art1 = 25, Kr1 = 18, Sv1 = 47}, x]; B[500];
In[2584]:= Names["`*"]
Out[2584]= {"Art", "Art1", "B", "Kr", "Kr1", "Mb", "Sv", "Sv1"}

Therefore, economical use of the local variables is quite important problem.
Meanwhile, in the course of programming of blocks/modules quite really
emersion of so-called excess local variables. The RedundantLocals procedure
which is based on the ProcBMQ procedure, in a certain degree solves this
problem. The following fragment represents source code of the procedure.

In[2571]:= RedundantLocals[x_ /; BlockFuncModQ[x]] := Module[{a, b, c,
 p, g, k = 1, j, v, t = {}, z = ""},
 {a, b} = {PureDefinition[x], Locals1[x]};
 If[StringQ[a],
 If[b == {}, True, p = Map[#[[1]] &, StringPosition[a, {"} = ", "} := "}]];
 p = Select[p, ! MemberQ[{"{\"}", " \"}"}, StringTake[a, {# – 2, #}]] &];
 c = Map[Map3[StringJoin, #, {" := ", " = "}] &, b];
 g = Select[b, StringFreeQ[a, Map3[StringJoin, #, {" := ", " = "}]] &];
 While[k <= Length[p], v = p[[k]];
 For[j = v, j >= 1, j––, z = StringTake[a, {j, j}] <> z;
 If[! SameQ[Quiet[ToExpression[z]], $Failed],
 AppendTo[t, z]]]; z = ""; k++];
 t = MinusList[g, Flatten[Map[StrToList, t]]];

Extension of Mathematica system functionality

 253

 If[t == {}, t, p = Select[Map[" " <> # <> "[" &, t], ! StringFreeQ[a, #] &]; g = {};
 For[k = 1, k <= Length[p], k++, v = StringPosition[a, p[[k]]];
 v = Map[#[[2]] &, v]; z = StringTake[p[[k]], {2, –2}]; c = 1;
 For[j = c, j <= Length[v], j++,
 For[b = v[[j]], b <= StringLength[a], b++,
 z = z <> StringTake[a, {b, b}];
 If[! SameQ[Quiet[ToExpression[z]], $Failed], AppendTo[g, z];
 c = j + 1; z = StringTake[p[[k]], {2, –2}]; Break[]]]]];
 MinusList[t, Map[HeadName[#] &, Select[g, HeadingQ1[#] &]]]]],
 "Object <" <> ToString[x] <> "> has multiple definitions"]]

In[2572]:= Map[RedundantLocals, {ProcQ, Locals1, RedundantLocals}]
Out[2572]= {{"h"}, {"a"}, {}}
In[2573]:= Vsv[x_, y_] := Module[{a, b, c = 90, d, h}, b = 500;
 d[z_] := z^2 + z + 500; h[t_] := Module[{}, t]; d[c + b] + x + y + h[x*y]]
In[2574]:= RedundantLocals[Vsv]
Out[2574]= {"a"}
In[2575]:= Map[RedundantLocals, {ProcQ, Globals, RedundantLocals,
 Locals, Locals1}]
Out[2575]= {{"h"}, {}, {}, {}, {"a"}}

In[3384]:= RedundantLocalsM[x_ /; BlockFuncModQ[x]] := Module[{d,
 b = {}, k = 1, c = ToString[Unique["g"]],
 a = Flatten[{PureDefinition[x]}]},
 While[k <= Length[a], d = c <> ToString[x];
 ToExpression[c <> a[[k]]];
 AppendTo[b, If[QFunction[d], "Function", RedundantLocals[d]]];
 ToExpression["ClearAll[" <> d <> "]"]; k++]; Remove[c];
 If[Length[b] == 1, b[[1]], b]]

In[3385]:= Vsv[x_, y_] := Module[{a, b, c=90, d, h}, b=500; d[z_] := z*x+500;
 h[t_] := Module[{}, t]; d[c+b]+x+y+h[x*y]];
 Vsv[x_, y_, z_] := Module[{a, b, c=90, d, h}, a=6; d[p_] := z+p+500;
 h[t_] := Module[{}, t]; d[c+b]+x+y+h[x*y*z]]; Vsv[x_] := x
In[3386]:= RedundantLocalsM[Vsv]
Out[3386]= {{"a"}, {"b"}, "Function"}

V.Z. Aladjev, V.A. Vaganov

 254

The procedure call RedundantLocals[x] returns the list of local variables in
string format of a block or a module x which the procedure considers excess
variables in the context, what both the initial values, and the values in body
of the object x weren't ascribed to them, or these variables aren't names of
the internal functions or modules/blocks defined in body of the object x. At
that, the local variables, used as an argument at the call of one or the other
function in the body of an object x (in particular, it takes place for our Locals1
procedure that uses the call Locals[x, a] in which thru the 2nd optional argument
a – an undefinite variable – return of additional result is provided) also can get in
such list. We will note, that the given procedure like the previous ProcBMQ
procedure is oriented on single objects, whose definitions are unique while
on the objects of the same name the call prints the message "Object <x> has
multiple definitions". Meanwhile, unlike the previous ProcBMQ procedure,
the RedundantLocals procedure quite successfully processes also objects
containing in their bodies the definitions of typical functions (with headings),
modules and blocks. However, the considering of this moment as a certain
shortcoming of the ProcBMQ procedure isn't quite competent, discussion of
that can be found in our books [32,33].

The RedundantLocalsM procedure completes the previous fragment, this
procedure expands the RedundantLocals onto the objects of the same name.
The call RedundantLocalsM[x] on a single object {Block, Module} is similar
to the call RedundantLocals[x] whereas on a traditional function "Function"
is returned; on an object x of the same name {block, traditional function, module}
the list of results of application of the RedundantLocals to all subobjects of
the object x is returned. Meanwhile, results of calls of the above procedures
RedundantLocals and RedundantLocalsM suggest the additional analysis
of an object x concerning the excess local variables, i.e. these procedures can
be considered as rather effective means for the preliminary analysis of the
blocks/modules regarding an exception of excess local variables. As shows
our experience, in most important cases the results of use of the procedures
RedundantLocals and RedundantLocalsM can be considered as ultimate,
without demanding any additional researches of an analyzed object.

At that, in the Mathematica system the evaluation of definitions of modules
and blocks containing the duplicated local variables is made quite correctly
without initiation of any erroneous or special situations which arise only at

Extension of Mathematica system functionality

 255

the time of a call of a block and a module, initiating erroneous situation of
Block::dup and Module::dup respectively, with return of the block/module
call unevaluated. Meanwhile, the mechanism of identification of a duplicated
local variable h isn't clear because in the list of local variables in definition of
the Proc procedure at first the variables a and d are located as rather visually
illustrates the following quite simple fragment. For the purpose of definition
of the fact of duplication of local variables in definitions of objects like block
or module that are activated in the current session, the procedure has been
created, whose call DuplicateLocalsQ[x] returns True in case of existence in
definition of a procedure x of duplication of local variables, otherwise False
is returned. At that, in case of return of True thru the 2nd optional argument
y – an undefinite variable – simple list or list of ListList-type is returned whose
elements define names of the duplicated local variables with multiplicities
of their entries into the list of local variables. The next fragment represents
source code of the DuplicateLocalsQ procedure and examples of its usage.

In[2560]:= Proc[x__] := Module[{a, y, d={x}, h, c, h, d, a=6, h=2, с=7, a}, a*d]
In[2561]:= Proc[90, 500]
Module::dup: Duplicate local variable h found in local variable specification
 {a, y, d = {90, 500}, h, c, h, d, a = 6, h = 2, с = 7, a} >>
Out[2561]= Module[{a, y, d = {90, 500}, h, c, h, d, a = 6, h = 2, с = 7, a}, a*d]
In[2562]:= Blok[x__] := Block[{a, y, d = {x}, h, c, h, d, a = 6, h = 2, с = 7, a}, a*d]
In[2563]:= Blok[90, 500]
Block::dup: Duplicate local variable h found in local variable specification
 {a, y, d = {90, 500}, h, c, h, d, a = 6, h = 2, с = 7, a} >>
Out[2563]= Block[{a, y, d = {90, 500}, h, c, h, d, a = 6, h = 2, с = 7, a}, a*d]

In[2564]:= DuplicateLocalsQ[P_ /; BlockModQ[P], y___] := Module[{a,
 b = Locals1[P]},
 If[b == {}, False, b = If[NestListQ[b], b[[1]], b];
 a = Select[Gather2[b], #[[2]] > 1 &];
 If[a == {}, False, If[{y} != {} && ! HowAct[y], y = a]; True]]]

In[2565]:= {DuplicateLocalsQ[Proc, y], y}
Out[2565]= {True, {{"a", 3}, {"d", 2}, {"h", 3}}}
In[2566]:= B[x_, y_] := Module[{a = 6}, a*x*y]; {DuplicateLocalsQ[B, t], t}
Out[2566]= {False, t}

V.Z. Aladjev, V.A. Vaganov

 256

In[2590]:= Proc[x_] := Module[{a, y, d = {x}, h, c, h, d, a = 6, h = 2, c = 7, a}, a*d];
 Proc1[x_] := Module[{}, {x}]; Proc2[x_] := Module[{a, a = 500}, a*x];
 Blok42[x_] := Block[{a, y, d = {x}, h, c, h, d, a=6, h=2, c=7, a}, a*d];

In[2591]:= DuplicateLocals[x_ /; BlockModQ[x]] := Module[{a = Locals1[x]},
 a = Select[Map[{#, Count[a, #]} &, DeleteDuplicates[a]], #[[2]] > 1 &];
a=Sort[a, ToCharacterCode[#1[[1]]][[1]] < ToCharacterCode[#2[[1]]][[1]] &];
 If[Length[a] > 1 || a == {}, a, a[[1]]]]

In[2592]:= DuplicateLocals[Proc]
Out[2592]= {{"a", 3}, {"c", 2}, {"d", 2}, {"h", 3}}
In[2593]:= DuplicateLocals[Proc1]
Out[2593]= {}
In[2594]:= DuplicateLocals[Proc2]
Out[2594]= {"a", 2}
In[2595]:= DuplicateLocals[Blok42]
Out[2595]= {{"a", 3}, {"c", 2}, {"d", 2}, {"h", 3}}

The DuplicateLocals procedure completes the previous fragment, its call
DuplicateLocals[x] returns the simple or the nested list the first element of
a list or sublists of which defines a name in string format of a multiple local
variable of a block/module x while the second defines its multiplicity. In the
absence of multiple local variables the empty list, i.e. {} is returned. In this
regard a certain interest a procedure presents whose call DelDuplLocals[x]
returns the name of a module/block x, reducing its local variables of the same
name to 1 with activation of the updated definition x in the current session.
Whereas the call DelDuplLocals[x, y] with the second optional argument y –
an undefinite variable – through y returns the list of excess local variables. At
that, first of all only simple local variables (without initial values) are reduced.
This procedure well supplements the previous DuplicateLocals procedure.
The next fragment represents source code of the DelDuplLocals procedure
along with examples of its typical usage.

In[2657]:= Ag[x_, y_] := Module[{a, b, b = 90, c, b = 73, c = 500, c, d},
 (a*b + c*d)*(x + y)]; Av[x_] := Block[{a = 90, a = 500}, a*x];
In[2658]:= As[x_] := Module[{a, b, c, a, c}, x]
In[2659]:= SetAttributes[Ag, {Protected, Listable}]; Art[x_] := Module[{}, x]

Extension of Mathematica system functionality

 257

In[2660]:= DelDuplLocals[x_ /; BlockModQ[x], y___] := Module[{b = {}, d,
 c = {}, a = Locals[x], p},
 If[a == {}, x, d = Attributes[x]; ClearAttributes[x, d];
 Map[If[StringFreeQ[#, "="], AppendTo[b, #], AppendTo[c, #]] &, a];
 b = DeleteDuplicates[b];
 c = DeleteDuplicates[Map[StringSplit[#, " = ", 2] &, c], #1[[1]] == #2[[1]] &];
 p = Map[#[[1]] &, c]; b = Select[b, ! MemberQ[p, #] &];
 c = Map[StringJoin[#[[1]], " = ", #[[2]]] &, c];
 b = StringRiffle[Join[b, c], ", "]; p = PureDefinition[x];
 ToExpression[StringReplace[p, StringRiffle[a, ", "] –> b, 1]];
 SetAttributes[x, d];
 If[{y} != {} && ! HowAct[y], y = MinusList[a, StrToList[b]], Null]; x]]

In[2661]:= DelDuplLocals[Ag]
Out[2661]= Ag
In[2662]:= Definition[Ag]
Out[2662]= Attributes[Ag] = {Listable, Protected}
 Ag[x_, y_] := Module[{a, d, b = 90, c = 500}, (a b + c d) (x + y)]
In[2663]:= DelDuplLocals[Av]
Out[2663]= Av
In[2664]:= Definition[Av]
Out[2664]= Av[x_] := Block[{a = 90}, a x]
In[2665]:= DelDuplLocals[As]
Out[2665]= As
In[2666]:= Definition[As]
Out[2666]= As[x_] := Module[{a, b, c}, x]
In[2667]:= DelDuplLocals[Ag, t]
Out[2667]= Ag
In[2668]:= t
Out[2668]= {"b", "c", "b = 73", "c"}

Procedure provides processing of the objects having single definitions, but
it is easily generalized to the objects of the same name. The fragment below
represents the procedure expanding the previous procedure on a case of the
blocks and modules of the same name. The procedure call DelDuplLocalsM
is completely analogous to a procedure call DelDuplLocals[x, y].

V.Z. Aladjev, V.A. Vaganov

 258

In[2717]:= Ag[x_, y_] := Module[{a, b, b = 90, c, b = 73, c = 500, c, d},
 (a*b + c*d)*(x + y)]; Ag[x_] := Block[{a, b, b = 90, c, c = 500}, a*b*c*x]
In[2718]:= Ag[x_, y_, z_] := Module[{a = 73, a, b, b = 90, c = 500, c},
 a*x + b*y + c*z]; SetAttributes[Ag, {Protected, Listable}]
In[2719]:= Definition[Ag]
Out[2719]= Attributes[Ag] = {Listable, Protected}
 Ag[x_, y_] := Module[{a, b, b = 90, c, b = 73, c = 500, c, d}, (a b + c d) (x + y)]
 Ag[x_] := Block[{a, b, b = 90, c, c = 500}, a b c x]
 Ag[x_, y_, z_] := Module[{a = 73, a, b, b = 90, c = 500, c}, a x + b y + c z]

In[2720]:= DelDuplLocalsM[x_ /; BlockModQ[x], y___] := Module[{b, d, p,
 a = Flatten[{PureDefinition[x]}], h = ToString[x], c = {}, z = {}},
 If[Length[a] == 1, DelDuplLocals[x, y],
 If[{y} != {} && ! HowAct[y] || {y} === {}, b = Attributes[x];
 ClearAttributes[x, b], Return[Defer[DelDuplLocalsM[x, y]]]];
 Map[{AppendTo[c, d = ToString[Unique["vgs"]]],
 ToExpression[StringReplace[#, h <> "[" –> d <> "[", 1]]} &, a];
 p = Map[PureDefinition[#] &, Map[{DelDuplLocals[#, y],
 Quiet[AppendTo[z, y]], Clear[y]}[[1]] &, c]];
 ToExpression[Map[StringReplace[#, GenRules[Map[# <> "[" &, c],
 h <> "["], 1] &, p]]; SetAttributes[x, b]; Map[Remove[#] &, c];
 If[{y} != {}, y = z, Null]; x]]

In[2721]:= DelDuplLocalsM[Ag, w]
Out[2721]= Ag
In[2722]:= Definition[Ag]
Out[2722]= Attributes[Ag] = {Listable, Protected}
 Ag[x_, y_] := Module[{a, b, b = 90, c, b = 73, c = 500, c, d}, (a b + c d) (x + y)]
 Ag[x_] := Block[{a, b, b = 90, c, c = 500}, a b c x]
 Ag[x_, y_, z_] := Module[{a = 73, a, b, b = 90, c = 500, c}, a x + b y + c z]
In[2623]:= w
Out[2623]= {{"b", "c", "b = 73", "c"}, {"b", "c"}, {"a", "b", "c"}}

The above tools play rather essential part at debugging modules and blocks
of rather large size, allowing on the first stages to detect the duplicated local
variables of the same name and provide their reducing to one.

Extension of Mathematica system functionality

 259

6.7. Global variables of modules and blocks; the means
of manipulation by them in the Mathematica software

Concerning the Maple-procedures the Mathematica-procedures have more
limited opportunities both relative to the mechanism of the global variables,
and on return of results of the performance. If in case of a Maple-procedure
an arbitrary variable has been declared in global–section of the description,
or which didn't receive values in the body of a procedure on the operator of
assignment ":=", or on the system assign procedure (upto release Maple 11) is
considered as a global variable, then in a Mathematica–procedure all those
variables which are manifestly not defined as local variables are considered
as the global variables. The following example rather visually illustrates the
aforesaid, namely:

In[2678]:= Sv[x_] := Module[{}, y := 72; z = 67; {y, z}]
In[2679]:= {y, z} = {42, 47}; {Sv[2015], y, z}

Out[2679]= {{72, 67}, 72, 67}

Therefore, any redefinition in a Mathematica-procedure (module or block) of
a global variable automatically redefines the variable of the same name outside
of the procedure, what demands significantly bigger attentiveness for the
purpose of prevention of possible special and undesirable situations than in
a similar situation with the Maple-procedures. Thus, the level of providing
the robustness of software in the Mathematica at using of the procedures is
represented to us a little lower of the mentioned level of the Maple system.
It should be noted that Mathematica allows definition of global variables of
the procedures by means of a quite simple reception of modification of the
mechanism of testing of the actual arguments at the time of a procedure call
as it quite visually illustrates the following very simple fragment, namely:

In[2543]:= Art[x_ /; If[! IntegerQ[x], h = 90; True, h = 500; True], y_] :=
 Module[{a = 2015}, x + y + h + a]
In[2544]:= {Art[90, 500], Art[18.25, 500]}
Out[2544]= {3105, 2623.25}
In[2545]:= Kr[x_, y_] := Module[{a = If[IntegerQ[x], 90, 500]}, x + y + a]
In[2546]:= {Kr[15.5, 500], Kr[90, 500]}
Out[2546]= {1015.5, 680}

V.Z. Aladjev, V.A. Vaganov

 260

In[2547]:= Sv[x_, y_] := Module[{a = If[IntegerQ[x] && PrimeQ[y], 90, 500]},
 x + y + a]
In[2548]:= {Sv[90, 500], Kr[18, 555]}
Out[2548]= {1090, 663}
In[2549]:= H[x_: 90, y_, z_] := Module[{}, x + y + z]
In[2550]:= {H[220, 250, 540], H[220, 250], H[540]}
Out[2550]= {1010, 560, H[540]}

In a number of cases this mechanism is a rather useful while for the Maple
the similar modification of the mechanism of testing of types of the factual
arguments at the time of a procedures call is inadmissible. Naturally, the
similar mechanism is allowed and for Maple when an algorithm defined in
the form of a test (Boolean function) of arguments is coded not in the heading
of a procedure, but it is defined by a separate type with its activation in the
current session. In such case the standard format x::test is used for a testing
of a x-argument. By natural manner we can define also the initial values of
local variables in a point of a procedure call depending on received values
of its actual arguments as illustrate two examples of the previous fragment.
At last, if the Maple system doesn't allow assignment of values by default to
intermediate arguments of a procedure, the Mathematica system allows that
rather significantly expands possibilities of programming of procedures; the
last example of the previous fragment gives a certain illustration to the told.

Meanwhile, it must be kept in mind that at using of the mechanism of return
through global variables the increased attentiveness is required in order to
any conflict situations with the global variables of the same name outside of
procedures does not arise. Since the procedures as a rule will be repeatedly
used in various sessions, the return through global variables is inexpedient.
However, to some extent this problem is solvable at using, in particular, of
the special names whose probability of emergence in the current session is
extremely small, for example, on the basis of the Unique function. In case of
creation of certain procedures of our package AVZ_Package [48] the similar
approach for return of results through global variables was used. In certain
cases this approach is quite effective.

Analogously to the case of local variables the question of determination of
existence in a procedure of global variables represents undoubted interest;
in the first case the problem is solved by the procedures Locals and Locals1

Extension of Mathematica system functionality

 261

considered above, in the second – by means of two procedures Globals and
Globals1. So, as a natural addition to Locals1 the procedure whose the call
Globals[x] returns the list of global variables in string format of a procedure
x acts. The next fragment represents source code of the Globals procedure
along with the most typical examples of its usage.

In[2522]:= Globals[P_ /; ProcBMQ[P]] := Module[{c, d = {}, p, g = {}, k = 1,
 b = ToString1[DefFunc[P]],
 a = If[P === ExprOfStr, {}, Sort[Locals1[P]]]},
 If[a == {}, Return[{}], c = StringPosition[b, {" := ", " = "}][[2 ;; –1]]];
 For[k, k <= Length[c], k++, p = c[[k]];
 AppendTo[d, ExprOfStr[b, p[[1]], –1, {" ", ",", "\"", "!", "{"}]]];
 For[k = 1, k <= Length[d], k++, p = d[[k]];
 If[p != "$Failed" && p != " ", AppendTo[g, If[StringFreeQ[p, {"{", "}"}], p,
 StringSplit[StringReplace[p, {"{" –> "", "}" –> ""}]], ","]], Null]];
 g = Flatten[g]; d = {}; For[k = 1, k <= Length[g], k++, p = g[[k]];
 AppendTo[d, If[StringFreeQ[p, {"[", "]"}], p,
 StringTake[p, {1, Flatten[StringPosition[p, "["]][[1]] – 1}]]]]; g = d;
 d = {}; For[k = 1, k <= Length[g], k++, p = g[[k]];
 AppendTo[d, StringReplace[p, {"," –> "", " " –> ""}]]];
 d = Sort[Map[StringTrim, DeleteDuplicates[Flatten[d]]]];
 Select[d, ! MemberQ[If[ListListQ[a], a[[1]], a], #] &]]

In[2523]:= Sv[x_, y_] := Module[{a, b = 90, c = 500}, a = (x^2 + y^2)/(b + c);
 {z, h} = {a, b}; t = z + h; t]; GS[x_] := Module[{a, b = 90, c = 42},
 Kr[y_] := Module[{}, y^2 + Sin[y]]; a = x^2;
 {z, h, p} = {a, b, 18}; t = z + h*Kr[18] – Cos[x + Kr[90]]; t];
 Ar[x_] := Module[{a, b = 90, c = 42, Kr, z},
 Kr[y_] := Module[{}, y^2 + Sin[y]]; a = x^2;
 {z, h, p} = {a, b, 18}; t = z + h*Kr[18] – Cos[x + Kr[90]]; t]

In[2524]:= Map[Globals, {Locals1, Locals, Globals, ProcQ, ExprOfStr, GS,
 DefFunc, Sv, Ar}]
Out[2524]= {{"d", "j", "v"}, {"h", "R", "s", "v", "z"}, {}, {}, {}, {"h", "Kr", "p", "t", "z"},
 {}, {"h", "t", "z"}, {"h", "p", "t"}}

V.Z. Aladjev, V.A. Vaganov

 262

The definition of the Globals procedure along with standard tools uses and
our means such as ProcBMQ, DefFunc, ExprOfStr, Locals1, ToString1 and
ListListQ considered in the present book and in [28-33]. It should be noted
that the procedure call Globals[P] the objects names of a procedure body to
which assignments by operators {":=", "="} are made and which differ from
local variables of a main procedure P understands as the global variables.
Therefore, the situation when a local variable of a subprocedure in a certain
procedure P can be defined by the call Globals[P] as a global variable as it
visually illustrates an example of application of the Globals procedure to
our procedures Locals and Locals1 containing the nested subprocedures Sg
and Kr respectively is quite possible. In that case some additional research is
required, or the Globals can be expanded and to this case, interesting as a
rather useful exercise. For the solution of the given problem, in particular, it
is possible to use the procedures Locals1 and Globals in combination with
the MinusList procedure [48].

One of simple enough variants of the generalization of the Globals (based on
the Globals) onto case of the nested procedures can be presented by a quite
simple procedure Globals1, whose call Globals1[x] returns the list of global
variables in string format of a procedure x; at that, actual argument x can be
as a procedure that isn't containing in the body of subprocedures of various
level of nesting, and a procedure containing such subprocedures. Also some
others interesting and useful in practical programming, the approaches for
the solution of this problem are possible. The following fragment represents
source code of the Globals1 procedure along with examples of its usage.

In[3116]:= Globals1[P_ /; ProcQ[P]] := Module[{a = SubProcs[P], b, c, d = {}},
 {b, c} = Map[Flatten, {Map[Locals1, a[[2]]], Map[Globals, a[[2]]]}];
 MinusList[DeleteDuplicates[c], b]]

In[3117]:= Map[Globals1, {Locals1, Locals, Globals, ProcQ, ExprOfStr, GS,
 DefFunc, Sv, Ar}]
Out[3117]= {{}, {"R"}, {}, {}, {}, {"h", Kr","p","t","z"}, {}, {"h","t","z"}, {"h","p","t"}}

In[3118]:= P[x_, y_] := Module[{a, b, P1, P2}, P1[z_, h_] := Module[{m, n},
 T = z^2 + h^2; T]; P2[z_] := Module[{P3}, P3[h_] := Module[{},
 Q = h^4; Q]; P3[z]]; V = x*P2[x] + P1[x, y] + P2[y]; V];
 P1[x_] := Module[{}, {c, d} = {90, 500}; c*d + x]; Map[Globals1, {P, P1}]

Extension of Mathematica system functionality

 263

Out[3118]= {{"Q", "T", "V"}, {"c", "d"}}

In[3119]:= Sv[x_, y_] := Module[{a, b = 90, c = 500}, a = (x^2 + y^2)/(b + c);
 {z, h} = {a, b}; t = z + h; gs = t^2]; Globals1[Sv]
Out[3119]= {"gs", "h", "t", "z"}

In[3120]:= LocalsGlobals[x_ /; ProcQ[x]] := {Locals[x], Globals1[x]};
 LocalsGlobals[Sv]

Out[3120]= {{"a", "b = 90", "c = 500"}, {"gs", "h", "t", "z"}}

In particular, the first example is presented for comparison of results of calls
of the procedures Globals and Globals1 on the same tuple of arguments;
so, if in the first case as the global variables of subprocedures were defined,
in the second such variables as global don't act any more. The function call
LocalsGlobals[x] returns the nested list, whose the first element – the list of
local variables with initial values if such variables exist in string format while
the second element defines the list of global variables of a procedure (block
or module) x. The ExtrNames procedure is presented as a quite useful means
at working with procedures, its initial code with examples of application is
represented by the following fragment, namely:

In[2720]:= ExtrNames[x_ /; ProcQ[x]] := Module[{a = BlockToMоdule[x], b,
 c, d, f, p = {}, g, k = 1},
 {f, a} = {ToString[Locals[x]], Locals1[x]};
 {b, c} = {HeadPF[x], PureDefinition[x]};
 g = StringReplace[c, {b <> " := Module[" –> "", ToString[f] <> ", " –> ""}];
 d = Map[If[ListQ[#], #[[1]], #] &, StringPosition[g, {" := ", " = "}]];
 For[k, k <= Length[d], k++, AppendTo[p, ExtrName[g, d[[k]], –1]]];
 p = Select[p, # != "" &]; {a, Complement[a, p], Complement[p, a]}]

In[2721]:= GS[x_] := Block[{a = 90, b, c}, b = 500; c = 6; x = a + b + c; x]
In[2722]:= ExtrNames[GS]
Out[2722]= {{"a", "b", "c"}, {"a"}, {"x"}}

In[2723]:= ExtrNames[ProcQ]
Out[2723]= {{"a", "atr", "b", "c", "d", "h"}, {"atr", "h"}, {}}
In[2724]:= ExtrNames[ExtrNames]
Out[2724]= {{"a", "f", "b", "c", "d", "p", "g", "k"}, {"a", "b", "c", "f", "k"}, {}}

V.Z. Aladjev, V.A. Vaganov

 264

In[2727]:= Globals2[x_ /; ProcQ[x]||ModuleQ[x]||BlockQ[x]] :=
 ExtrNames[x][[3]]

In[2728]:= GS[h_] := Module[{a = 90, b, c}, b = 500; c = 6; x = a + b + c; x + h]
In[2729]:= VG[h_] := Block[{a = 90, b, c}, b = 500; c = 6; x = a + b + c; y = h^2]
In[2730]:= Map[Globals2, {GS, VG, ProcQ, Tuples1, TestArgsTypes,
 LoadFile}]
Out[2730]= {{"x"}, {"x", "y"}, {}, {"Res"}, {"$TestArgsTypes"}, {"$Load$Files$"}}

The procedure call ExtrNames[x] returns the nested 3–element list, whose
first element defines the list of all local variables of a procedure x in string
format, the second element defines the list of local variables of the procedure
x in string format to which in the procedure body x are ascribed the values
whereas the third element defines the list of global variables to which in the
procedure body x are ascribed the values by operators {":=", "="}. A rather
simple Globals2 function completes the fragment, the function is based on
the previous procedure and in a certain degree expands possibilities of the
considered procedures Globals and Globals1 onto procedures of any type;
the function call Globals2[x] returns the list of names in string format of the
global variables of a procedure x.

Nevertheless, the previous means which are correctly testing existence at a
module/block of the global variables defined by assignments by operators
{":=", "="}, aren't effective in cases when definitions of the tested modules/
blocks use assignments of type {a, b, …} {= |:=} {a1, b1, …} or a[[k]] {= |:=} b,
simply ignoring them. The given defect is eliminated by the LocalsGlobals1
procedure, whose call LocalsGlobals1[x] returns the nested 3–element list
whose first sublist contains names in string format of the local variables, the
second sublist contains local variables with initial values in string format, and
the third sublist – global variables in string format of a block/module x. On
argument x of type different from block/module, a procedure call is returned
unevaluated. The fragment below represents source code of the procedure
LocalsGlobals1 procedure along with typical examples of its usage.

In[2483]:= LocalsGlobals1[x_ /; QBlockMod[x]] := Module[{c = "", d, j, h = {},
 k = 1, p, G, L, a = Flatten[{PureDefinition[x]}][[1]],
 b = Flatten[{HeadPF[x]}][[1]]},
 b = StringReplace[a, {b <> " := Module[" –> "", b <> " := Block[" –> ""}, 1];

Extension of Mathematica system functionality

 265

 While[k <= StringLength[b], d = StringTake[b, {k, k}]; c = c <> d;
 If[StringCount[c, "{"] == StringCount[c, "}"], Break[]]; k++];
 b = StringReplace[b, c <> "," –> "", 1];
 L = If[c == "{}", {}, StrToList[StringTake[c, {2, –2}]]];
 d = StringPosition[b, {" := ", " = "}]; d = (#1[[1]] – 1 &) /@ d;
 For[k = 1, k <= Length[d], k++, c = d[[k]]; p = "";
 For[j = c, j >= 1, j––, p = StringTake[b, {j, j}] <> p;
 If[! Quiet[ToExpression[p]] === $Failed &&
 StringTake[b, {j – 1, j – 1}] == " ", AppendTo[h, p]; Break[]]]];
 G = Flatten[(If[StringFreeQ[#1, "{"], #1,
 StrToList[StringTake[#1, {2, –2}]]] &) /@ (StringTake[#1,
 {1, Quiet[Check[Flatten[StringPosition[#1, "["]][[1]], 0]] – 1}] &) /@ h];
 b = (If[StringFreeQ[#1, " = "], #1, StringTake[#1,
 {1, Flatten[StringPosition[#1, " = "]][[1]] – 1}]] &) /@ L;
 d = DeleteDuplicates[Flatten[(StringSplit[#1, ", "] &)
 /@ MinusList[G, b]]];
 d = Select[d, ! Quiet[SystemQ[#1]] &&
 ! MemberQ[Flatten[{"\\", "#", "\"", "", "+", "–",
 ToString /@ Range[0, 9]}], StringTake[#1, {1, 1}]] &];
 {Select[b, ! MemberQ[ToString /@ Range[0, 9],
 StringTake[#1, {1, 1}]] &], L, MinusList[d, b]}]

In[2484]:= M[x_, y_] := Module[{a = 90, b = 500, c = {v, r}}, h = x*y*a*b;
 m = 72; t := (a+b); g[[6]] = 73; t[z_] := a; {g, p} = {67, 72};
 {k, j}:= {42, 72}; x+y]; {h, m, t, g, p, k, j} = {1, 2, 3, 4, 5, 6, 7};
 {LocalsGlobals1[M], {h, m, t, g, p, k, j}}
Out[2484]= {{{"a", "b", "c"}, {"a = 90", "b = 500", "c = {v, r}"}, {"h", "m", "t", "g",
 "p", "k", "j"}}, {1, 2, 3, 4, 5, 6, 7}}
In[2485]:= Sv[x_, y_] := Module[{a, b = 90, c = {n, m}}, a = (x^2 + y^2)/(b+c);
 {z, h} = {a, b}; t = z + h; gs = t^2]; LocalsGlobals1[Sv]
Out[2485]= {{"a", "b", "c"}, {"a", "b = 90", "c = {n, m}"}, {"z", "h", "t", "gs"}}
In[2486]:= Vt[x_, y_] := Module[{a, b = 90, c = {n, m, {42, 72}}}, a = (x^2+y^2)/
 (b + c); {z, h} = {a, b}; t = z + h; gs = t^2]; LocalsGlobals1[Vt]
Out[2486]= {{"a", "b", "c"}, {"a", "b = 90", "c = {n, m, {42, 72}}"}, {"z", "h", "t", "gs"}}

V.Z. Aladjev, V.A. Vaganov

 266

In[2495]:= LocalsGlobalsM[x_ /; QBlockMod[x]] := Module[{b = "$$90$",
 c, d = {}, k = 1, a = Flatten[{PureDefinition[x]}]},
 While[k <= Length[a], c = b <> ToString[x];
 ToExpression[b <> a[[k]]]; AppendTo[d, LocalsGlobals1[c]];
 ToExpression["Clear[" <> c <> "]"]; k++];
 If[Length[d] == 1, d[[1]], d]]

In[2496]:= M[x_, y_] := Module[{a = 90, b = 500, c}, h = x*y*a*b; m = 72;
 t := (a + b); g[[6]] = 73; t[z_] := a; {g, p} = {67, 72}; x + y];
 M[x_] := Block[{a, b}, y = x]; M[x__] := Block[{a, b}, {y, z} := {a, b}];
 P1[x_] := Module[{a, b = {90, 500}}, {c, d} = {p, q};
 {a, b, h, g} = {42, 47, 67, 78}; c*d + x]
In[2497]:= LocalsGlobalsM[M]
Out[2497]= {{{"a", "b", "c"}, {"a = 90", "b = 500", "c"}, {"h", "m", "t", "g", "p", "k",
 "j"}}, {{"a", "b"}, {"a", "b"}, {"y"}}, {{"a", "b"}, {"a", "b"}, {"y", "z"}}}

In[2498]:= LocalsGlobalsM[P1]
Out[2498]= {{"a", "b"}, {"a", "b = {90, 500}"}, {"c", "d", "h", "g"}}

Meanwhile, the LocalsGlobals1 procedure correctly works only with the
blocks/modules having unique definitions, i.e. with the objects other than
objects of the same name. Whereas the LocalsGlobalsM procedure expands
the LocalsGlobals1 procedure onto case of the blocks/modules of the same
name; the procedure call LocalsGlobalsM[x] returns the list of the nested 3-
element lists of the format similar to the format of results of return on the
calls LocalsGlobals1[x] whose elements are biunique with subobjects of x,
according to their order at application to the object x of the PureDefinition
procedure. On arguments x of the type different from block/module, the
procedure call LocalsGlobalsM[x] is returned unevaluated. Source code of
the LocalsGlobalsM procedure along with examples of its use complete the
previous fragment. Meanwhile, it must be kept in mind that the returned
list of global variables doesn't contain multiple names though the identical
names and can belong to objects of various type as very visually illustrates
the first example to the LocalsGlobals1 procedure in the previous fragment
in which the symbol "t" acts as a global variable twice. Indeed, the simple
example below very visually illustrates the aforesaid, namely:

Extension of Mathematica system functionality

 267

In[2538]:= t[z_] := z; t := (a + b); Definition[t]
Out[2538]= t := (a + b)

 t[z_] := z

Therefore carrying out the additional analysis regarding definition of types
of the global variables used by the tested block/module in event of need is
required. Definition of the LocalsGlobals1 procedure along with standard
means uses and our means such as HeadPF, QBlockMod, PureDefinition,
MinusList, StrToList, SystemQ considered in the present book and in [28-
33]. The procedure has a number of applications at programming of various
problems, first of all, of the system character.

Above we determined so-called active global variables as global variables to
which in the objects of type {Block, Module} the assignments are done while
we understand the global variables different from arguments as the passive
global variables, whose values are only used in objects of the specified type.
In this regard means that allow to evaluate the passive global variables for
the user blocks and modules are being represented as very interesting. One
of similar means – the BlockFuncModVars procedure that solves even more
general problem. The next fragment represents source code of the procedure
BlockFuncModVars along with the most typical examples of its usage.

In[2337]:= BlockFuncModVars[x_ /; BlockFuncModQ[x]] := Module[{d, t,
 c = Args[x, 90], a = If[QFunction[x], {}, LocalsGlobals1[x]],
 s = {"System"}, u = {"Users"}, b = Flatten[{PureDefinition[x]}][[1]], h = {}},
 d = ExtrVarsOfStr[b, 2];
 If[a == {}, t = Map[If[Quiet[SystemQ[#]], AppendTo[s, #],
 If[BlockFuncModQ[#], AppendTo[u, #], AppendTo[h, #]]] &, d];
 {s, u = Select[u, # != ToString[x] &], c,
 MinusList[d, Join[s, u, c, {ToString[x]}]]},
 Map[If[Quiet[SystemQ[#]],AppendTo[s, #],
 If[BlockFuncModQ[#], AppendTo[u, #], AppendTo[h, #]]] &, d];
 {Select[s, ! MemberQ[{"$Failed", "True", "False"}, #] &],
 Select[u, # != ToString[x] && ! MemberQ[a[[1]], #] &], c, a[[1]], a[[3]],
 Select[h, ! MemberQ[Join[a[[1]], a[[3]], c, {"System", "Users"}], #] &]}]]

V.Z. Aladjev, V.A. Vaganov

 268

In[2338]:= A[m_, n_, p_ /; IntegerQ[p], h_ /; PrimeQ[h]] := Module[{a = 6},
 h*(m+n+p)/a + StringLength[ToString1[z]]/(Cos[c] + Sin[d])]
In[2339]:= BlockFuncModVars[A]
Out[2339]= {{"System", "Cos", "IntegerQ", "Module", "PrimeQ", "Sin",
 "StringLength"}, {"Users", "ToString1"}, {"m", "n", "p", "h"},
 {"a"}, {}, {"c", "d", "z"}}
In[2340]:= BlockFuncModVars[StringReplaceS]
Out[2340]= {{"System", "Append", "Characters", "If", "Length", "MemberQ",
 "Module", "Quiet", "StringLength", "StringPosition", "StringQ",
 "StringReplacePart", "StringTake", "While"}, {"Users"},
 {"S", "s1", "s2"}, {"a", "b", "c", "k", "p", "L", "R"}, {}, {}}
In[2341]:= BlockFuncModVars[BlockFuncModVars]
Out[2341]= {{"System", "AppendTo", "Flatten", "If", "Join", "MemberQ",
 "Module", "Quiet", "Select", "ToString"}, {"Users", "Args",
 "BlockFuncModQ", "ExtrVarsOfStr", "LocalsGlobals1",
 "MinusList", "PureDefinition", "QFunction", "SystemQ"}, {"x"},
 {"d", "t", "c", "a", "s", "u", "b", "h"}, {}, {}}
In[2342]:= BlockFuncModVars[LocalsGlobals1]
Out[2342]= {{"System", "Append", "Block", "Break", "Check",
 "DeleteDuplicates", "Flatten", "For", "If", "Length",
 "MemberQ", "Module", "Quiet", "Range", "Select",
 "StringCount", "StringFreeQ", "StringJoin", "StringLength",
 "StringPosition", "StringReplace", "StringSplit", "StringTake",
 "ToExpression", "ToString", "While"}, {"Users", "HeadPF",
 "MinusList", "PureDefinition", "QBlockMod", "StrToList",
 "SystemQ"}, {"x"}, {"c", "d", "j", "h", "k", "p", "G", "L", "a", "b"}, {}, {}}
In[2343]:= BlockFuncModVars[StrStr]
Out[2343]= {{"System", "If", "StringJoin", "StringQ", "ToString"},
 {"Users"}, {"x"}, {}}

The procedure call BlockFuncModVars[x] returns the nested 6-element list,
whose first element – the list of the system functions used by a block/module
x, whose first element is "System" while other names are system functions
in string format; the second element – the list of the user means used by the
block/module x, whose first element is "Users" whereas the others define

names of means in string format; the third element defines the list of formal

Extension of Mathematica system functionality

 269

arguments in string format of the block/module x; the fourth element – the
list of local variables in string format of the block/module x; the fifth element
– the list of active global variables in string format of the block/module x; at
last, the sixth element determines the list of passive global variables in string
format of the block/module x. While on a user function x the procedure call
BlockFuncModVars[x] returns the nested 4-element list, whose first element
– the list of the system functions used by a function x, whose first element is
"System" while other names are system functions in string format; the 2nd
element – the list of the user means used by the function x, whose the first
element is "Users" whereas the others determine names of means in string
format; the third element defines the list of formal arguments in the string
format of the function x; the fourth element – the list of global variables in
string format of the function x. The given procedure provides the structural
analysis of the user blocks/functions/modules in the following contexts: (1)
the used system functions, (2) the user means, active in the current session, (3) the
formal arguments, (4) the local variables, (5) the active global variables, and (6) the
passive local variables. The given means has a number of interesting enough
appendices, first of all, of the system character.

The next procedure belongs to group of the means processing the strings,
however, it is presented exactly here as it is very closely connected with the
previous procedure; along with other our means it is the cornerstone of the
algorithm of the BlockFuncModVars procedure. The following fragment
represents source code of the BlockFuncModVars procedure along with the
most typical examples of its usage.

In[2478]:= ExtrVarsOfStr[S_/; StringQ[S], t_ /; MemberQ[{1, 2}, t], x___] :=
 Module[{k, j, d = {}, p, a = StringLength[S],
 q = Map[ToString, Range[0, 9]], h = 1, c = "",
 L = Characters["`!@#%^&*(){}:\"\\/|<>?~–=+[];:'., 1234567890"],
 R = Characters["`!@#%^&*(){}:\"\\/|<>?~=[];:'., "]},
 Label[G]; For[k = h, k <= a, k++, p = StringTake[S, {k, k}];
 If[! MemberQ[L, p], c = c <> p; j = k + 1;
 While[j <= a, p = StringTake[S, {j, j}];
 If[! MemberQ[R, p], c = c <> p, AppendTo[d, c]; h = j; c = ""; Goto[G]]; j++]]];
 AppendTo[d, c]; d = Select[d, ! MemberQ[q, #] &];

V.Z. Aladjev, V.A. Vaganov

 270

 d = Select[Map[StringReplace[#,
 {"+" –> "", "–" –> "", "_" –> ""}] &, d], # != "" &];
 d = Flatten[Select[d, ! StringFreeQ[S, #] &]];
 d = Flatten[Map[StringSplit[#, ", "] &, d]];
 If[t == 1, Flatten, Sort][If[{x} != {}, Flatten, DeleteDuplicates]
 [Select[d, ! MemberQ[{"\\", "#", ""}, StringTake[#, {1, 1}]] &]]]]

In[2479]:= A[m_, n_, p_ /; IntegerQ[p], h_ /; PrimeQ[h]] :=
 Module[{a = 42.78}, h*(m + n + p)/a]
In[2480]:= ExtrVarsOfStr[Flatten[{PureDefinition[A]}][[1]], 2]
Out[2480]= {"a", "A", "h", "IntegerQ", "m", "Module", "n", "p", "PrimeQ"}
In[2481]:= G[x_, y_ /; IntegerQ[y]] := Module[{a, b = Sin[c + d], h},
 z = x + y; V[m] + Z[n]]
In[2482]:= ExtrVarsOfStr[PureDefinition[G], 1, 90]
Out[2482]= {"G", "x", "y", "IntegerQ", "y", "Module", "a", "b", "Sin", "c", "d",
 "h", "z", "x", "y", "V", "m", "Z", "n"}
In[2483]:= V[x_, y_ /; PrimeQ[y]] := Block[{a, b = 73/90, c = m*n},
 If[x > t + w, x*y, S[x, y]]]
In[2484]:= ExtrVarsOfStr[PureDefinition[V], 2]
Out[2484]= {"a", "b", "Block", "c", "If", "m", "n", "PrimeQ", "S", "t", "V", "w",
 "x", "y"}
In[2485]:= F[x_] := a*x + Sin[b*x] + StringLength[ToString1[x + c]];
 BlockFuncModVars[F]
Out[2485]= {{"System", "Sin", "StringLength"}, {"Users", "ToString1"}, {"x"},
 {"a", "b", "c"}}
In[2486]:= ExtrVarsOfStr["G[x_] := Module[{Vg, H73},
 Vg[y_] := Module[{}, y^3]]", 1]
Out[2486]= {"G", "x", "Module", "Vg", "H73", "y"}
In[2487]:= ExtrVarsOfStr["(a + b)/(c + d) + Sin[c]*Cos[d + h]", 2]
Out[2487]= {"a", "b", "c", "Cos", "d", "h", "Sin"}
In[2488]:= ExtrVarsOfStr["(a + b)/(c + d) + Sin[c]*Cos[d + h]", 2, 90]
Out[2488]= {"a", "b", "c", "c", "Cos", "d", "d", "h", "Sin"}

The procedure call ExtrVarsOfStr[S, t] at t=2 returns the sorted and at t=1
unsorted list of variables in string format, which managed to extract from a
string S; in the absence of similar variables the empty list, i.e. {} is returned.

Extension of Mathematica system functionality

 271

The procedure call ExtrVarsOfStr[S, t, x] with the 3rd optional argument x –

an arbitrary expression – returns the list of the variables included in a string S
without reduction of their multiplicity to 1. Along with standard mechanism
of local variables the Mathematica system allows use of mechanism of the
global variables of the current session in the body of procedures as the local
variables. Experience of use of the procedure confirms its high reliability in
an extraction of variables; the procedure is quite simply adjusted onto the
special situations arising in the course of its work. For correct application of
the ExtrVarsOfStr procedure it is supposed that an expression Exp, defined
in a string S is in the InputForm–format, i.e. S = ToString[InputForm[Exp]].
This procedure is effectively used at manipulations with definitions of the
user blocks, functions, procedures. So, in the previous BlockFuncModVars
procedure it is used very significantly. In general, procedure can be used for
the analysis of algebraic expressions too.

A quite useful reception of ensuring use of the global variables which isn't
changing values of the variables of the same name outside of a procedure
body was already given above. In addition to earlier described reception,
we will present the procedure automating this process of converting at the
time of performance of an arbitrary procedure of global variables to local
variables of this procedure. The similar problem arises, in particular, in the
case when it is required to execute a procedure having the global variables
without changing their values outside of the procedure and without change
of source code of the procedure in the current session. In other words, it is
required to execute a procedure call with division of domains of definition
of global variables of the current session of the system and global variables
of the same name of the procedure. Whereas in other points of a procedure
call such restrictions aren't imposed.

The GlobalToLocal procedure solves the task, whose call GlobalToLocal[x]
provides converting of definition of a procedure x into definition of the $$$x
procedure in which all global variables of the initial procedure x are included
into the tuple of local variables; the procedure call returns a procedure name
activated in the current session which has no global variables. Whereas the
call GlobalToLocal[x, y] with the second optional argument y – an undefinite
variable – in addition through it returns the nested list whose first element is
sublist of local variables and the second element is sublist of global variables

V.Z. Aladjev, V.A. Vaganov

 272

of a procedure x. The procedure in a number of cases solves the problem of
protection of variables, external in relation to a procedure x. The following
fragment represents source code of the GlobalToLocal procedure with the
most typical examples of its usage.

In[2526]:= GlobalToLocal[x_ /; QBlockMod[x], y___] := Module[{b, c,
 a = LocalsGlobals1[x]},
 If[Intersection[a[[1]], a[[3]]] == a[[3]] || a[[3]] == {}, x,
 b = Join[a[[2]], MinusList[a[[3]], a[[1]]]];
 c = "$$$" <> StringReplace[PureDefinition[x],
 ToString[a[[2]]] –> ToString[b], 1];
 If[{y} != {} && ! HowAct[y], y = {a[[1]], a[[3]]}];
 ToExpression[c]; Symbol["$$$" <> ToString[x]]]]

In[2527]:= GS[x_] := Module[{a, b = 90, c = {m, n}}, Kr[y_] := Module[{},
 y^2 + Sin[y]]; a = x^2; {z, h, p} = {a, b, 5};
 t = z + h*Kr[6] – Cos[x + Kr[9]]; t]
In[2528]:= GlobalToLocal[GS]
Out[2528]= $$$GS
In[2529]:= Definition[$$$GS]
Out[2529]= $$$GS[x_] := Module[{a, b = 90, c = {m, n}, Kr, z, h, p, t},
 Kr[y_] := Module[{}, y^2 + Sin[y]]; a = x^2; {z, h, p} = {a, b, 5};
 t = z + h Kr[6] – Cos[x + Kr[9]]; t]
In[2530]:= {GlobalToLocal[GS, y], y}
Out[2530]= {$$$GS, {{"a", "b", "c"}, {"Kr", "z", "h", "p", "t"}}}
In[2531]:= LocalsGlobals1[$$$GS]
Out[2531]= {{"a", "b", "c", "Kr", z", "h", "p", "t"}, {"a", "b = 90", "c = {m, n}",
 "Kr", "z", "h","p", "t"}, {}}

The algorithm used by the GlobalToLocal procedure is rather simple and
consists in the following. In case of absence for a procedure x of the global
variables the name x is returned; otherwise, on the basis of definition of the
x procedure, the definition of procedure with name $$$x which differs from
the initial procedure only in that that the global variables of the x procedure
are included into a tuple of local variables of the procedure $$$x is formed.
Whereat, this definition is activated in the current session with return of the
name $$$x, allowing to carry out the $$$x procedure in the current session

Extension of Mathematica system functionality

 273

without change of values of global variables of the current session.

At the same time the problem of converting of a block or a module x into an
object of the same type in which global variables are included in tuple of the
local variables of the returned object x of the same name with both the same
attributes, and options is of interest. The GlobalToLocalM procedure solves
this problem; the fragment below represents source code of the procedure
GlobalToLocalM along with typical examples of its application.

In[2651]:= GlobalToLocalM[x_ /; QBlockMod[x]] := Module[{d, h = "$$$",
 k = 1, n, p = {}, b = Attributes[x], c = Options[x],
 a = Flatten[{PureDefinition[x]}]},
 While[k <= Length[a], d = a[[k]]; n = h <> ToString[x];
 ToExpression[h <> d]; GlobalToLocal[Symbol[n]];
 AppendTo[p, PureDefinition["$$$" <> n]];
 ToExpression["ClearAll[" <> n <> "]"]; k++];
 ClearAllAttributes[x]; ClearAll[x];
 ToExpression[Map[StringReplace[#,"$$$$$$" –> "", 1] &, p]];
 SetAttributes[x, b]; If[c != {}, SetOptions[x, c]];]

In[2652]:= A[x_] := Block[{}, g = x; {m, n} = {90, 6}]; A[x_, y_] := Module[{},
 h = x + y; z = h*x]; SetAttributes[A, {Listable, Protected}];
 GlobalToLocalM[A]
In[2653]:= Definition[A]
Out[2653]= Attributes[A] = {Listable, Protected}
 A[x_] := Block[{g, m, n}, g = x; {m, n} = {6, 9}]
 A[x_, y_] := Module[{h, z}, h = x + y; z = h*x]

In[2654]:= GS[x_] := Module[{a, b = 500, c = {m, n}}, Kr[y_] := Module[{},
 y^2 + Sin[y]]; a = x^2; {z, h, p} = {a, b, 18};
 t = z + h*Kr[18] – Cos[x + Kr[90]]; t];
 GS[x_, y_] := Block[{a, b = {90, 500}, c}, z = x + y; d = Art];
 SetAttributes[GS, {Protected}]; GlobalToLocalM[GS]
In[2655]:= Definition[GS]
Out[2655]= Attributes[GS] = {Protected}
 GS[x_] := Module[{a, b = 500, c = {m, n}, Kr, z, h, p, t},
 Kr[y_] := Module[{}, y^2 + Sin[y]]; a = x^2; {z, h, p} = {a, b, 18};

V.Z. Aladjev, V.A. Vaganov

 274

 t = z + h*Kr[18] – Cos[x + Kr[90]]; t]
 GS[x_, y_] := Block[{a, b = {90, 500}, c, z, d}, z = x + y; d = Art]

In[2656]:= GSV[x_] := Module[{a, b = 500, c = {m, n}}, Kr[y_] := Module[{},
 y^2 + Sin[y]]; a = x^2; {z, h, p} = {a, b, 18};
 t = z + h*Kr[18] + Cos[x + Kr[500]]; w = t^2];
 GSV[x_, y_] := Block[{a, b = {90, 50}, c}, z = x + y; d = Art; t = Length[b]*z];
 SetAttributes[GSV, {Protected}]; GlobalToLocalM[GSV]

In[2657]:= Definition[GSV]
Out[2657]= GSV[x_] := Module[{a, b = 500, c = {m, n}, Kr, z, h, p, t, w},
 Kr[y_] := Module[{}, y^2 + Sin[y]]; a = x^2; {z, h, p} = {a, b, 18};
 t = z + h Kr[18] + Cos[x + Kr[500]]; w = t^2]
 GSV[x_, y_] := Block[{a, b = {90, 500}, c, z, d, t}, z = x + y; d = Art;
 t = Length[b]*z]

The procedure call GlobalToLocalM[x] returns Null, i.e. nothing, herewith
converting a block or a module x into the object x of the same type and with
the same attributes and options in which the global variables (if they were) of
the initial object receive the local status. In the case of the objects of the same
name x the procedure call provides correct converting of all components of
the object determined by various definitions. The fragment examples rather
visually clarify the sense of similar converting.

It must be kept in mind, our package AVZ_Package [48] contains a number
of other tools for the analysis of the procedures regarding existence in them
of local and global variables, and also for manipulation with arguments, local
and global variables of objects of the types {Block, Function, Module}. Means
for work with local and global variables which are presented here and in [48]
are quite useful in procedural programming in the Mathematica system.

Meantime, it must be kept in mind that a series of tools of the AVZ_Package
package can depend on a version of the Mathematica system, despite the a
rather high level of prolongation of the builtin Math–language of the system.
Therefore in some cases a certain tuning of separate means of the package
onto the current version of the system can be demanded, what in principle
for the rather experienced user shouldn't cause special difficulties. At that,
similar tuning can be demanded even in case of passing from one operation
platform onto another, for example, with Windows XP onto Windows 7.

Extension of Mathematica system functionality

 275

6.8. Attributes, options and values by default for the
arguments of the user blocks, functions and modules;
additional means of processing of them in Mathematica

The Mathematica system provides the possibility of assignment to variable,
in particular, to names of blocks, functions or modules of the certain special
attributes defining their different properties. So, the Listable attribute for a
function W defines, that the function W will be automatically applied to all
elements of the list which acts as its argument. The current tenth version of
the Mathematica system has 19 attributes of various purpose, the work with
them is supported by 3 functions, namely: Attributes, ClearAttributes and
SetAttributes whose formats are discussed, for example, in [30-33]. These 3
functions provide such operations as: (1) return of the list of the attributes
ascribed to an object x; (2) deletion of all or separate attributes ascribed to an
object x; (3) a redefinition of the list of the attributes ascribed to an object x.
Meanwhile, in a number of cases of these means it isn't enough or they are
not so effective. Therefore, we offered a number of means in this direction
which expand the above standard Mathematica means.

Above all, since eventually new Mathematica versions quite can both change
the standard set of attributes and to expand it, the problem of testing of an
arbitrary symbol to be qua of an admissible attribute is quite natural. The
AttributesQ procedure solves the given problem whose call AttributesQ[x]
returns True, if x – the list of admissible attributes of the current version of
the system, and False otherwise. Moreover, the call AttributesQ[x, y] with
the 2nd optional argument y – an undefinite variable – returns through it the
list of elements of the list x which aren't attributes. The following fragment
represents source code of the procedure with typical examples of its usage.

In[2550]:= AttributesQ[x_List, y___] := Module[{a, b = {}},
 Map[If[Quiet[Check[SetAttributes[a, #], $Failed]] === $Failed,
 AppendTo[b, #]] &, x];
 If[b != {}, If[{y} != {} && ! HowAct[y], y = b]; False, True]]

In[2551]:= {AttributesQ[{Listable, Agn, Protected, Kr, Art}, h], h}
Out[2551]= {False, {Agn, Kr, Art}}

V.Z. Aladjev, V.A. Vaganov

 276

In[2552]:= {AttributesQ[{Protected, Listable, HoldAll}, g], g}
Out[2552]= {True, g}

The given means is quite useful in a number of system appendices, at that,
expanding the testing means of the Mathematica system.

Definitions of the user blocks, functions and modules in the Mathematica
system allow qua of conditions and initial values for formal arguments, and
initial values for local variables to use rather complex constructions as the
following simple fragment illustrates, namely:

In[4173]:= G[x_Integer, y_ /; {v[t_] := Module[{}, t^2], If[v[y] > 2015, True,
 False]}[[2]]] := Module[{a = {g[z_] := Module[{}, z^3],
 If[g[x] < 2015, 73, 90]}[[2]]}, Clear[v, g]; x*y + a]

In[4174]:= {a, b} = {500, 90}; {G[42, 73], G[42, 500], G[0, 0]}
Out[4174]= {3156, 21090, G[0, 0]}
In[4175]:= Map[PureDefinition, {v, g}]
Out[2565]= {"v[t_] := Module[{}, t^2]", $Failed}

In[4176]:= G[x_Integer, y_ /; {v[t_] := Module[{}, t^2], If[v[a] > 2015, True,
 False]}[[2]]] := Module[{a = {g[z_] := Module[{}, z^3],
 If[g[b] < 2015, 71, 90]}[[2]]}, x*y + a]

In[4177]:= {a, b} = {460, 71}; {G[42, 71], G[42, 460], G[0, 0]}
Out[4177]= {3072, 19410, 90}
In[4178]:= Map[PureDefinition, {v, g}]
Out[4178]= {"v[t_] := Module[{}, t^2]", "g[z_] := Module[{}, z^3]"}

For possibility of use of sequence of offers, including as well definitions of
procedures, as a condition for a formal argument y and initial value for the
local variable a the reception that is based on the list has been used in the
previous fragment. The sequences of offers were defined as elements of lists
with value of their last element as condition and initial value respectively. At
that, if in body of the main procedure G a cleaning of symbols v and g from
their definitions wasn't done, the procedures v and g will be available in the
current session, otherwise not. The given question is solved depending on
an objective, the previous fragment illustrates the told. The above reception
can be applied rather effectively for programming of means of the different
purpose what illustrates a number of the procedures represented in [28-33].

Extension of Mathematica system functionality

 277

The mechanisms of typification of formal arguments of the user functions,
blocks and modules enough in details are considered in [30-33]. Meanwhile,
along with the mechanism of typification of formal arguments, the system
Mathematica has definition mechanisms for formal arguments of values by
default, i.e. values that receive the corresponding factual arguments at their
absence at the calls. However, the system mechanism of setting of values by
default assumes definition of such values before evaluation of definitions of
blocks, functions and modules on the basis of the standard Default function
whose format supports installation of various values by default serially for
separate formal arguments or of the same value for all arguments. The next
fragment represents the procedure Defaults1[F, y] that provides the setting
of expressions as values by default for the corresponding formal arguments
of any subtuple of a tuple of formal arguments of the user block, function,
module F that is defined by the 2–element list y (the first element – number of
position of an argument, the second element is an expression). For several values
by default the list y has ListList-type whose sublists have the above format.
The procedure successfully works with the user block, function or module
F of the same name, processing only the first subobject from the list of the
subobjects which are returned at the call Definition[F]. The procedure call
returns $Failed, or is returned unevaluated in special situations. The next
fragment represents source code of the Defaults procedure with examples
of its typical usage.

In[2640]:= Defaults[x_ /; BlockFuncModQ[x], y_ /; ListQ[y] &&
 Length[y] == 2 || ListListQ[y] &&
 DeleteDuplicates[Map[IntegerQ[#[[1]]] &, y]] == {True}] :=
 Module[{a = Flatten[{Definition2[x]}], atr = Attributes[x], q, t, u,
 b = Flatten[{HeadPF[x]}][[1]], c = Args[x], d, p, h = {}, k = 1,
 g = If[ListListQ[y], y, {y}]},
 If[Max[Map[#[[1]] &, y]] <= Length[c] && Min[Map[#[[1]] &, y]] >= 1,
 c = Map[ToString, If[NestListQ[c], c[[1]], c]]; q = Map[#[[1]] &, y];
 d = StringReplace[a[[1]], b –> "", 1];
 While[k <= Length[q], p = c[[q[[k]]]]; t = StringSplit[p, "_"];
 If[MemberQ[q, q[[k]]]], u = If[Length[t] == 2,
 t[[2]] = StringReplace[t[[2]], " /; " –> ""];

V.Z. Aladjev, V.A. Vaganov

 278

 If[Quiet[ToExpression["{" <> t[[1]] <> "=" <> ToString[y[[k]][[2]]] <>
 "," <> t[[2]] <> "}"]][[2]] || Quiet[Head[y[[k]][[2]]] ===
 Symbol[t[[2]]]], True, False], True];
 If[u, c[[q[[k]]]] = StringTake[p,
 {1, Flatten[StringPosition[p, "_"]][[2]]}] <> "."]]; k++];
 ClearAllAttributes[x]; ClearAll[x]; k = 1;
 While[k <= Length[q], ToExpression["Default[" <>
 ToString[x] <> ", " <> ToString[q[[k]]] <> "]" <> " = " <>
 ToString1[y[[k]][[2]]]]; k++];
 ToExpression[ToString[x] <> "[" <>
 StringTake[ToString[c], {2, –2}] <> "]" <> d];
 Map[ToExpression, MinusList[a, {a[[1]]}]];
 SetAttributes[x, atr], $Failed]]

In[2641]:= G[x_, y_ /; IntegerQ[y]] := x+y; G[x_, y_, z_] := x*y*z;
 G[x_, y_, z_, h_] := x*y*z*h
In[2642]:= SetAttributes[G, {Listable, Protected, Flat}]
In[2643]:= Defaults[G, {{2, 500}, {1, 90}}]
In[2644]:= Definition[G]
Out[2644]= Attributes[G] = {Flat, Listable, Protected}
 G[x_., y_.] := x + y
 G[x_, y_, z_] := x y z
 G[x_, y_, z_, h_] := x y z h
 G /: Default[G, 1] = 90
 G /: Default[G, 2] = 500
In[2645]:= {G[42, 47], G[73], G[]}
Out[2645]= {89, 573, 590}
In[2646]:= ClearAllAttributes[G]; ClearAll[G];
 G[x_, y_ /; IntegerQ[y]] := x + y; G[x_, y_, z_] := x*y*z;
 G[x_, y_, z_, h_] := x*y*z*h
In[2647]:= SetAttributes[G, {Listable, Protected, Flat}]
In[2648]:= Defaults[G, {2, 90}]
In[2649]:= Definition[G]
Out[2649]= Attributes[G] = {Flat, Listable, Protected}
 G[x_, y_.] := x + y

Extension of Mathematica system functionality

 279

 G[x_, y_, z_] := x y z
 G[x_, y_, z_, h_] := x y z h

 G /: Default[G, 2] = 90

In[2650]:= Defaults[G, {1, 500}]
In[2651]:= Definition[G]
Out[2651]= Attributes[G] = {Flat, Listable, Protected}
 G[x_., y_.] := x + y
 G[x_, y_, z_] := x y z
 G[x_, y_, z_, h_] := x y z h

 G /: Default[G, 1] = 500
 G /: Default[G, 2] = 90

In[2652]:= {G[], G[72, 67], G[500]}
Out[2652]= {590, 139, 1000}

The successful call Defaults[G, y] returns Null, i.e. nothing, carrying out all
settings y of values by default for formal arguments of a block, function or
module G. It is necessary to emphasize once again that in case of an object
G of the same name the call Defaults[G, y] processes only the first subobject
from the list of subobjects which is returned on the call Definition[G]. And
this is a rather essential remark since the assignment mechanism to formal
arguments of G of values by default for case of an object of the same name,
using the Default function, is other than ascribing for objects of such type,
in particular, of the attributes. In the latter case the attributes are ascribed to
all subobjects of an object G of the same name whereas for values by default
the mechanism is valid only concerning the first subobject from the list of the
subobjects returned on the call Definition[G]. This mechanism is realized as
by the standard reception with use of the call Default[G, n] = default with
template definition for n-th formal argument of an object G in the form "_."
and by the call Defaults[G, {n, default}] as it rather visually illustrates the
following fragment, namely:

In[2673]:= Clear[V]; Default[V, 2] = 90; V[x_, y_.] := {x, y};
 V[x_, y_., z_, h_] := {x, y, z, h}
In[2674]:= Definition[V]
Out[2674]= V[x_, y_.] := {x, y}
 V[x_, y_., z_, h_] := {x, y, z, h}

V.Z. Aladjev, V.A. Vaganov

 280

 V /: Default[V, 2] = 90
In[2675]:= {V[500], V[42, 47, 67]}
Out[2675]= {{500, 90}, {42, 90, 47, 67}}
In[2676]:= Clear[V]; Default[V, 2] = 90; V[x_, y_.] := {x, y};
 V[x_, y_, z_, h_] := {x, y, z, h}
In[2677]:= Definition[V]
Out[2677]= V[x_, y_.] := {x, y}
 V[x_, y_, z_, h_] := {x, y, z, h}
 V /: Default[V, 2] = 90
In[2678]:= {V[500], V[42, 47, 67]}
Out[2678]= {{500, 90}, V[42, 47, 67]}
In[2679]:= Clear[V]; V[x_, y_] := {x, y}; V[x_, y_, z_, h_] := {x, y, z, h};
 Defaults[V, {2, 90}]
In[2680]:= Definition[V]
Out[2680]= V[x_, y_.] := {x, y}
 V[x_, y_, z_, h_] := {x, y, z, h}
 V /: Default[V, 2] = 90
In[2681]:= {V[500], V[42, 47, 67]}
Out[2681]= {{500, 90}, V[42, 47, 67]}

While the DefaultsM procedure expands the previous Defaults procedure
onto case of the objects of the same name of type {Block, Function, Module}.
The successful procedure call DefaultsM[G, y] returns Null, i.e. nothing, at
that, carrying out all settings of values by default y for formal arguments of
a block, function or module G. At that, for an object of the same name G of
the specified types the settings of values by default y for formal arguments
of all subobjects of the object G are carried out. The next fragment represents
source code of the DefaultsM procedure with typical examples of its usage.

In[2556]:= DefaultsM[x_ /; BlockFuncModQ[x], y_ /; ListQ[y] &&
 Length[y] == 2 || ListListQ[y] &&
 DeleteDuplicates[Map[IntegerQ[#[[1]]] &, y]] == {True}] :=
 Module[{ArtKr, atr = Attributes[x], q, k = 1,
 a = Flatten[{PureDefinition[x]}], g = If[ListListQ[y], y, {y}]},
 ClearAllAttributes[x]; ClearAll[x]; q = Map[#[[1]] &, g];
 While[k <= Length[g], ToExpression["Default[" <>

Extension of Mathematica system functionality

 281

 ToString[x] <> ", " <> ToString[g[[k]][[1]]] <> "]" <> " = " <>
 ToString1[g[[k]][[2]]]]; k++];
 ArtKr[s_String, def_List] := Module[{n = Unique[AVZ], b, c, d, t, j = 1, h},
 h = ToString[n] <> ToString[x]; ToExpression[ToString[n] <> s];
 b = HeadPF[h]; d = StringReplace[PureDefinition[h], b –> ""];
 c = Select[Map[ToString, Args[h]], # != "$Failed" &];
 While[j <= Length[c], If[MemberQ[q, j], t = c[[j]];
 c[[j]] = StringTake[t, {1, Flatten[StringPosition[t, "_"]][[2]]}] <> "."]; j++];
 ToExpression[ToString[x] <> "[" <>
 StringTake[ToString[c], {2, –2}] <> "]" <> d]; ClearAll[h, n]]; k = 1;
 While[k <= Length[a], ArtKr[a[[k]], g]; k++]; SetAttributes[x, atr]]

In[2557]:= G[x_, y_, z_Integer] := x + y + z; G[x_, y_] := x + y;
 G[x_] := Block[{}, x]; G[x_, y_, z_, h_] := Module[{}, x*y*z*h];
 SetAttributes[G, {Flat, Protected, Listable}];
In[2558]:= DefaultsM[G, {{2, 90}, {3, 500}}]
In[2559]:= Definition[G]
Out[2559]= Attributes[G] = {Flat, Listable, Protected}
 G[x_] := Block[{}, x]
 G[x_, y_.] := x + y
 G[x_, y_., z_.] := x + y + z
 G[x_, y_., z_., h_] := Module[{}, x y z h]
 G /: Default[G, 2] = 90
 G /: Default[G, 3] = 500
In[2550]:= {G[56], G[42, 47], G[47, 18, 25]}
Out[2550]= {56, 89, 90}

The DefaultsM procedure provides a rather useful expansion of standard
means of this type, supporting as the single objects of type {Block, Function,
Module}, and the objects of the same name as evidently illustrate examples
of the previous fragment.

It is necessary to focus attention on one rather important point once again.
As it was already noted earlier, the procedures can be defined on the basis
of constructions of the types {Module, Block}. However, proceeding from
certain considerations, it is generally recommended to give preference to the
constructions of the Module type because in a number of cases (this question

V.Z. Aladjev, V.A. Vaganov

 282

has been considered slightly above and in [30-33] in details) the constructions of
the Block type are carried out incorrectly, without output of any diagnostic
messages. As an illustration we will give an example of realization of the
Default1 procedure which concerns the theme of values by default, on the
basis of two types of constructions – on the basis of Module and Block. The
procedure call Default1[x, y, z] returns Null, i.e. nothing, providing settings
of the values by default determined by a list z for arguments of an object x,
whose positions are given by a list y of PosIntList-типа for a block/function/
module x. The next fragment from the standpoint of formalization represents
almost identical realizations of definition of the Default1 procedure on the
basis of constructions and Module, and Block. And if the first realization is
carried out quite correctly regardless of names of local variables, then the
correctness of the second, generally speaking, depends on crossing of a list
of names of local variables with a list of values by default for arguments, in
particular, of a function as quite visually illustrates the following fragment
in case when the local variable a exists in addition and in the list of values
by default for simple function G. The following fragment represents source
codes along with corresponding typical examples.

In[3792]:= Default1[x_Symbol, y_ /; PosIntListQ[y], z_List] :=
 Module[{k = 1, a = Min[Map[Length, {y, z}]]},
 While[k <= a, Default[x, y[[k]]] = z[[k]]; k++];]
In[3793]:= Default1[G, {1, 2}, {a, b}]; G[x_., y_.] := {x, y};
 Clear[Default1]; DefaultValues[G]
Out[3793]= {HoldPattern[Default[G, 1]] :> a, HoldPattern[Default[G, 2]] :> b}

In[3794]:= Default1[x_Symbol, y_ /; PosIntListQ[y], z_List] := Block[{k = 1,
 a = Min[Map[Length, {y, z}]]},
 While[k <= a, Default[x, y[[k]]] = z[[k]]; k++];]
In[3795]:= ClearAll[G]; Default1[G, {1, 2}, {a, b}]; G[x_., y_.] := {x, y};
 DefaultValues[G]
Out[3795]= {HoldPattern[Default[G, 1]] :> 2, HoldPattern[Default[G, 2]] :> b}
In[3796]:= Default1[x_Symbol, y_ /; PosIntListQ[y], z_List] :=
 Module[{k = 1, h = Min[Map[Length, {y, z}]]},
 While[k <= h, Default[x, y[[k]]] = z[[k]]; k++];]
In[3797]:= Default1[G, {1, 2}, {a, b}]; G[x_., y_.] := {x, y};
 Clear[Default1]; DefaultValues[G]

Extension of Mathematica system functionality

 283

Out[3797]= {HoldPattern[Default[G, 1]] :> a, HoldPattern[Default[G, 2]] :> b}

In[3798]:= Default1[x_Symbol, y_ /; PosIntListQ[y], z_List] := Block[{k = 1,
 h = Min[Map[Length, {y, z}]]},
 While[k <= h, Default[x, y[[k]]] = z[[k]]; k++];]
In[3799]:= ClearAll[G]; Default1[G, {1, 2}, {a, b}]; G[x_., y_.] := {x, y};
 DefaultValues[G]
Out[3799]= {HoldPattern[Default[G, 1]] :> a, HoldPattern[Default[G, 2]] :> b}

Thus, the mechanisms of local variables used by procedures on the basis of
Module and Block, generally, aren't identical. Consequently, in general it is
necessary to give preference to definition of the procedures on the basis of a
Module construction, however, taking into account the aforesaid there are
very many cases when both types of the organization of the procedures are
equivalent, demanding the preliminary analysis concerning the existence of
such equivalence. The given question rather in details is considered in [33].
In general, for definition of the procedures we recommend to use structures
on the basis of Module in order to avoid need of carrying out the additional
analysis on procedurality and universality in all cases of appendices.

For determination of values by default for formal arguments of a function/
block/module it is possible to use both the means Defaults, DefaultsM and
Default, and directly in their headings on the basis of constructions of the
format "x_:expression", or by combining both specified methods. However,
the system DefaultValues function returns the settings of values by default,
executed only by means of the standard Default function, for example:

In[2269]:= Default[G5, 2] = 90; G5[x_, y_: 500, z_: 42] := {x, y, z};
 DefaultValues[G5]
Out[2269]= {HoldPattern[Default[G5, 2]] :> 90}
In[2270]:= G5[Agn]
Out[2270]= {Agn, 500, 42}

In[2271]:= Default[S4, 2] = 90; S4[x_, y_., z_: 42] := {x, y, z};
 DefaultValues[S4]
Out[2271]= {HoldPattern[Default[S4, 2]] :> 90}
In[2272]:= S4[Avz]
Out[2272]= {Avz, 90, 42}

At that, if for argument a value by default has been defined and via Default,

V.Z. Aladjev, V.A. Vaganov

 284

and directly in heading by a construction "_:", then the second way has the
maximum priority as it very visually illustrates the previous example with
the G5 function. Meanwhile, the standard DefaultValues function possesses
serious enough shortcomings. First of all, the given function doesn't reflect
the values by default defined in a block/function/module heading, and only
set through the Default function. However generally it is incorrect because
for arguments the assignment of values by default as through the Default
function, and directly in headings is admissible; at that, the priority belongs
exactly to the second method what often can contradict result of a call of the
DefaultValues function as it is illustrated with the previous examples.

For elimination of similar shortcomings the DefaultValues1 procedure has
been programmed, whose the call DefaultValues1[x] returns the list of the
format {{N1} :> V1, …, {Np} :> Vp}, where Nj and Vj (j=1..p) define numbers
of positions of formal arguments in the heading of a block/function/module,
and values by default ascribed to them respectively, regardless of method of
their definition, taking into account the priority (the setting of values by default
in headings of blocks/functions/modules has the highest priority). The following
fragment represents source code of the DefaultValues1 procedure with the
most typical examples of its usage.

In[3079]:= DefaultValues1[x_ /; BlockFuncModQ[x]] := Module[{d = {}, h, k,
 a = {SetAttributes[String, Listable]},
 b = Map[ToString, Args[x]],
 c = Map[ToString, DefaultValues[x]]},
 ClearAttributes[ToString, Listable];
 If[b != {}, For[a = 1, a <= Length[b], a++, h = b[[a]];
 If[! StringFreeQ[h, "_:"],
 AppendTo[d, ToExpression["{" <> ToString[a] <> "} :> " <>
 StringTake[h, {Flatten[StringPosition[h, "_:"]][[2]] + 1, –1}]]]]]];
 If[c != {}, If[c != {}, c = ToExpression[Mapp[StringReplace,
 Mapp[StringReplace, c, {"HoldPattern[Default[" <>
 ToString[x] –> "{", "]]" –> "}"}], {"{, " –> "{", "{}" –> "{2015}"}]]];
 h = c[[1]][[1]];
 If[Op[h] == {2015}, a = {}; For[k = 1, k <= Length[b], k++,

Extension of Mathematica system functionality

 285

 AppendTo[a, ToExpression[ToString[{k}] <> " :> " <>
 ToString[c[[1]][[2]]]]]]; c = a];
 If[PosIntListQ[h] && Length[h] > 1, a = {}; b = h;
 For[k = 1, k <= Length[b], k++,
 AppendTo[a, ToExpression[ToString[{k}] <> " :> " <>
 ToString[c[[1]][[2]]]]]]; c = a]];
 If[d == {} && c == {}, Return[{}],
 c = Sort[Join[d, c], Op[#1][[1]][[1]] <= Op[#2][[1]][[1]] &]];
 {k, h} = {1, {}};
 While[k <= Length[c] – 1, AppendTo[h, If[Op[c[[k]]][[1]] ==
 Op[c[[k + 1]]][[1]], k + 1]]; k++];
 Select[ReplacePart[c, Mapp[Rule, Select[h, # != "Null" &], Null]],
 ! SameQ[#, Null] &]]

In[3080]:= Default[G] = 500; G[x_, y_., z_: 90] := {x, y, z};
 DefaultValues1[G]
Out[3080]= {{1} :> 500, {2} :> 500, {3} :> 90}
In[3081]:= Default[S2, 2, 3] = 90; S2[x_, y_., z_] := {x, y, z};
 DefaultValues1[S2]
Out[3081]= {{1} :> 90, {2} :> 90}
In[3082]:= Default1[S3, {1, 2, 3}, {42, 47, 25}]; S3[x_: 500, y_., z_.] := {x, y, z};
 DefaultValues1[S3]
Out[3082]= {{1} :> 500, {2} :> 47, {3} :> 25}
In[3083]:= Default[S4, 2] = 2015; S4[x_: 500, y_: 47, z_: 42] := {x, y, z};
 DefaultValues1[S4]
Out[3083]= {{1} :> 500, {2} :> 47, {3} :> 42}
In[3084]:= Default[S5, 2] = 90; S5[x_, y_: 500, z_: 42] := {x, y, z};
 DefaultValues1[S5]
Out[3084]= {{2} :> 500, {3} :> 42}
In[3085]:= Default1[V3, {1,2,3,4}, {a, b, c, d}]; V3[x_., y_., z_., t_.] := {x,y,z,t};
 DefaultValues1[V3]
Out[3085]= {{1} :> a, {2} :> b, {3} :> c, {4} :> d}
In[3086]:= Default1[V4, {1, 2, 3, 4}, {a, b, c, d}]; V4[x_., y_: 90, z_., t_: 500] :=
 {x, y, z, t}; DefaultValues1[V4]
Out[3086]= {{1} :> a, {2} :> 90, {3} :> c, {4} :> 500}

V.Z. Aladjev, V.A. Vaganov

 286

Definition of the DefaultValues1 procedure along with the standard means
uses our means such as Args, BlockFuncModQ, Mapp, PosIntListQ and Op
that are considered in the present book and in [28-33]. Thus, our procedure
DefaultValues1 rather significantly expands the possibilities of the standard
DefaultValues function, and quite it replaces on condition of existence of the
package AVZ_Package [48] uploaded into the current Mathematica session.

Considering existence of 2 admissible mechanisms of assignment of values
by default to formal arguments of the blocks, functions and modules, the
problem of definition of this kind of values for objects of the specified type
represents quite certain interest. In this connexion the DefaultsQ procedure
solves the given problem whose call DefaultsQ[x] returns True if definitions
of blocks, functions or modules x contain values by default for their formal
arguments, and False otherwise. Whereas the procedure call DefaultsQ[x, y]
where the second argument y – an undefinite variable – in addition through y
returns the list of the used types of values by default {"_.", "_:"}. The next
fragment represents source code of the DefaultsQ procedure along with the
most typical examples of its usage.

In[2776]:= DefaultsQ[x_ /; BlockFuncModQ[x], y___] := Module[{c = {}, d,
 a = Args[x], b = {"_.", "_:"}, k = 1},
 a = Map[ToString, If[NestListQ[a], a[[1]], a]];
 While[k <= Length[a], d = a[[k]];
 If[! StringFreeQ[d, b[[1]]], AppendTo[c, b[[1]]],
 If[! StringFreeQ[d, b[[2]]], AppendTo[c, b[[2]]]]]; k++];
 If[c == {}, False, If[{y} != {} && ! HowAct[y],
 y = DeleteDuplicates[Flatten[c]]]; True]]

In[2777]:= PureDefinition[G]
Out[2777]= {"G[x_., y_.] := x + y", "G[x_, y_, z_] := x*y*z",
 "G[x_, y_, z_, h_] := x*y*z*h"}
In[2778]:= {DefaultsQ[G, t], t}
Out[2778]= {True, {"_."}}
In[2779]:= Default[S, 1] = 90; S[x_., y_: 500, z_] := x + y + z;
 Kr[x_, y_, z_] := Block[{}, x*y*z]
In[2780]:= {Map9[DefaultsQ, {S, Kr}, {v1, v2}], {v1, v2}}
Out[2780]= {{True, False}, {{"_.", "_:"}, v2}}

Extension of Mathematica system functionality

 287

Along with attributes and values by default for formal arguments of a block,
function or module, these objects can use the mechanism of options. First of
all, the mechanism of options is rather widely used by the system means. So,
for a number of functions in the Mathematica system (in particular, the Plot
function), the options available both for installation, and for redefinition are
ascribed. The system supports the general mechanisms for work with such
options. The call Options[G] returns the list of the current settings in the
format {a –> a1, b –> b1, …} for all options of a block, function or module G
while the call Options[G, h] returns the current setting for an option h. In
turn, the call SetOptions[G, a –> a2, b –> b2, …] provides a reinstalling of
values for options {a, b, с, …} of a block/function/module G which remains
active up to the next reinstalling in the current session. While the function
call SystemOptions[] returns a list of the current settings for all preinstalled
internal options and suboptions of the system. The given settings are defined
as the used platform, and in certain cases also by the current session of the
Mathematica. Thus, for receiving quantity of all system options and their
quantities in the context as the groups of options, and the separate options,
the following procedure CountOptions whose source code along with the
most typical examples of its usage are given below is used, namely:

In[3252]:= CountOptions[h___] := Module[{a = SystemOptions[], b = {}, d,
 c = 1, k}, While[c <= Length[a], d = a[[c]];
 AppendTo[b, If[ListQ[Part[d, 2]],
 {Part[d, 1], Length[Part[d, 2]]}, d]]; c++];
 b = Flatten[Gather[b, Head[#1] == Head[#2] &], 1];
 If[{h} == {}, b, If[HowAct[h], Defer[CountOptions[h]], d = 0;
 Do[If[ListQ[b[[k]]], d = d + b[[k]][[2]], d = d + 1],
 {k, Length[b]}]]; {h} = {d}; b]]

In[3253]:= CountOptions[]
Out[3253]= {{"AlgebraicsOptions",8}, {"AlgebraicThreadThroughHeads",16},
…, "ZeroTestMaxPrecision" –> 5000., "ZeroTestNumericalPrecision" –> 80.}
In[3254]:= CountOptions[g]; g
Out[3254]= 417

The call CountOptions[] returns the nested list whose elements are the lists
and separate options. The list as the first element contains a name of group

V.Z. Aladjev, V.A. Vaganov

 288

of options, whereas the second element – number of options in this group.
While the call CountOptions[p] in addition thru argument p – an undefinite
variable – returns total of the preset system options/suboptions. Furthermore,
settings for a concrete system option p can be redefined by the function call
SetSystemOptions[p –> value], however except for separate cases, it is not
desirable in order to avoid the possible conflicts with the system settings. At
that, the Mathematica system doesn't support operations of removal of the
options, therefore in the following fragment we present the DeleteOptsAttr
procedure, decisive the given problem.

The procedure call DeleteOptsAttr[x] returns Null, i.e. nothing, canceling
for a symbol x the options ascribed to it. While the call DeleteOptsAttr[x, y],
returning Null, i.e. nothing, cancels both the options, and the attributes that
are ascribed to a symbol x, where y – an arbitrary expression. The following
fragment represents source code of the DeleteOptsAttr procedure with the
most typical examples of its usage.

In[2576]:= G[x_, y_] := x^2 + y^2; Options[G] = {Art –> 25, Kr –> 18}
Out[2576]= {Art –> 25, Kr –> 18}
In[2577]:= SetOptions[G, Art –> 25, Kr –> 18]
Out[2577]= {Art –> 25, Kr –> 18}

In[2578]:= SetAttributes[G, {Protected, Listable}]
In[2579]:= Definition2[G]
Out[2579]= {"G[x_, y_] := x^2 + y^2", "Options[G] := {Art –> 25, Kr –> 18}",
 {Listable, Protected}

In[2580]:= DeleteOptsAttr[x_ /; BlockFuncModQ[x], y___] := Module[{b,
 a = Definition2[x], c = "Options[" <> ToString[x] <> "]"},
 b = a[[–1]]; ClearAllAttributes[x]; ClearAll[x];
 ToExpression[Select[a, StringFreeQ[ToString[#], c] &]];
 If[{y} == {}, If[b != {}, SetAttributes[x, b]]]]

In[2581]:= DeleteOptsAttr[G]
In[2582]:= Definition2[G]
Out[2582]= {"G[x_, y_] := x^2 + y^2", {Listable, Protected}}

In[2583]:= Vs[x_, y_] := x^2 + y^2; Options[Vs] = {v –> 72, g –> 67};
In[2584]:= SetOptions[Vs, {v –> 72, g –> 67}]; SetAttributes[Vs, Protected]

Extension of Mathematica system functionality

 289

In[2585]:= Definition2[Vs]
Out[2585]= {"Vs[x_, y_] := x^2 + y^2", "Options[Vs] := {v –> 71, g –> 66}",
 {Protected}}
In[2586]:= DeleteOptsAttr[Vs, 590]
In[2587]:= Definition2[Vs]
Out[2587]= {"Vsv[x_, y_] := x + y", {}}

At that, it must be kept in mind that the given procedure isn't applicable to
the standard system functions, returning on them the unevaluated call as it
well illustrates the following example, namely:

In[2618]:= {DeleteOptsAttr[Sin, 90], DeleteOptsAttr[Sin]}
Out[2618]= {DeleteOptsAttr[Sin, 78], DeleteOptsAttr[Sin]}

For certain built–in Mathematica functions, for example Plot, are ascribed
the options whose values can be redetermined. At that, if at a function call
the values for its admissible options aren't defined, then for them values by
default are used. The function call Options[F, op] allows to obtain values by
default for an option op of a function F, for example:

In[2620]:= Options[Plot, {PlotLabel, FrameStyle, PlotStyle, PlotRange,
 ColorOutput}]
Out[2620]= {PlotLabel –> None, FrameStyle –> {}, PlotStyle –> Automatic,
 PlotRange –> {Full, Automatic}, ColorOutput –> Automatic}

The mechanism of options which is supported by the Mathematica can be
successfully used in development of both the applications of various type,
and a separate software. The interested reader can familiarize oneself with
this mechanism more in details in rather well–developed help–base of the
Mathematica system, or in books [31-33,52,61,59].

In conclusion of the present section we in brief will stop on application of
transformations rules to the procedures. The mechanism of transformations
rules supported by the system remains in force not only for symbols but for
algebraic expressions too. In principle, this mechanism can be adapted onto
an arbitrary expression. Moreover, as an essential enough property of this
mechanism it is possible to note the circumstance that allows to use and the
patterns, and the symbolic constructions, for example:

In[2837]:= Sin[x^2]^2 + Cos[y + h]^2 /. {x^2 –> x, y + h –> x}

V.Z. Aladjev, V.A. Vaganov

 290

Out[2837]= Cos[x]^2 + Sin[x]^2

In[2838]:= Sin[a + b*c]*(Sin[x^2] + Cos[y + h]) /. {Sin[_] –> x, Cos[_] –> y}

Out[2838]= x (x + y)

Thus, between purely symbolic transformations rules and rules that include
the patterns, in particular, "_" there is one fundamental difference which is
considered in details in the books [31-33]. The more detailed description of
mechanisms of programming of the patterns for transformations rules of an
arbitrary expression can be found in the reference on the Mathematica.

At the same time the system doesn't dispose the mechanism of application
of transformations rules to procedures and for this purpose the procedure
can be offered, whose call ReplaceProc[x, t] returns the definition in string
format of the procedure – result of application to a procedure x of rules of
transformations t (one rule or their list); at that, those rules are excluded from
rules t, whose left parts coincide with formal arguments of the procedure x.
The next fragment represents source code of the procedure with examples
of its use along with the simple testing function whose call RuleQ[x] returns
True, if x – a transformation rule, and False otherwise. In the ReplaceProc
procedure definition the given function is used in its heading.

In[2859]:= RuleQ[x_] := If[MemberQ[{Rule, RuleDelayed}, Head[x]],
 True, False]

In[2860]:= Map[RuleQ, {a –> b, c –> d+h, Sin, a+b, ProcQ, a :> b, c :> d+h}]
Out[2860]= {True, True, False, False, False, True, True}

In[2861]:= ReplaceProc[x_ /; ProcQ[x],
 r_ /; DeleteDuplicates[Map[RuleQ, Flatten[{r}]]] == {True}] :=
 Module[{a = Definition2[x], b = HeadPF[x], c, d = Flatten[{r}]},
 c = ToExpression["Hold[" <> StringTrim[a[[1]], b <> " := "] <> "]"];
 d = Select[d, ! MemberQ[Args1[x], ToString[Part[#, 1]]] &];
 c = ToString1[ReplaceAll[c, d]]; b <> " := " <> StringTake[c, {6, –2}]]

In[2862]:= ArtKr[x_ /; IntegerQ[x], y_ /; StringQ[y]] :=
 Module[{a = StringLength[y], b = 90, ab = 500}, (a + x)*(b + y) + ab]
In[2863]:= ReplaceProc[ArtKr, {a –> Art, b –> Kr, y –> 42, x –> 500}]
Out[2863]= "ArtKr[x_ /; IntegerQ[x], y_ /; StringQ[y]] := Module[{Art =
 StringLength[y], Kr = 90, ab = 500}, (Art + 500)*(Kr + 42) + ab]"

Extension of Mathematica system functionality

 291

It makes sense to stop on one moment useful for programming. Supra, a
number of procedures which return additional result through argument –
an undefinite variable – were considered. However such mechanism requires
or of choice of some undefinite variable in the current session, demanding
generally of its cleaning in the absence of need for it, or saving of value of a
certain variable with subsequent its cleaning in a procedure and restoration
of an initial value before any exit from the procedure. Meanwhile, for this
purpose the similar mechanism which is based on the UniqueV procedure
can be used, whose call UniqueV[x, y] returns a name in string format "xn"
of an unique variable of the current session to which value y was ascribed,
where x – a symbol, n – an integer and y – an arbitrary expression. Further
the UniqueV procedure is used for ensuring of return of additional result
by simple procedure A6 through an unique variable. The fragment is rather
transparent and of any special additional explanations doesn't demand.

In[2571]:= UniqueV[x_ /; SymbolQ[x], y_] :=
 Module[{a = ToString[Unique[ToString[x]]]},
 ToExpression[a <> " = " <> ToString1[y]]; a]

In[2572]:= UniqueV["agn", 50090]
Out[2572]= "agn20"
In[2573]:= agn20
Out[2573]= 50 090

In[2579]:= A6[x_, y___] := Module[{a = 90, b = 500},
 If[{y} == {}, a*x, {a*x, UniqueV["ag", b*x]}]]
In[2580]:= {A6[73], A6[42, 6]}
Out[2580]= {6570, {3780, "ag68"}}
In[2581]:= ag68
Out[2581]= 21 000

Below, a number of tools providing higher level of procedural programming
in the Mathematica system will be represented; which in a certain degree
were wafted by similar means of the Maple system and by other systems of
procedural programming. It should be noted that the values by default for
system attributes and options given in the present section, and in the book
as a whole concern the Mathematica system of version 10. In the following
Mathematica versions there can quite be certain differences.

V.Z. Aladjev, V.A. Vaganov

 292

6.9. Some additional facilities for operating with blocks,
functions and modules in the Mathematica software

If the previous sections of the head represent main means of work with an
object of the type {Block, Function, Module}, the present section represents
additional, but quite important means of work in a number of appendices
with objects of this type. Meanwhile, having the basic purpose, these means
can be functionally crossed with means represented in the previous sections
of this head. It should not cause any particular surprise because the similar
situation takes place pretty often among means, practically, of any software
system. And still the means of the present section have a little more specific
character and aren't so sought after as means of the previous sections. At the
same time, ascribing them to this section in a certain degree has conditional
character and is caused by our experience of their usage.

First of all, again we will return to the question of syntactic correctness of a
block and module. Examples of two types of syntactic mistakes at definition
of the procedures of types {Module, Block} are presented below, that aren't
distinguished by the system at evaluation of their definitions, and in some
cases even at a call of such procedures. At that, repeated calls of procedures
of the Module-type as very much demonstrate the fragment examples, yield
formally correct results. For testing of procedures of both types regarding
their syntactic correctness in the above context the SyntCorProcQ procedure
has been offered, whose source code along with typical examples of its use
the following fragment represents, namely:

In[5081]:= Art[x_, y_] := Module[{a, b},]; Art1[x_, y_] := Module[{a, b}]
In[5082]:= Kr[x_, y_] := Block[{a, b},]; Kr1[x_, y_] := Block[{a, b}]
In[5083]:= {Art[90, 500], Art1[90, 500]}
Module::argr: Module called with 1 argument; 2 arguments are expected. >>

Out[5083]= {Null, Module{a, b}]}
In[5084]:= {Art[90, 500], Art1[90, 500]}
Out[5084]= {Null, Module[{a, b}]}
In[5085]:= {Kr[90, 500], Kr1[90, 500]}
 Block::argr: Block called with 1 argument; 2 arguments are expected. >>

Out[5085]= {Null, Block[{a, b}]}

Extension of Mathematica system functionality

 293

In[5086]:= SyntCorProcQ[x_ /; BlockModQ[x]] := Module[{d, h, c = Kr,
 b = PureDefinition[x], a = HeadPF[x]},
 ClearAll[Kr]; Kr = ProcFuncTypeQ[ToString[x]][[2]][[1]];
 h = Quiet[Check[Locals2[x], Locals1[x]]];
 h = If[h === {}, "{}", ToString[h]];
 d = a <> " := " <> Kr <> "[" <> h;
 d = StringReplace[b, d –> "", 1];
 Kr = c; ! MemberQ[{"]", ", Null]"}, d]]

In[5087]:= Map[SyntCorProcQ, {ProcQ, Kr, Kr1, Art, Art1}]
Out[5087]= {True, False, False, False, False}
In[5088]:= KrArt[x_, y_, z_] := Module[{a, b, c}, 90 + x + y + z]
In[5089]:= Map[SyntCorProcQ, {Locals, Mapp, BlockToModule, KrArt}]
Out[5089]= {True, True, True, True}
In[5090]:= Map[SyntCorProcQ, {Art2, Do, If, 500}]
Out[5090]= {SyntCorProcQ[Art2], SyntCorProcQ[Do], SyntCorProcQ[If],
 SyntCorProcQ[500]}

The procedure call SyntCorProcQ[x] returns True if the definition of a block
or module x activated in the current session is syntactic correct in the above
context, otherwise False is returned. If x – not a block or module, the call is
returned unevaluated. The definition of the SyntCorProcQ procedure along
with the standard means uses our means such as ProcFuncTypeQ, Locals2,
BlockModQ, PureDefinition and HeadPF that are considered in the present
book and in [28-33]. In a number of problems of procedural programming,
first of all, of system character, the procedure is useful enough.

In a number of applications of system character it is desirable for the user
block, function or module to have information regarding use by it of means
in the context {system means, user means}. The SysUserSoft procedure solves
this problem, whose the call SysUserSoft[x] generally returns the nested 2–
element list, whose first element contains 2–element sublists, whose the first
element – the name in string format of a system function, and the second
element – its multiplicity, while the second element of the list also contains
2–element sublists, whose first element – the name in string format of the
user means (block, function, module), and the second element – its multiplicity.
In the absence for an object x means of the specified types the procedure call

V.Z. Aladjev, V.A. Vaganov

 294

SysUserSoft[x] returns the empty list, i.e. {}. At that, if the type of the actual
argument x is different from (Block, Function, Module), then the procedure
call SysUserSoft[x] is returned unevaluated. The next fragment represents
source code of the procedure along with typical examples of its usage.

In[2580]:= SysUserSoft[x_ /; BlockFuncModQ[x]] := Module[{b, s = {}, u = {},
 h = Args[x, 6], c, a = Flatten[{PureDefinition[x]}][[1]],
 d = If[QFunction[x], {}, LocalsGlobals1[x]]},
 b = ExtrVarsOfStr[a, 2, 90];
 c = Select[b, ! MemberQ[Flatten[{ToString[x], h,
 "True", "False", "$Failed", Quiet[d[[1]]], Quiet[d[[3]]]}], #] &];
 Map[If[Quiet[SystemQ[#]], AppendTo[s, #],
 If[BlockFuncModQ[#], AppendTo[u, #]]] &, c];
 c = Map[Gather, {s, u}];
 c = {Map[Flatten[#] &, Map[{#, Length[#]} &, c[[1]]]],
 Map[Flatten[#] &, Map[{#, Length[#]} &, c[[2]]]]};
 c = {Map[DeleteDuplicates[#] &, c[[1]]],
 Map[DeleteDuplicates[#] &, c[[2]]]}; If[Flatten[c] == {}, {}, c]]

In[2581]:= A[m_, n_, p_ /; IntegerQ[p], h_ /; PrimeQ[h]] := Module[{a = 73},
 h*(m + n + p)/a + StringLength[ToString1[z]]/(Cos[c] + Sin[d])]
In[2582]:= SysUserSoft[A]
Out[2582]= {{{"Cos", 1}, {"IntegerQ", 1}, {"Module", 1}, {"PrimeQ", 1},
 {"Sin", 1}, {"StringLength", 1}}, {{"ToString1", 1}}}

In[2583]:= SysUserSoft[SysUserSoft]
Out[2583]= {{{"AppendTo", 2}, {"DeleteDuplicates", 2}, {"Flatten", 5},
 {"Gather", 1}, {"If", 4}, {"Length", 2}, {"MemberQ", 1},
 {"Module", 1}, {"Quiet", 3}, {"Select", 1}, {"ToString", 1}},
 {{"Args", 1}, {"BlockFuncModQ", 2}, {"ExtrVarsOfStr", 1},
 {"LocalsGlobals1", 1}, {"PureDefinition", 1}, {"QFunction", 1},
 {"SystemQ", 1}}}

In[2584]:= G[x_] := x^2 + 90*x + 500; SysUserSoft[G]
Out[2584]= {}

In[2585]:= F[x_] := a*x + Sin[b*x] + StringLength[ToString1[x + c]];
 SysUserSoft[F]

Extension of Mathematica system functionality

 295

Out[2585]= {{{"Sin", 1}, {"StringLength", 1}}, {{"ToString1", 1}}}
In[2586]:= SysUserSoft[QFunction]
Out[2586]= {{{"Block", 1}, {"CompiledFunction", 1}, {"If", 5}, {"MemberQ", 1},
 {"Module", 2}, {"Quiet", 2}, {"StringJoin", 1}, {"StringReplace", 2}},
 {{"Definition2", 1}, {"HeadPF", 2}, {"Map3", 1}, {"SingleDefQ", 1},
 {"SuffPref", 4}, {"ToString1", 1}, {"ToString3", 1}}}

As showed our expirience, the SysUserSoft procedure is rather useful in the
structural analysis of the user software of types {Block, Function, Module}.

In some cases the RenBlockFuncMod procedure is a rather interesting tool
of manipulation by the blocks, functions or modules of the same name. The
procedure call RenBlockFuncMod[x, y] returns a new name of a function/
block/module x in string format determined by the format Unique[y]<>H,
where y – a symbol, whereas H – one of symbols {"B", "F", "M"} depending
on type of an object x or of type of its subobject composing it in case of the
object x of the same name. At that, an object x is removed from the current
session whereas the result of such renaming keeps options and attributes of
the source object x. The fragment represents source code of the procedure
along with typical examples of its usage.

In[2526]:= Pr[x_, y_String, z_ /; If[z === 90, True, False]] := {x, y, z};
 Pr[x_, y_ /; StringQ[y], z_ /; If[z === 90, True, False]] :=
 Module[{}, {x, y, z}]; SetAttributes[Pr, Protected];
 Pr1[x_, y_String, z_ /; If[z === 90, True, False]] := {x, y, z};
 SetAttributes[Pr1, {Protected, Listable}]

In[2527]:= RenBlockFuncMod[x_ /; BlockFuncModQ[x], y_Symbol] :=
 Module[{t = {}, h, a = Options[x], b = Attributes[x], k = 1, n,
 c = Flatten[{PureDefinition[x]}], d = Flatten[{HeadPF[x]}]},
 For[k, k <= Length[c], k++, h = StringReplace[c[[k]],
 StringJoin[d[[k]], " := "] –> ""];
 h = If[SuffPref[h, "Module[{", 1], "M",
 If[SuffPref[h, "Block[{", 1], "B", "F"]];
 n = ToString[Unique[y]] <> h; AppendTo[t, n];
 ToExpression[StringReplace[c[[k]], ToString[x] <> "[" –> n <> "[", 1]];

 If[a != {}, ToExpression["SetOptions[" <> n <> ", " <> ToString[a] <> "]"]];

V.Z. Aladjev, V.A. Vaganov

 296

 If[b != {}, ToExpression["SetAttributes[" <> n <> ", " <> ToString[b] <> "]"]]];
 ClearAllAttributes[x]; ClearAll[x]; If[Length[t] == 1, t[[1]], t]]

In[2528]:= RenBlockFuncMod[Pr1, Sv]
Out[2528]= "Sv$66130F"
In[2529]:= Definition["Sv$66130F"]
Out[2529]= Attributes[Sv$66130F] = {Listable, Protected}
 Sv$66130F[x_, y_String, z_ /; If[z === 90, True, False]] := {x, y, z}
In[2530]:= RenBlockFuncMod[Pr, Sv]
Out[2530]= {"Sv$66731F", "Sv$66733M"}
In[2531]:= Definition["Sv$66731F"]
Out[2531]= Attributes[Sv$66731F] = {Protected}
 Sv$66731F[x_, y_String, z_ /; If[z === 90, True, False]] := {x, y, z}
In[2532]:= Definition[Sv$66733M]
Out[2532]= Attributes[Sv$66733M] = {Protected}
 Sv$66733M[x_, y_String, z_ /; If[z === 90, True, False]] :=
 Module[{}, {x, y, z}]
In[2533]:= Map[Definition, {Pr, Pr1}]
Out[2533]= {Null, Null}

The RenBlockFuncMod procedure is most of all convenient in case of need
of differentiating of an object x of the same name onto the single subobjects
composing it.

In certain cases at the procedures calls which are in the user's package (files
of the types {"cdf", "m", "mx"}) that is uploaded into the current session, their
local variables, including local variables of the nested procedures, in the field
of the Mathematica variables are associated with the context ascribed to the
given package. This mechanism the more in details here isn't considered. It
also concerns the symbolical results returned by a procedure of this package
through such local variables. In this case the symbolical result accepts the
following standard format, namely:

<Context ascribed to a package>`<Procedure name>`Result

For the purpose of elimination of the similar situation and receiving so-called
reduced result (that contains no forms a`b`) that is significantly better adapted
for the subsequent processing, to a result returned by a procedure of the user
package, can be applied the ReductRes function whose call ReductRes[x, a]

Extension of Mathematica system functionality

 297

returns the reduced result a returned by a procedure x of the user package
that has been loaded into the current session. The next fragment represents
both variants of the Head1 procedure without usage and with usage of such
mechanism with an illustration of results of the call of both procedures. The
received results rather visually illustrate a basic distinction arising from the
mechanism of reduction of results on the basis of the presented ReductRes
function. The following fragment represents source code of the function.

In[3282]:= ReductRes[x_ /; SymbolQ[x], y_] := ToExpression[
 StringReplace[ToString[y], Context[x] <> ToString[x] <> "`" –> ""]]

In[3283]:= ReductRes[Head1, AladjevProcedures`Head1`System]
Out[3283]= System
In[3284]:= Map[Head, {ProcQ, Sin, 90, a+b, Function[{x, y}, x+y], G[x], J[6],
 Head1}]
Out[3284]= {Symbol, Symbol, Integer, Plus, Function, G, J, Symbol}
In[3285]:= Map[Head1, Map[ToString, {ProcQ, Sin, 90, a + b,
 Function[{x, y}, x + y], G[x], J[6], Head1}]]
Out[3285]= {"Module", "System", "Integer", "Plus", "PureFunction", "G", "J",
 "Module"}
In[3286]:= Head1[a := b]
Out[3286]= AladjevProcedures`Head1`System

The following useful Avg procedure is internal, i.e. the procedure call Avg[]
makes sense only in the body of other procedure, returning a list of nesting
{1|2} whose elements define the 2–element lists whose first elements define
local variables in string format of a procedure, external in relation to the Avg
whereas the second – their initial values in string format; at that, lack of the
initial value is coded by the symbol "None". In case of more than one local
variable the ListList–list is returned, whose sublists have the above format.
At absence for external procedure of local variables the procedure call Avg[]
returns the empty list – {}. The call Avg[] outside of other procedure doesn't
make special sense, returning the list of the above format for 2 local variables
{a, b} of the Avg procedure as visually illustrates the following fragment.

In[2723]:= Avg[] := Module[{b,
 a = ToString[ToExpression[ToString[InputForm[Stack[_][[1]]]]]]},
 a = If[! SuffPref[a, {"Module[", "Block["}, 1], "Module[{}," <> a <> "]", a];

V.Z. Aladjev, V.A. Vaganov

 298

 a = StringReplace[a, "$" –> ""];
 a = StringReplace[a, If[SuffPref[a, "Block[", 1],
 "Block[", "Module["] –> "", 1];
 a = SubStrSymbolParity1[a, "{", "}"][[1]];
 If[a == "{}", {}, b = StrToList[StringTake[a, {2, –2}]];
 b = Map[StringSplit[#, " = "] &, b];
 Map[If[Length[#] == 1, {#[[1]], "None"}, #] &, b]]]

In[2724]:= Z[m_, n_, p_ /; IntegerQ[p]] := Module[{h, x = 90, y = {a, b}}, m +
 n + p; h = Avg[]; h]
In[2725]:= Z[73, 90, 500]
Out[2725]= {{"h", "None"}, {"x", "90"}, {"y", "{a, b}"}}
In[2726]:= G[m_, n_, p_ /; IntegerQ[p]] := Module[{a, b = 73, c, d = 90},
 d = Avg[]; m + n + p; d]
In[2727]:= G[t, p, 500]
Out[2727]= {{"a", "None"}, {"b", "73"}, {"c", "None"}, {"d", "90"}}
In[2728]:= A[m_, n_, p_ /; IntegerQ[p], h_ /; PrimeQ[h]] := Module[{a =
 500.90, b, c, t, q, d = 73, z = 47}, b = Avg[]; m + n + p + h; m*n; b]
In[2729]:= A[x, y, 42, 47]
Out[2729]= {{"a", "460.78"}, {"b", "None"}, {"c", "None"}, {"t", "None"},
 {"q", "None"}, {"d", "73"}, {"z", "47"}}
In[2730]:= B[m_, n_, p_, h_ /; PrimeQ[h]] := Module[{a = 500.90, b,
 c = {h, p}, t, q, d = 73, z = p*t, s}, b = Avg[]; m + n + p + h; m*n; b]
In[2731]:= B[x, y, 42, 47]
Out[2731]= {{"a", "500.90"}, {"b", "None"}, {"c", "{47, 42}"}, {"t", "None"},
 {"q", "None"}, {"d", "73"}, {"z", "42 t"}, {"s", "None"}}
In[2732]:= T[m_, n_, p_, h_ /; PrimeQ[h]] := Module[{}, m*n*p*h; Avg[]];
 T[25, 18, 42, 47]
Out[2732]= {}
In[2733]:= Avg[]
Out[2733]= {{"b", "None"},
 {"a", "ToString[ToExpression[ToString[Stack[_][[1]]]]]"}}

The previous fragment represents source code of the Avg procedure with
examples of its usage for receiving in the body of a procedure of the list of
its local variables. It should be noted that a number of system means of our

Extension of Mathematica system functionality

 299

package AVZ_Package [48] use the Avg procedure.

Here once again quite pertinently to note the important circumstance, that
the blocks, functions, modules differ by their headings as it was repeatedly
illustrated above. At that, at the call of an object of this type the first of the
complete list of the subobjects of the same name determined by the standard
Definition function is choosen on which the tuple of the actual arguments
is admissible. This circumstance should be considered at programming and
it has been considered by us at programming of a number of means of our
package AVZ_Package [48]. Moreover, as objects of the same name can be
as objects of type {Block, Function, Module}, and in combination with objects
of other types, in a number of cases at calculations with such objects, causing
special or erroneous situations. For elimination from the objects of the same
name of subobjects of types different from {Block, Function, Module} a quite
simple procedure serves whose call ProcCalls[w] returns Null, i.e. nothing,
deleting from the list of the object of the same name w (w in string format) of
subobjects of types, different from {Block, Function, Module}. The following
fragment represents source code of the ProcCalls procedure along with the
most typical examples of its usage.

In[2780]:= A[x_] := Module[{a = 50}, x + a]; A[x_, y_] := Module[{a = 90}, x +
 y + a]; A[x_, y_List] := Block[{}, {x, y}]; A[x_Integer] := Module[{a = 42},
 x + a]; A := {a, b, c, d, h}; SetAttributes[A, {Flat, Listable, Protected}]
In[2781]:= Definition[A]
Out[2781]= Attributes[A] = {Flat, Listable, Protected}
 A := {a, b, c, d, h}
 A[x_Integer] := Module[{a = 42}, x + a]
 A[x_] := Module[{a = 50}, x + a]
 A[x_, y_List] := Block[{}, {x, y}]
 A[x_, y_] := Module[{a = 90}, x + y + a]

In[2782]:= ProcCalls[x_/; StringQ[x]] :=
Module[{a = Select[StringSplit[ToString[InputForm[Definition[x]]], "\n"],
 # != " " && # != x && ! SuffPref[#, x <> " := ", 1] &]},
 If[SuffPref[a[[1]], "Attributes[", 1], AppendTo[a[[2 ;; –1]], a[[1]]]];
 ClearAttributes[x, Protected]; Clear[x]; Map[ToExpression, a];]

In[2783]:= ProcCalls["A"]

V.Z. Aladjev, V.A. Vaganov

 300

In[2784]:= Definition[A]
Out[2784]= Attributes[A] = {Flat, Listable, Protected}
 A[x_Integer] := Module[{a = 42}, x + a]
 A[x_] := Module[{a = 50}, x + a]
 A[x_, y_List] := Block[{}, {x, y}]
 A[x_, y_] := Module[{a = 90}, x + y + a]

In[2785]:= ScanLikeProcs[x_: {}] := Module[{b = {}, c = {}, d, h, k = 1,
 a = Select[Names["`*"], StringFreeQ[#, "$"] &&
 Quiet[Check[BlockFuncModQ[#], False]] &]},
 Off[Definition::ssle]; If[a == {}, Return[{}],
 For[k, k <= Length[a], k++, d = Definition2[a[[k]]][[1 ;; –2]];
 If[Length[d] > 1, AppendTo[b,
 Map[StringTake[#, {1, Flatten[StringPosition[#, " := "]][[1]] – 1}] &, d]];
 AppendTo[c, a[[k]]]]]]; On[Definition::ssle]; If[! HowAct[x], x = b, Null]; c]

In[2786]:= G[x_] := Module[{a = 500}, x^2 + a]; G[x_ /; PrimeQ[x]] :=
 Module[{a = 90}, x + a]; G[x_, y_] := Module[{}, x + y];
 G[x_, y_ /; ListQ[y], z_] := Module[{}, x + Length[y] + z]
In[2787]:= V[x_] := Module[{}, x]; V[x_ /; ListQ[x]] := Module[{}, Length[x]]
In[2788]:= {ScanLikeProcs[], ScanLikeProcs[Sv], Sv}
Out[2788]= {{"A", "G", "V"}, {"A", "G", "V"}, {{"A[x_Integer]", "A[x_, y_List]",
 "A[x_, y_]", "A[x_]"}, {"G[x_ /; PrimeQ[x]]", "G[x_]", "G[x_, y_]",
 "G[x_, y_ /; ListQ[y], z_]"}, {"V[x_ /; ListQ[x]]", "V[x_]"}}}

In addition to the previous procedure for the purpose of determination of
the blocks, functions, modules of the same name of the current session of the
system a quite simple procedure is intended whose the call ScanLikeProcs[]
returns the list of the blocks/functions/modules of the same name that are
activated in the current session while as a result of the call ScanLikeProcs[b]
in addition thru an undefinite variable b the list of headings in string format
of objects of the specified type is returned. The previous fragment represents
source code of the ScanLikeProcs procedure along with examples of its use.
In certain appendices these means are rather useful, above all, at elaboration
of the system means for manipulations with procedures.

In a number of cases the structural analysis of objects of type {Block, Module,

Extension of Mathematica system functionality

 301

Function} represents the undoubted interest. In connection with this the next
StructProcFunc procedure providing a certain structural analysis of objects
of this type was created. The fragment below represents the StructProcFunc
procedure whose call StructProcFunc[x] returns simple or nested list whose
elements depending on type {"Block", "Module", "Function"} of an actual
argument x have format {Type, Heading, Locals, Body} for {"Block", "Module"}
and {Type, Heading, Body} for "Function"; furthermore, qua of the function is
understood an object x such as BlockFuncModQ[x] = True. This fragment
represents source code of the procedure along with examples of its usage off
which the format of the result returned by the procedure is highly obvious.

In[3223]:= StructProcFunc[x_ /; BlockFuncModQ[x]] := Module[{c, d, h = {},
 p, k = 1, t, b = Flatten[{HeadPF[x]}],
 a = Flatten[{PureDefinition[x]}]},
 c = Map9[StringReplace, a, Map[StringJoin[#, " := "] –> "" &, b]];
 While[k <= Length[b], d = c[[k]];
 If[SuffPref[d, "Module[{", 1], t = "Module",
 If[SuffPref[d, "Block[{", 1], t = "Block", t = ""]];
 If[t != "", AppendTo[h, {t, b[[k]],
 p = SubStrSymbolParity1[d, "{", "}"][[1]];
 StrToList[p], StringReplace[StringTake[d, {1, –2}],
 t <> "[" <> p <> ", " –> ""]}],
 AppendTo[h, {"Function", b[[k]], StringReplace[d, b[[k]] <>
 " := " –> ""]}]]; k++]; If[Length[h] == 1, h[[1]], h]]

In[3224]:= Agn[x_] := Block[{a = 90, b = 500}, x^2*a*b]; Agn[x_, y_] := x+y
In[3225]:= Agn[x_, y_, z_] := Module[{a = 90}, a*(x + y + z)]
In[3226]:= StructProcFunc[Agn]
Out[3226]= {{"Block", "Agn[x_]", {"a = 90", "b = 500"}, "x^2*a*b"},
 {"Function", "Agn[x_, y_]", "x + y"},
 {"Module", "Agn[x_, y_, z_]", {"a = 90"}, "a*(x + y + z)"}}

In[3227]:= Avz[x__] := Module[{a = 6, b = Stack[_]}, a+x; b; $InBlockMod]
In[3228]:= StructProcFunc[Avz]
Out[3228]= {"Module", "Avz[x__]", {"a = 6", "b = Stack[_]"},
 "a + x; b; $InBlockMod"}

V.Z. Aladjev, V.A. Vaganov

 302

For the purpose of elimination of ambiguity of the modules, functions and
blocks of the same name it is recommended to apply standard means to the
cleaning of the current session off concrete definitions, using the cancellation
of the Protected-attribute for them if it is necessary. For cleaning of symbols
off the ascribed values the Mathematica has three functions Clear, ClearAll
and Remove that are considered, for example, in [32]. However, the given
functions demand the concrete designation of the symbols that are subject
to the cleaning off the ascribed expressions. Whereas the following fragment
represents source code of the ClearCS procedure with examples of its usage
whose call ClearCS[ClearAll] returns Null, i.e. nothing, clearing all symbols
and off the ascribed values received by them in the current session, and off
attributes, messages and values by default, associated with such symbols;
while the call ClearCS[Remove] returns Null, i.e. nothing, deleting from the
field of names of the system all symbols that received values in the current
session of the Mathematica system.

In[2640]:= ClearCS[x_ /; MemberQ[{ClearAll, Remove}, x]] :=
 Module[{a = Join[Names["Global`*"], {"a", "b", "c",
 "d", "h", "k", "p", "S", "x", "y"}]},
 Quiet[Mapp[ClearAttributes, a, Protected]]; Quiet[Map[x, a]];]

In[2641]:= {x, y, z, g, h} = {42, 73, 47, 68, 2015}; ClearCS[Remove]; {x,y,z,g,h}
Out[2641]= {Removed[x], Removed[y], Removed[z], Removed[g],
 Removed[h]}
In[2642]:= {x, y, z, g, h} = {42, 73, 47, 68, 2015}; ClearCS[ClearAll];
 {x, y, z, g, h}
Out[2642]= {x, y, z, g, h}
In[2643]:= G[x_] := Module[{a = 90}, x^2 + a]; V[x_] := Module[{}, x^2];
 G[x_ /; PrimeQ[x]] := Module[{a = 500}, x + a];
 V[x_ /; ListQ[x]] := Module[{}, Length[x]]
In[2644]:= ClearCS[ClearAll]; Map[Definition, {G, V}]
Out[2644]= {Null, Null}

In certain appendices the ClearCS procedure appears as an useful enough
means, in many respects providing recovery of initial status of the current
session. The procedure is used by some means of package AVZ_Package,
carrying out the function of preliminary cleaning of the current session.

Extension of Mathematica system functionality

 303

In the problems of formal processing of functional expressions the ExpArgs
procedure represents a quite certain interest whose call ExpArgs[G, {x,y, …}]
provides extension of the list of formal arguments of a module, function or
block G onto the list of arguments {x, y, z, …} to the right concerning a tuple
of formal arguments of the object G with return of Null value, i.e. nothing,
and with activation in the current session of the updated definition of the
object G. The expansion of a tuple of formal arguments is made for object G
only onto variables from the list {x, y, …} which aren't its formal arguments
or local variables; otherwise expansion isn't made. List elements {x, y, z, …}
onto updating can be symbols in string format along with names of formal
arguments with tests for admissibility of the corresponding actual arguments
ascribed to them. At that, the procedure call ExpArgs[G, x] on inadmissible
object G, in particular, on a system function or on the empty list x is returned
unevaluated. The following fragment represents source code of the ExpArgs
procedure along with some most typical examples of its usage.

In[2547]:= A[x_] := Module[{a = 6}, x*a]; A[x_, y_] := Module[{a = 7}, x*y*a];
 A[x_, y_List] := Block[{}, {x, y}]; A[x_Integer] := Module[{a = 5}, x*a];
 SetAttributes[A, {Flat, Listable, Protected}];
 Art[x_, y_ /; PrimeQ[y]] := Module[{a = 2, b = 6}, Length[Join[x, y]]*a*b]

In[2548]:= ExpArgs[f_ /; BlockFuncModQ[f], x_ /; ListQ[x] &&
 DeleteDuplicates[Map[! StringFreeQ[ToString[#], "_"] ||
 StringQ[#] &, x]] == {True}] := Module[{a, b, c, d, t, h, g = {}, k = 1},
 a = Flatten[{Definition4[ToString[f]]}]; b = Args[f, 90];
 b = If[NestListQ[b], b[[1]], b]; d = Locals1[f];
 d = If[NestListQ[d], d[[1]], d];
 c = Flatten[{HeadPF[f]}][[1]]; t = Map[ToString, x];
 h = Map[#[[1]] &, Map[StringSplit[#, "_"] &, t]]; b = Join[b, d];
 While[k <= Length[h], If[! MemberQ[b, h[[k]]], d = t[[k]];
 AppendTo[g, If[StringFreeQ[d, "_"], d <> "_", d]]]; k++];
 If[g == {}, Return[], g = ToString[g];
 d = StringTake[c, {1, –2}] <> ", " <> StringTake[g, {2, –2}] <> "]";
 ClearAllAttributes[f]; ClearAll[f];
 a[[1]] = StringReplace[a[[1]], c –> d, 1]; Map[ToExpression, a]];]

V.Z. Aladjev, V.A. Vaganov

 304

In[2549]:= ExpArgs[Art, {"x", "z_", "h", p_ /; String[p], c_String, h_ /; ListQ[h]
 && Length[h] >= 90}]
In[2550]:= Definition[Art]
Out[2550]= Art[x_, y_ /; PrimeQ[y], z_, h_, p_ /; String[p], h_ /; ListQ[h] &&
 Length[h] >= 90] := Module[{a = 2, b = 6}, Length[Join[x, y]] a b]
In[2551]:= ExpArgs[Art, {"x", "z_", "h", p_ /; String[p], c_Integer,
 h_ /; ListQ[h] && Length[h] >= 90}]
In[2552]:= Definition[Art]
Out[2552]= Art[x_, y_ /; PrimeQ[y], z_, h_, p_ /; String[p], c_String,
 h_ /; ListQ[h] && Length[h] >= 90] := Module[{a = 2, b = 6},
 Length[Join[x, y]] a b]
In[2553]:= ExpArgs[A, {"x", "z_", "h", p_ /; String[p], c_Integer, h_ /; ListQ[h]
 && Length[h] >= 90}]
In[2554]:= Definition[A]
Out[2554]= Attributes[A] = {Flat, Listable, Protected}
 A[x_Integer, z_, h_, p_ /; String[p], c_Integer, h_ /; ListQ[h] &&
 Length[h] >= 90] := Module[{a = 5}, x a]
 A[x_] := Module[{a = 6}, x a]
 A[x_, y_List] := Block[{}, {x, y}]
 A[x_, y_] := Module[{a = 7}, x y a]
In[2555]:= ExpArgs[A, {"x", "z_", "h", p_ /; String[p], c_Integer, h_ /; ListQ[h]
 && Length[h] >= 90}]
In[2556]:= Definition[A]
Out[2556]= Attributes[A] = {Flat, Listable, Protected}
 A[x_Integer, z_, h_, p_ /; String[p], c_Integer, h_ /; ListQ[h]
 && Length[h] >= 90] := Module[{a = 5}, x a]
 A[x_] := Module[{a = 6}, x a]
 A[x_, y_List] := Block[{}, {x, y}]
 A[x_, y_] := Module[{a = 7}, x y a]

Definition of the ExpArgs procedure along with the standard means uses a
series of our means such as Args, BlockModQ, ClearAllAttributes, HeadPF,
Definition4, Locals1, NestListQ that are considered in the present book and
in [33]. The ExpArgs procedure has a series of rather interesting appendices,
first of all, applications of the system character.

The next fragment represents the useful procedural variable $ProcType that

Extension of Mathematica system functionality

 305

has been implemented by a simple function on the basis of the system Stack
function and making sense only in the body of a block or module, returning
type {Block, Module} in string format of an object containing it. Outside of
objects of the specified type the variable accepts the "ToString" value which
doesn't have especial meaning. The next fragment represents source code of
the $ProcType variable along with some typical examples of its usage. The
$ProcType variable has a number of rather useful appendices of the applied
and the system character.

In[2562]:= $ProcType := ToString[Stack[][[1]]]

In[2563]:= Agn[x_, y_] := Block[{a = 90, b = 500, c = $ProcType}, a + b + c;
 {$ProcType, c}]
In[2564]:= Agn[42, 47]
Out[2564]= {"Block", "Block"}
In[2565]:= Agn[x_, y_] := Module[{a = 90, b = 500, c = $ProcType}, a + b + c;
 {$ProcType, c}]
In[2566]:= Agn[42, 47]
Out[2566]= {"Module", "Module"}
In[2567]:= Agn[x_, y_] := Module[{c = $ProcType, a = 90, b = 500}, a + b + c;
 {$ProcType, c}]
In[2568]:= Agn[42, 47]
Out[2568]= {"Module", "Module"}
In[2569]:= $ProcType
Out[2569]= "ToString"

To the previous procedural variable another procedural variable $TypeProc
directly adjoins which is also used only in the body of a block or module of
any type. The variable $TypeProc receives value of type in string format of
an object G which contains it, in the context {"Block", "DynamicModule",
"Module"}; outside of a block or module the variable receives $Failed value
as clearly illustrates the fragment representing source code of the procedural
variable $TypeProc along with examples of its most typical usage.

In[2572]:= $TypeProc := CheckAbort[If[$a25k18$ = Select[{Stack[Module],
 Stack[Block], Stack[DynamicModule]}, # != {} &];
 If[$a25k18$ == {}, Clear[$Art24$Kr17$]; Abort[],
 $a25k18$ = ToString[$a25k18$[[1]][[1]]]];

V.Z. Aladjev, V.A. Vaganov

 306

 SuffPref[$a25k18$, "Block[{", 1], Clear[$a25k18$]; "Block",
 If[SuffPref[$a25k18$, "Module[{", 1] &&
 ! StringFreeQ[$a25k18$, "DynamicModule"], Clear[$a25k18$];
 "DynamicModule", Clear[$a25k18$]; "Module"]], $Failed]

In[2573]:= M[x_] := Module[{a = 90, b = 500, c = $TypeProc}, c]; M[73]
Out[2573]= "Module"
In[2574]:= G[x_] := Module[{a = 6, b = 7, c}, c = a*b*x; c^2; $TypeProc]; G[73]
Out[2574]= "Module"
In[2575]:= B[x_] := Block[{a = 90, b = 500, c = $TypeProc}, c]; B[68]
Out[2575]= "Block"
In[2576]:= DM[x_] := DynamicModule[{a, c = $TypeProc}, x; c]; DM[68]
Out[2576]= "DynamicModule"
In[2577]:= $TypeProc
Out[2577]= $Failed
In[2578]:= F[x_ /; ListQ[x]] := Append[Select[x, OddQ[#] &], $TypeProc];
 F[{68, 73, 47, 18}]
Out[2578]= {73, 47, $Failed}

In certain cases of procedural programming the $TypeProc variable along
with the $ProcType variable are useful enough facilities.

To the previous procedural variables the $CallProc variable directly adjoins
whose call returns contents in string format of the body of a block or module
which contains it at the time of a call. At that, for a module the body with
local variables with "$" symbols ascribed to them while for a block its body
in the standard format are returned. The call of the given variable outside of
a block or module returns "StringTake[ToString1[Stack[_][[1]]], {10, -2}]". The
next fragment represents source code of the procedural variable $CallProc
along with the typical examples of its usage.

In[2584]:= $CallProc := StringTake[ToString1[Stack[_][[1]]], {10, –2}]

In[2585]:= M[x_, y_ /; StringQ[y]] := Module[{a = $CallProc, b, c},
 x*StringLength[y]; a]
In[2586]:= M[6, "vak"]
Out[2586]= "Module[{a$ = $CallProc, b$, c$}, 6*StringLength[\"vak\"]; a$]"

In[2587]:= B[x_, y_ /; PrimeQ[y]] := Block[{a = $CallProc, b}, x + y; a]

Extension of Mathematica system functionality

 307

In[2588]:= B[500, 17]
Out[2588]= "Block[{a = $CallProc, b}, 500 + 17; a]"
In[2589]:= $CallProc
Out[2589]= "StringTake[ToString1[Stack[_][[1]]], {10, –2}]"

The procedural variable $CallProc provides possibility of processing of the
body of a block or a module, containing it, within the confines of the given
object, presenting a certain interest for a number of applications, first of all,
of the system character.

Use of means of preservation of definitions in the ASCII format files allows
to program quite effective and useful means of the analysis of the structural
organization of the user blocks, functions and modules. The next fragment
represents source code of the CompActPF procedure along with the typical
examples of its application, whose call CompActPF[x] returns the nested 2–
element list whose the first element defines the list of all blocks, functions or
modules that enter in the definition of a block/function/module x, including
x whereas the second element defines the list of headings in string format of
these means. At that, the lists include only the user means whose definitions
were activated in the current session of the Mathematica system; moreover,
for the calls which enter into an object x, are added respectively and all their
calls onto the full depth of nesting.

In[5134]:= G[x_] := Module[{}, a*x + b]; G1[x_] := a*x + b + V[x, 90];
 S[y_] := Module[{}, y^2 + 90]; S1[y_] := y^2 + G[y];
 V[x_, y_] := Module[{G, S}, G[x] + S[y^2]];
 V1[x_, y_] := G1[x] + S1[y^2] + h*Sin[x*y] + v*Cos[x*y]

In[5135]:= CompActPF[x_ /; BlockFuncModQ[x]] := Module[{b = {}, c = "", d,
 a = ToDefOptPF[x], f = ToString[x] <> ".txt", h = ""},
 Put[FullDefinition[x], f];
 Quiet[While[! SameQ[h, EndOfFile], h = Read[f, String];
 If[h != " ", c = c <> h;
If[HeadingQ[d = StringTake[c, {1, Flatten[StringPosition[c, " := "]][[1]] – 1}]],
 AppendTo[b, d]; c = ""]; Continue[]]]];
 DeleteFile[Close[f]]; {Map[HeadName, b], b}]

In[5136]:= CompActPF[V1]

V.Z. Aladjev, V.A. Vaganov

 308

Out[5136]= {{"V1", "G1", "V", "G", "S", "S1"}, {"V1[x_, y_]", "G1[x_]",
 "V[x_, y_]", "G[x_]", "S[y_]", "S1[y_]"}}
In[5137]:= CompActPF[V]
Out[5137]= {{"V", "G", "S"}, {"V[x_, y_]", "G[x_]", "S[y_]"}}

In[5138]:= CompActPF1[x_ /; BlockFuncModQ[x]] := Module[{d = {}, k = 1,
 b = Args[x, 90], a = Flatten[{PureDefinition[x]}][[1]], c = Locals1[x], p},
 {b, c} = {If[NestListQ[b], b[[1]], b], If[NestListQ[c], c[[1]], c]};
 a = Select[ExtrVarsOfStr[a, 2], ! MemberQ[Flatten[{ToString[x],
 Join[b, c, {"Block", "Module"}]}], #] &];
 While[k <= Length[a], p = a[[k]];
 AppendTo[d, If[BlockFuncModQ[p], {p, HeadPF[p]},
 If[SystemQ[p], {p, "System"}, {p, "Undefined"}]]]; k++];
 a = Map[Flatten, Gather[d, ! StringFreeQ[#1[[2]], "_"] &&
 ! StringFreeQ[#2[[2]], "_"] &]];
 b = Map[Flatten, Gather[a, #1[[2]] == "System" && #2[[2]] == "System" &]];
 d = Map[Flatten, Gather[b, #1[[2]] ==
 "Undefined" && #2[[2]] == "Undefined" &]];
 Map[If[#[[–1]] == "System",
 Prepend[MinusList[#, {"System"}], "System"],
 If[#[[–1]] == "Undefined",
 Prepend[MinusList[#, {"Undefined"}], "Undefined"], #]] &, d]]

In[5139]:= CompActPF1[V1]
Out[5139]= {{"System", "Cos", "Sin"}, {"G1", "G1[x_]", "S1", "S1[y_]"},
 {"Undefined", "h", "v"}}
In[5140]:= CompActPF1[V]
Out[5140]= {}
In[5141]:= Z[x_/; StringQ[x], z_ /; ! HowAct[x]] := Block[{a = Sin[x]},
 Cos[a] + StringLength[x]]
In[5142]:= CompActPF1[Z]
Out[5142]= {{"System", "Cos", "Sin", "StringLength"},
 {"HowAct", "HowAct[x_]"}}

We will note, that for effective processing of the saved complete definitions
of functions, blocks and modules in definition of the CompActPF procedure

Extension of Mathematica system functionality

 309

the procedure has been used, whose the call ToDefOptPF[x] optimizes the
definition of the user block, function or module x in the current session. The
truth, for optimization of definitions there are also other means considered
in the book above. A quite useful modification of the CompActPF procedure
completes the previous fragment whose the call CompActPF1[x] returns the
nested list whose elements represent sublists of the following format:

– sublist with the first element "System" defines calls of system functions in
definition of a block, function or module x;

– sublist with the first element "Undefined" defines names of objects which
aren't included into the list of arguments and local variables of a function,
block or module x;

– sublist of a format different from above-mentioned contains the user pairs
{block/function/module, its heading}, whose calls are available in definition
of an object x.

The CompActPF1 procedure is an useful means in a number of applications,
first of all, of the system character, providing the structural analysis of the
user means of the types {Block, Function, Module}.

As it is well known [25], the Maple system has a number of the procedural
variables (where under procedural variables are understood the variables making
sense only in the body of a block or module and receiving values about components
of the object containing them) which provide, in particular, the possibility to
receive the list of formal arguments of the block or module in its body at a
call. Whereas in the Mathematica system similar means are absent though
in many cases represent quite certain interest. Some means of this kind for
Mathematica are given above. It is simple to notice that means of the Maple
in this respect are more developed, than similar means of the Mathematica,
that in some cases rather significantly simplifies procedural programming.

A block or module provide four main mechanisms of return of results of its
call: (1) through the last offer of the body, (2) on the basis of Return function,
(3) through global variables, and (4) through formal arguments. The given
question was considered enough in detail in our books [25-33].

The following fragment on the example of rather simple procedure P very
visually illustrates a mechanism of return of any number of results through
argument z – the tuple of undefinite variables. At that, for simplification of

V.Z. Aladjev, V.A. Vaganov

 310

assignment of the returned results to elements of a list z a simple and at the
same time useful function AssignL is used.

In[2550]:= P[x_, y_, z___ /; DeleteDuplicates[Map[! HowAct[#] &, {z}]] ==
 {True}] := Module[{a = 90, b = 500, c = 72},
 If[x*y > 500, AssignL[{z}[[1]], a]; AssignL[{z}[[2]], b];
 AssignL[{z}[[3]], c]]; (x + y)*(a + b + c)]
In[2551]:= P[42, 47, m, n, p]
Out[2551]= 58 918
In[2552]:= {m, n, p}
Out[2552]= {90, 500, 72}
In[2553]:= First[{x, y, z}] = 90
 Set::write: Tag First in First[{x, y, z}] is Protected. >>
Out[2553]= 90
In[2554]:= {x, y, z}
Out[2554]= {x, y, z}
In[2555]:= {x, y, z}[[2]] = 90
 Set::setps: {x, y, z} in the part assignment is not a symbol. >>
Out[2555]= 90
In[2556]:= {x, y, z}
Out[2556]= {x, y, z}

In[2557]:= AssignL[x_, y_, z___] := Quiet[If[{z} != {}, x := y, x = y]]

In[2558]:= AssignL[{x, y, z}[[2]], 90]
Out[2558]= 90
In[2559]:= {x, y, z}
Out[2559]= {x, 90, z}
In[2560]:= AssignL[{a1, a2, a3, a4, a5, a6}[[3 ;; 5]], {72, 47, 67}]
Out[2560]= {72, 47, 67}
In[2561]:= {a1, a2, a3, a4, a5, a6}
Out[2561]= {a1, a2, 72, 47, 67, a6}
In[2562]:= AssignL[{{a, b}, {c, d}}[[1, 2]], 90, Delayed]
In[2563]:= {{a, b}, {c, d}}
Out[2563]= {{a, 90}, {c, d}}
In[2564]:= AssignL[{{a, b}, {c, d}}[[1, 2]], 90, Delayed]
Ot[2564]= $Failed

Extension of Mathematica system functionality

 311

The function call AssignL[x, y] provides correct assignment to elements (to
all or the given elements) of an arbitrary expression or expressions from the
list y, modeling assignments on the basis of constructions of the format {x,
y, z, …}[[n]] = Expr and {x, y, z, …}[[n ;; p]] = {Exn, Exn+1, …, Exp} and to them

similar which the system doesn't support while the function call AssignL[x,
y, j] where j – an expression – provides the correct delayed assignments of
the above-stated kind, as visually illustrates the previous fragment. At that,
the function call on inadmissible appointments returns $Failed.

As it was already noted earlier and it was used in some procedures, in the
Mathematica along with the simple procedures which aren't containing in
the body of definitions of other procedures the use of the so–called nested
procedures, i.e. of such procedures whose definitions are in body of other
procedures is allowed. The nesting level of such procedures is defined by
only a size of working field of the system. In this regard rather interesting
problem of definition of the list of subprocedures whose definitions are in
the body of an arbitrary procedure of the type {Block, Module} arises. The
SubProcs procedure successfully solves the problem whose call SubProcs[x]
returns the nested 2-element list of ListList-type whose first element defines
the sublist of headings of blocks and modules composing a main procedure
x whereas the second element defines the sublist of the generated names of
blocks and modules composing a main procedure x including procedure x
itself, and that are activated in the current session of Mathematica system.
The following fragment represents source code of the SubProcs procedure
along with the most typical examples of its application.

In[2525]:= SubProcs[P_ /; BlockModQ[P]] := Module[{b, c = {}, d, t, h, k = 1,
 p = {}, g = {}, a = Flatten[{PureDefinition[P]}][[1]]},
 b = StringPosition[a, {"] := Block[{", "] := Module[{"}];
 For[k, k <= Length[b], k++, d = b[[k]];
 AppendTo[p, ExprOfStr[a, d[[1]], –1, {" ", ",", ";"}]];
 AppendTo[c, h = ExprOfStr[a, d[[1]], –1, {" ", ",", ";"}] <> " := " <>
 ExprOfStr[a, d[[1]] + 5, 1, {" ", ",", ";"}];
 t = Flatten[StringPosition[h, "["]];
 h = Quiet[StringReplacePart[h, ToString[
 Unique[ToExpression[StringTake[h, {1, t[[1]] – 1}]]]], {1, t[[1]] – 1}]];

V.Z. Aladjev, V.A. Vaganov

 312

AppendTo[g, StringTake[h, {1, Flatten[StringPosition[h, "["]][[1]] – 1}]]; h]];
 Map[ToExpression, c]; {p, Map[ToExpression, g]}]

In[2526]:= P[x_, y_] := Module[{a, b, B, P1, P2}, P1[z_, h_] :=
 Module[{m, n}, z+h]; B[h_] := Block[{}, h]; P2[z_] := Module[{P3},
 P3[h_] := Module[{}, h]; P3[z]]; x*P2[x] + P1[x, y] + P2[y]]
In[2527]:= P[90, 500]
Out[2527]= 9190
In[2528]:= SubProcs[P]
Out[2528]= {{"P[x_, y_]", "P1[z_, h_]", "B[h_]", "P2[z_]", "P3[h_]"},
 {P$60501, P1$60506, B$60510, P2$60515, P3$60519}}
In[2529]:= DefFunc[P2$60515]
Out[2529]= P2$1247[z_] := Module[{P3}, P3[h_] := Module[{}, h]; P3[z]]

Thus, between elements of sublists of the returned nested list the one-to-one
correspondence takes place. The definition of the SubProcs procedure along
with the standard means uses a number of our means such as BlockModQ,
ExprOfStr, PureDefinition which are considered in the present book and in
[28–33]. The procedure allows a number of interesting enough expansions.

The quite useful SubProc1 procedure provides testing of a block/module x
regarding existence in its definition of the blocks/modules. The procedure
call SubProcs1[x] depending on existence of an object x of the same name
with various headings or with one heading returns the nested or simple list;
at that, the first elements of the list or sublists define headings of an object x
while the second define number of blocks/modules that enter into definition
of the object x with the corresponding headings. If the object x not a block,
function, module, the procedure call SubProcs1[x] is returned unevaluated.
The fragment represents source code of the procedure with the most typical
examples of its use. The SubProcs1 procedure can be quite simply expanded
onto extraction of all subprocedures of a procedure x.

In[2532]:= SubProcs1[x_ /; BlockFuncModQ[x]] := Module[{b = {}, c, d, k = 1,
 a = Flatten[{PureDefinition[x]}]},
 For[k, k <= Length[a], k++, c = a[[k]];
 d = StringPosition[c, {"] := Module[{", "] := Block[{"}];
 If[d == {}, Continue[]];

Extension of Mathematica system functionality

 313

 AppendTo[b, {StringTake[c, {1, d[[1]][[1]]}], Length[d] – 1}]];
 If[Length[b] == 1, Flatten[b], b]]

In[2533]:= G[x_, y_, z_] := x + y + z; G[x_] := Module[{V, H},
 V[y_] := Module[{}, y^3]; H[z_] := Module[{}, z^4]; x + V[x] + H[x]];
 G[x_, z_] := Module[{V, H, P}, V[t_] := Module[{}, t^3 + t^2 + 500];
 H[t_] := Module[{}, t^4]; P[h_] := Module[{a = 90}, a^2 + h^2];
 x + V[x] + H[z]*P[x]];
 H[t_] := Module[{P}, P[h_] := Module[{a = 90}, a^2 + h^2]; x + P[x]]
In[2534]:= SetAttributes[G, {Protected, Listable}]; {G[2015], G[2015, 73]}
Out[2534]= {16 493 608 406 015, 115 541 459 232 440}
In[2535]:= SubProcs1[G]
Out[2535]= {{"G[x_]", 2}, {"G[x_, z_]", 3}}
In[2536]:= SubProcs1[H]
Out[2536]= {"H[t_]", 1}
In[2537]:= SubProcs1[90]
Out[2537]= SubProcs1[90]

In[2538]:= P[x_ /; {j[b_] := Module[{}, b^2], If[EvenQ[x], True, False]}[[2]]] :=
 Module[{a = {c[d_] := Module[{}, d]}}, {j[x], c[x]}]
In[2539]:= P[2014]
Out[2539]= {4056196, 2014}
In[2540]:= Map[Definition1, {j, c}]
Out[2540]= {"j[b_] := Module[{}, b^2]", "c[d_] := Module[{}, d]"}

Very simple example illustrating some admissible mechanisms of definition
of heading and local variables of a block/module that are enough useful for
procedural programming completes this fragment. These mechanisms are
used also by a number of the means composing our package AVZ_Package
[48] while the SubProcs2 procedure represents a quite essential expansion
of the SubProcs1 procedure. The following fragment represents source code
of the SubProcs2 procedure along with examples of its typical usage.

In[2386]:= G[x_] := Module[{V, H}, Vg[y_] := Module[{}, y^3]; H72[z_] :=

 Module[{}, z^4]; x + Vg[x] + H72[x]]; G[x_, z_] := Module[{Vt, H, P},

 Vt[t_] := Module[{}, t^3 + t^2 + 500]; H[t_] := Module[{}, t^4];

 P[h_] := Module[{a = 90}, a^2 + h^2]; x + Vt[x] + H[z]*P[x]];

V.Z. Aladjev, V.A. Vaganov

 314

 H[t_, z_] := Module[{P}, P[h_] := Module[{a = 90}, a^2 + h*z]; t + P[t]];
 F[x_, y] := x + y; SetAttributes[G, {Protected, Listable}];
 {G[2015], G[2015, 73]}
Out[2386]= {16 493 608 406 015, 115 541 459 232 440}

In[2387]:= SubProcs2[y_, z___] := Module[{n = {}, m=1, SB,
 v = Flatten[{PureDefinition[y]}]},
 If[BlockFuncModQ[y],
 SB[x_String] := Module[{b = "Module[", c, d, h, g = "", t, k, p, q, j, s, w,
 a = Map[#[[1]] &, StringPosition[x, "Module[{"]]},
 If[a == {}, Return[]]; If[Length[a] == 1, Return[$Failed],
 d = Map[# – 5 &, a]]; c = {StringTake[x, {1, d[[1]]}]};
 For[k = Length[a], k > 1, k––, h = b; g = ""; t = "";
 For[j = a[[k]] + 7, j < Infinity, j++, h = h <> StringTake[x, {j, j}];
 If[SameQ[Quiet[Check[ToExpression[h], "Error"]],
 "Error"], Continue[],
 For[j = d[[k]], j > 1, j––, g = StringTake[x, {j, j}] <> g;
 If[SameQ[Quiet[Check[ToExpression[g],
 "Error"]], "Error"], Continue[], Break[]]];
 While[j > 1, p = StringTake[x, {j, j}];
 If[! SameQ[p, " "], t = p <> t, Break[]]; j––];
 p = StringPosition[x, " " <> t <> "["][[1]];
 s = Flatten[SubStrSymbolParity1[StringTake[x, {p[[1]], –1}], "[", "]"]];
 w = 1; While[w <= Length[s] – 1, q = s[[w]];
 If[! StringFreeQ[q, "_"], s = t <> q <> " := Module" <> s[[w + 1]];
 Break[]]; w++]; AppendTo[c, s]; Break[]]]]; c];
 For[m, m <= Length[v], m++, AppendTo[n, SB[v[[m]]]]];
 n = Select[n, ! SameQ[#, Null] &]; If[n == {}, $Failed, n = If[Length[n] == 1,
 n[[1]], n]; If[{z} != {}, ToExpression[n]]; n], $Failed]]

In[2388]:= SubProcs2[G, 90]
Out[2388]= {{"G[x_]", "H72[z_] := Module[{}, z^4]", "Vg[y_] := Module[{},
 y^3]"}, {"G[x_, z_]", "P[h_] := Module[{a = 90}, a^2 + h^2]",
 "H[t_] := Module[{}, t^4]", "Vt[t_] := Module[{}, t^3 + t^2 + 500]"}}

Extension of Mathematica system functionality

 315

In[2389]:= {H72[90], Vg[500], P[26], H[18], Vt[67]}
Out[2389]= {65 610 000, 125 000 000, 8 776, 104 976, 305 752}
In[2390]:= SubProcs2[H]
Out[2390]= {{"H[t_, z_]", "P[h_] := Module[{a = 90}, a^2 + h*z]"}, $Failed}
In[2391]:= Map[SubProcs2, {F, 500}]
Out[2391]= {$Failed, $Failed}

The call SubProcs2[y] depending on an unique procedure y or of the same
name with various headings, returns simple or nested list. For the returned
list or sublists the first element is the procedure y heading, while the others
– definitions in string format of subprocedures of the Module type that enter
into the y definition. In absence for y of subprocedures of the specified type
or in the case of type of argument y, different from Module, the procedure
call SubProcs2[y] returns $Failed. In case of the second optional argument
z – an arbitrary expression – the call SubProcs3[y, z] returns the similar result
with simultaneous activation of these subprocedures in the current session.

The SubProcs3 procedure is further expansion of the SubProcs2 procedure;
its call SubProcs3[y] differs from a call SubProcs2[y] by the following two
moments, namely: (1) the user block, function or module can act as a factual
argument y, and (2) the returned list as the first element contains heading of
object y whereas other elements of the list represent definitions of functions,
blocks and modules in string format entering into definition y. In case of an
object y of the same name, the returned list will be the nested list, sublists of
which have the above–mentioned format. At that, the call SubProcs3[y, z]
with the second optional argument z – an arbitrary expression – returns the
above list and at the same time activates in the current session all objects of
the above type, that enter into y. The fragment represents source code of the
procedure along with typical examples of its usage.

In[2630]:= G[x_] := Module[{Vg, H72},Vg[y_] := Module[{},y^3]; H72[z_] :=
 Module[{}, z^4]; x + Vg[x] + H72[x]]; G[x_, z_] := Module[{Vt, H, P},
 Vt[t_] := Module[{}, t^3 + t^2 + 500]; H[t_] := Module[{}, t^4];
 P[h_] := Module[{a = 90}, a^2 + Cos[h^2]]; Sin[x] + Vt[x] + H[z]*P[x]];
 H[t_] := Module[{P}, P[h_] := Module[{a = 90}, a^2*h^2]; Cos[t]*P[t]];
 F[x_, y_] := Sin[x + y] + Cos[x – y]; V[x_] := Block[{a, b, c}, a[m_] :=
 m^2; b[n_] := n + Sin[n]; c[p_] := Module[{}, p]; a[x]*b[x]*c[x]];

V.Z. Aladjev, V.A. Vaganov

 316

 SetAttributes[G, {Protected, Listable}]

In[2631]:= SubProcs3[y_, z___] := Module[{u = {}, m = 1, Sv,
 v = Flatten[{PureDefinition[y]}]},
 If[BlockFuncModQ[y],
 Sv[S_String] := Module[{a = ExtrVarsOfStr[S, 1], b, c = {}, d,
 t = 2, k = 1, cc = {}, n, p, j,
 h = {StringTake[S, {1, Flatten[StringPosition[S, " := "]][[1]] – 1}]}},
 a = Select[a, ! SystemQ[Symbol[#]] &&
 ! MemberQ[{ToString[G]}, #] &];
 b = StringPosition[S, Map[" " <> # <> "[" &, a]];
 p = Select[a, ! StringFreeQ[S, " " <> # <> "["] &];
 b = Flatten[Map[SubStrSymbolParity1[StringTake[S,
 {#[[1]], –1}], "[", "]"] &, b]];
 For[j = 1, j <= Length[p], j++, n = p[[j]];
 For[k = 1, k <= Length[b] – 1, k++, d = b[[k]];
 If[! StringFreeQ[d, "_"] && StringTake[b[[k + 1]], {1, 1}] == "[",
 AppendTo[c, Map[n <> d <> " := " <> # <> b[[k+1]] &,
 {"Block", "Module"}]]]]]; c = DeleteDuplicates[Flatten[c]];
 For[k = 1, k <= Length[c], k++, d = c[[k]];
 If[! StringFreeQ[S, d], AppendTo[h, d],
 AppendTo[cc, StringTake[d,
 {1, Flatten[StringPosition[d, " := "]][[1]] – 1}]]]];
 {h, cc} = Map[DeleteDuplicates, {h, cc}];
 p = Map[StringTake[#, {1, Flatten[StringPosition[#, "["]][[1]]}] &, h];
 cc = Select[Select[cc, ! SuffPref[#, p, 1] &], ! StringFreeQ[S, #] &];
 If[cc == {}, h, For[k = 1, k <= Length[cc], k++, p = cc[[k]];
 p = StringCases[S, p <> " := " ~~ __ ~~ "; "];
 AppendTo[h, StringTake[p,
 {1, Flatten[StringPosition[p, ";"]][[1]] – 1}]]]]; Flatten[h]];
 For[m, m <= Length[v], m++, AppendTo[u, Sv[v[[m]]]]];
 u = Select[u, ! SameQ[#, Null] &];
 u = If[Length[u] == 1, u[[1]], u]; If[{z} != {}, ToExpression[u]]; u, $Failed]]

Extension of Mathematica system functionality

 317

In[2632]:= SubProcs3[G]
Out[2632]= {{"G[x_]", "Vg[y_] := Module[{}, y^3]", "H72[z_] := Module[{},
 z^4]"}, {"G[x_, z_]", "Vt[t_] := Module[{}, t^3 + t^2 + 500]",
 "H[t_] := Module[{}, t^4]", "P[h_] := Module[{a = 90}, a^2 + Cos[h^2]]"}}
In[2633]:= SubProcs3[H]
Out[2633]= {"H[t_]", "P[h_] := Module[{a = 90}, a^2*h^2]"}
In[2634]:= SubProcs3[F]
Out[2634]= {"F[x_, y_]"}
In[2635]:= SubProcs3[V]
Out[2635]= {{"V[x_ /; ListQ[x]]"}, {"V[x_]", "c[p_] := Module[{}, p]",
 "a[m_] := m^2", "b[n_] := n + Sin[n]"}, {"V[x_, y_]"}}
In[2636]:= SubProcs3[V, 500]
Out[2636]= {{"V[x_ /; ListQ[x]]"}, {"V[x_]", "c[p_] := Module[{}, p]",
 "a[m_] := m^2", "b[n_] := n + Sin[n]"}, {"V[x_, y_]"}}
In[2637]:= {V[90], a[42], b[47], c[67]}
Out[2637]= {729000 (90 + Sin[90]), 1764, 47 + Sin[47], 67}

If a function with heading acts as an object y, only its heading is returned;
the similar result takes place and in case of an object y that doesn't contain
subobjects of the above type whereas on an object y different from the user
block, function or module, the call of the SubProcs3 returns $Failed.

In some cases there is a necessity of definition for a block and module of the
subobjects of the type {Block, Function, Module}. The call SubsProcQ[x, y]
returns True if y is a global active subobject of an object x of the above type,
and False otherwise. But as the Math–objects of the given type differ not by
names as that is accepted in the majority of programming systems, but by
headings then through the 3rd optional argument the procedure call returns
the nested list whose sublists as first element contain headings with a name
x while the second element contain the headings of subobjects corresponding
to them with a name y. On the first 2 arguments {x,y} of the types, different
from specified in a procedure heading, the procedure call SubsProcQ[x, y]
returns False. The next fragment represents source code of the SubsProcQ.

In[2650]:= SubsProcQ[x_, y_, z___] := Module[{a, b, k = 1, j = 1, Res = {}},
 If[BlockModQ[x] && BlockFuncModQ[y],
 {a, b} = Map[Flatten, {{Definition4[ToString[x]]},

V.Z. Aladjev, V.A. Vaganov

 318

 {Definition4[ToString[y]]}}];
 For[k, k <= Length[b], k++, For[j, j <= Length[a], j++,
 If[! StringFreeQ[a[[j]], b[[k]]], AppendTo[Res,
 {StringTake[a[[j]], {1, Flatten[StringPosition[a[[j]], " := "]][[1]] – 1}],
 StringTake[b[[k]], {1, Flatten[StringPosition[b[[k]], " := "]][[1]] – 1}]}],
 Continue[]]]];
 If[Res != {}, If[{z} != {} && ! HowAct[z],
 z = If[Length[Res] == 1, Res[[1]], Res]; True], False], False]]

In[2651]:= V[x_] := Block[{a, b, c}, a[m_] := m^2; b[n_] := n + Sin[n];
 c[p_] := Module[{}, p]; a[x]*b[x]*c[x]]; c[p_] := Module[{}, p];
 V[x_, y_] := Module[{a, b, c}, a[m_] := m^2; b[n_] := n + Sin[n];
 c[p_] := Module[{}, p]; a[x]*b[x]*c[x]]; c[p_] := Module[{}, p]; p[x_] := x;
 SetAttributes[V, Protected]
In[2652]:= {SubsProcQ[V, c, g67], g67}
Out[2652]= {True, {{"V[x_]", "c[p_]"}, {"V[x_, y_]", "c[p_]"}}}
In[2653]:= SubsProcQ[V, Avz]
Out[2653]= False
In[2654]:= SubsProcQ[Sin, h]
Out[2654]= False
In[2655]:= SubsProcQ[p, c]
Out[2655]= False

In principle, on the basis of the above five means {SubProcs ÷ SubProcs3,
SubsProcQ} it is possible to program a number of useful enough means of
operating with expressions of the types {Block, Module}.

In a certain regard the procedural variable $ProcName which is used only
in the body of a procedure activated in the current session is of interest; the
variable returns the list whose first element determines a name whereas the
second element – the heading in string format of the procedure containing
it. Moreover, for providing of the given possibility in a list of local variables
of a procedure containing $ProcName variable it is necessary to encode the
expression of the type $$NameProc$$ = "Procedure_Name", otherwise the
procedure call as a value of variable $ProcName returns "UndefinedName".
The following fragment represents source code of the procedural variable
$ProcName along with typical examples of its usage.

Extension of Mathematica system functionality

 319

In[2530]:= $ProcName := Module[{d = "$$ArtKr$$", a, b, c, t = "", k},
 a = ToString1[Stack[_]]; d = Flatten[StringPosition[a, d]][[1]];
 b = Flatten[StringPosition[a, "$$NameProc$$"]][[1]];
 If[b > d || ToString[b] == "", Return["UndefinedName"], k = b];
 For[k = b, k <= d, k++, c = StringTake[a, {k, k}];
 If[MemberQ[{"," , "}"}, c], Break[], t = t <> c; Continue[]]];
 {b = ToExpression[ToExpression[StringSplit[t, "="][[2]]]], HeadPF[b]}]

In[2531]:= Avz[x_, y_, z_] := Module[{$$NameProc$$ = "Avz", b},
 b = $ProcName; x+y+z; b]
In[2532]:= Agn[x_, y_, z_] := Module[{b, $$NameProc$$ = "Agn"}, x+y+z;
 b = $ProcName; b]
In[2533]:= Ian[x_, y_, z_] := Module[{b, c, h}, x+y+z; b = $ProcName; b]
In[2534]:= Agn[47, 67, 72]
Out[2534]= {Agn, "Agn[x_, y_, z_]"}
In[2535]:= Avz[47, 67, 72]
Out[2535]= {Avz, "Avz[x_, y_, z_]"}
In[2536]:= Ian[47, 67, 72]
Out[2536]= "UndefinedName"

This variable in a certain degree was wafted by the procedural "procname"
variable of the Maple system which plays quite essential part, first of all, in
procedural programming of various problems of the system character.

The BFMSubsQ procedure represents a quite certain interest; the procedure
call BFMSubsQ[x] returns the list of format {True, Heading} if definition of
the user block or module x contains definitions of blocks, functions and/or
modules, otherwise the list {False, Heading} is returned. In case of an object
of the same name x of the above type the call returns the nested list whose
sublists have the specified format. On an object x of a type, different from
{Block, Module}, the procedure call returns False. At that, the procedure call
BFMSubsQ[x, y] with the 2nd optional argument y – an undefinite variable –
through y returns the list of format {Heading, N} where N defines number of
blocks, functions and modules that enter into a subobject with the heading
Heading of an object of the same name x. The following fragment represents
source code of the BFMSubsQ procedure along with a number of the most
typical examples of its usage.

V.Z. Aladjev, V.A. Vaganov

 320

In[2545]:= G[x_] := Module[{Vg,H7}, Vg[y_] := Module[{}, y^3];
 H7[z_] := Module[{}, z^4]; x+Vg[x] + H7[x]];
 G[x_, z_] := Module[{Vt, H, P}, Vt[t_] := Module[{}, t^3 + t^2];
 H[t_] := Module[{}, t^4]; P[h_] := Module[{a = 6}, a^2 + Cos[h^2]];
 Sin[x]+Vt[x]+H[z]*P[x]]; H[t_] := Module[{P},
 P[h_] := Module[{a = 6}, a^2 + h]];
 T[x_] := Block[{a}, a[y_] := y^2; x + a[500]];
 T[x_, y_] := Module[{a = 6}, x*y + a* Cos[t] + P[t]];
 F[x_, y_] := Sin[x/y] + Cos[x*y]; SetAttributes[G, {Protected, Listable}]

In[2546]:= BFMSubsQ[x_, y___] := Module[{a, b, c, d = {}, k = 1, p, h, g = {}},
 If[! BlockModQ[x], False,
 {a, b} = Map[Flatten, {{PureDefinition[x]}, {HeadPF[x]}}];
 For[k, k <= Length[a], k++, p = a[[k]];
 p = StringReplace[p, b[[k]] <> " := " –> "", 1];
 c = Select[ExtrVarsOfStr[p, 1], ! SystemQ[#] &];
 h = Flatten[Map[StrSymbParity[p, " " <> #, "[", "]"] &, c]];
 h = Select[h, SuffPref[#, Map[StringJoin[" " <> # <> "["] &, c], 1] &&
 ! StringFreeQ[#, "_"] &];
 AppendTo[g, {b[[k]], Length[h]}];
 AppendTo[d, {If[h != {}, True, False], b[[k]]}]];
 If[{y} != {} && ! HowAct[y], y = g]; If[Length[d] == 1, d[[1]], d]]]

In[2547]:= BFMSubsQ[H]
Out[2547]= {True, "H[t_]"}
In[2548]:= BFMSubsQ[G]
Out[2548]= {{True, "G[x_]"}, {True, "G[x_, z_]"}}
In[2549]:= BFMSubsQ[T]
Out[2549]= {{True, "T[x_]"}, {False, "T[x_, y_]"}}
In[2550]:= Map[BFMSubsQ, {F, 90, Agn, Sin}]
Out[2550]= {False, False, False, False}
In[2551]:= BFMSubsQ[G, g]
Out[2551]= {{True, "G[x_]"}, {True, "G[x_, z_]"}}
In[2552]:= g
Out[2552]= {{"G[x_]", 2}, {"G[x_, z_]", 3}}

Extension of Mathematica system functionality

 321

The definition of the BFMSubsQ procedure along with the standard means
uses a number of our means such as BlockModQ, PureDefinition, HeadPF,
HowAct, ExtrVarsOfStr, StrSymbParity, SuffPref and SystemQ which are
considered in the present book and in [30,33]. The procedure generalizes and

expands the above procedures SubProcsQ ÷ SubProcsQ3 and SubsProcQ;
the BFMSubsQ procedure is useful enough in a number of the appendices

connected with processing of procedures of type {Module, Block} and, first
of all, of the system character.

On the basis of the procedures BlockModQ, HeadPF, Mapp, PureDefinition
and SubStrSymbolParity1 that are considered in the present book, also the
useful ProcBody procedure has been programmed whose call ProcBody[x]
returns the body in string format of the user block, module and function x
with heading. The procedure successfully processes also the objects of the
same name x, returning the list of bodies of subobjects composing object x.
The following fragment represents source code of the ProcBody procedure
along with typical examples of its usage.

In[2093]:= ProcBody[x_ /; BlockFuncModQ [x]] := Module[{c, p, d = {}, k = 1,
 a = Flatten[{PureDefinition[x]}], b = Flatten[{HeadPF[x]}]},
 While[k <= Length[a], p = a[[k]];
 c = Mapp[Rule, Map[b[[k]] <> " := " <> # &, {"Block[", "Module[", ""}], ""];
 c = StringReplace[p, c, 1]; AppendTo[d, If[BlockModQ[x],
 StringTake[StringReplace[c,
 SubStrSymbolParity1[c, "{", "}"][[1]] <> ", " –> "", 1], {1, –2}], c]]; k++];
 If[Length[d] == 1, d[[1]], d]]

In[2094]:= Art[x_, y_, z_] := Module[{a = x+y+z, c = {m, n}, b = 90}, a^2+a+b]
In[2095]:= ProcBody[Art]
Out[2095]= "a^2 + a + b"
In[2096]:= T[x_] := Block[{a}, a[y_] := y^2; x + a[90]];
 T[x_, y_] := Module[{a = 500}, x*y + a]
In[2097]:= ProcBody[T]
Out[2097]= {"a[y_] := y^2; x + a[90]", "x*y + a"}

In[2098]:= F[x_, y_] := x + y + x*y; F[x] := Sin[x] + x*Cos[x]; ProcBody[F]
Out[2098]= {"Sin[x] + x*Cos[x]", "x + y + x*y"}

V.Z. Aladjev, V.A. Vaganov

 322

The ProcBody procedure plays a rather essential part in a number of tasks
of the procedural programming dealing with various manipulations with
definitions of functions and procedures of type {Block, Module} along with
components composing them.

In a number of the tasks caused by a processing of string representation of
definitions of the user procedures and blocks the questions of partition of
this representation onto 2 main components – the procedure body and its
frame with the final procedural bracket "]" a certain interest can represent.
In this context and the PartProc procedure can be quite useful. Procedure
call PartProc[x] returns the two–element list, whose first element in string
format represents a procedure frame with the final procedural bracket "]";
the place of the body of a procedure is taken by the substring "Procedure
Body" whereas the second element of the list in string format represents a
procedure body x. Furthermore, as a procedure frame the construction of
the format "Heading := Module[{locals}, …]" is understood. In the case of
erroneous situations the procedure call is returned unevaluated or returns
$Failed. The next fragment represents source code of the PartProc procedure
along with typical examples of its usage.

In[2049]:= PartProc[P_ /; BlockModQ[P]] := Module[{a = ProcBody[P]},
 {StringReplace[PureDefinition[P], a –> "Procedure Body", 1], a}]

In[2050]:= Kr[x_, y_, z_] := Module[{a = x + y + z, b = 90}, b*a + a^2 + b];
 PartProc[Kr]
Out[2050]= {"Kr[x_, y_, z_] := Module[{a = x + y + z, b = 90},
 Procedure Body]", "b*a + a^2 + b"}

In[2054]:= ReplaceProcBody[x_ /; BlockModQ[x], y_ /; StringQ[y]] :=
 ToExpression[StringReplace[PureDefinition[x], ProcBody[x] –> y]]

In[2055]:= ReplaceProcBody[Kr, "b*(x + y + z)"]; Definition[Kr]
Out[2055]= Kr[x_, y_, z_] := Module[{a = x + y + z, b = 90}, b*(x + y + z)]

A quite simple ReplaceProcBody function completes the previous fragment;
the call ReplaceProcBody[x, y] returns Null, providing replacement of the
body of a block or module x by a new body y that is given in string format.
Furthermore, the updated object x is activated in the current session. Both
the PartProc procedure, and the ReplaceProcBody function are based on the

Extension of Mathematica system functionality

 323

above ProcBody procedure. Exactly the given circumstance provides a quite
simple algorithm of these means.

Except the means considered in [28,30-33] a number of means for operating
with subprocedures is presented, here we will represent a useful procedure
that analyzes the blocks/modules regarding presence in their definitions of
subobjects of type {Block, Module}. The procedure call SubsProcs[x] returns
generally the nested list of definitions in string format of all subobjects of the
type {Block, Module} whose definitions are in the body of an object x of type
{Block, Module}. At that, the first sublist defines subobjects of Module–type,
the second sublist defines subobjects of Block–type. In the presence of only
one sublist the simple list is returned while in the presence of the 1–element
simple list its element is returned. At lack of subobjects of the above type the
call SubsProcs[x] returns the empty list, i.e. {} while on an object x, different
from a block or module, the call SubsProcs[x] is returned unevaluated. The
following fragment represents source code of the SubsProcs procedure with
the most typical examples of its usage.

In[2580]:= SubsProcs[x_ /; BlockModQ[x]] := Module[{d, s = {}, g, k = 1, p,
 h = "", v = 1, R = {}, Res = {}, a = PureDefinition[x],
 j, m = 1, n = 0, b = {" := Module[{", " := Block[{"}, c = ProcBody[x]},

 For[v, v <= 2, v++, If[StringFreeQ[c, b[[v]]], Break[],
 d = StringPosition[c, b[[v]]]];
 For[k, k <= Length[d], k++, j = d[[k]][[2]];
 While[m != n, p = StringTake[c, {j, j}];
 If[p == "[", m++; h = h <> p,
 If[p == "]", n++; h = h <> p, h = h <> p]]; j++];
 AppendTo[Res, h]; m = 1; n = 0; h = ""];
 Res = Map10[StringJoin, If[v == 1, " := Module[", " := Block["], Res];
 g = Res; {Res, m, n, h} = {{}, 1, 0, "]"};
 For[k = 1, k <= Length[d], k++, j = d[[k]][[1]] – 2;
 While[m != n, p = StringTake[c, {j, j}];
 If[p == "]", m++; h = p <> h,
 If[p == "[", n++; h = p <> h, h = p <> h]]; j––];
 AppendTo[Res, h]; s = Append[s, j]; m = 1; n = 0; h = "]"];

V.Z. Aladjev, V.A. Vaganov

 324

 Res = Map9[StringJoin, Res, g]; {g, h} = {Res, ""}; Res = {};
 For[k = 1, k <= Length[s], k++,
 For[j = s[[k]], j >= 1, j––, p = StringTake[c, {j, j}];
 If[p == " ", Break[], h = p <> h]]; AppendTo[Res, h]; h = ""];
 AppendTo[R, Map9[StringJoin, Res, g]];
 {Res, m, n, k, h, s} = {{}, 1, 0, 1, "", {}}];
 R = If[Length[R] == 2, R, Flatten[R]]; If[Length[R] == 1, R[[1]], R]]

In[2581]:= P[x_, y_] := Module[{Art, Kr, Gs, Vg, a}, Art[c_, d_] :=
 Module[{b}, c + d]; Vg[h_] := Block[{p = 90}, h^3 + p];
 Kr[n_] := Module[{}, n^2]; Gs[z_] := Module[{}, x^3];
 a = Art[x, y] + Kr[x*y]*Gs[x + y] + Vg[x*y]]
In[2582]:= P[90, 500]
Out[2582]= 1 567 350 000 000 668
In[2583]:= SubsProcs[P]
Out[2583]= {{"Art[c_, d_] := Module[{b}, c + d]", "Kr[n_] := Module[{}, n^2]",
 "Gs[z_] := Module[{}, x^3]"}, {"Vg[h_] := Block[{p = 90}, h^3 + p]"}}
In[2584]:= H[t_] := Module[{P}, P[h_] := Module[{a = 90}, a*h]; Cos[t] + P[t]]
In[2585]:= SubsProcs[H]
Out[2585]= "P[h_] := Module[{a = 90}, a*h]"

The SubsProcs procedure can be rather simply expanded, in particular, for
determination of nesting levels of subprocedures, and also onto unnamed
subprocedures. The SubsProcs procedure significantly uses also our means
BlockModQ, Map10, Map9, ProcBody, PureDefinition considered above.

Moreover, in connection with the problem of nesting of blocks and modules
essential enough distinction between definitions of the nested procedures in
the systems Mathematica and Maple takes place. So, in the Maple system
the definitions of subprocedures allow use of lists of the formal arguments
identical with the main procedure containing them, whereas in the system
Mathematica similar combination is inadmissible, causing in the course of
evaluation of definition of the main procedure erroneous situations [30-33].
Generally speaking, the given circumstance causes certain inconveniences,
demanding special attentiveness in process of programming of the nested
procedures. In a certain measure the similar situation arises and in the case
of crossing of lists of formal arguments of the main procedure and the local

Extension of Mathematica system functionality

 325

variables of its subprocedures whereas that is quite admissible in the Maple
system [10-22,25-27]. In this context the SubsProcs procedure can be applied
quite successfully and to the procedures containing subprocedures of type
{Block, Module}, on condition of nonempty crossing of the list of the formal
arguments of the main procedure along with the list of local variables of its
subprocedures.

The following procedure provides return of the list of all blocks, functions
and modules of the user packages uploaded into the current session, along
with other active objects of the specified types. The next fragment represents

source code of the ProcsAct procedure along with examples of its usage.

In[2526]:= ProcsAct[] := Module[{a = Names["*"], b = Names["System`*"],
 c, d = {}, k = 1, j, h, t, g = {{"Module"}, {"Block"},
 {"DynamicModule"}, {"Function"}, {"Others"}}},
 c = Select[a, ! MemberQ[b, #] &];
 c = Select[c, ToString[Definition[#]] != "Null" &&
 ToString[Definition[#]] != "Attributes[" <>
 ToString[#] <> "] = {Temporary}" &&
 ! MemberQ[{ToString[#] <> " = {Temporary}", ToString[#] <>
 " = {Temporary}"}, ToString[Definition[#]]] &];
 For[k, k <= Length[c], k++, h = c[[k]]; ClearAll[t];
 Quiet[ProcQ1[Symbol[h], t]];
 If[t === "Module", AppendTo[g[[1]], h],
 If[t === "Block", AppendTo[g[[2]], h],
 If[t === "DynamicModule", AppendTo[g[[3]], h],
 If[QFunction[h], AppendTo[g[[4]], h], AppendTo[g[[5]], h]]]]]]; g]

In[2527]:= ProcsAct[]
Out[2527]= {{"Module", "ActBFMuserQ", "ActCsProcFunc", "ActiveProcess",
 "ActRemObj", "Adrive", "Adrive1", "Affiliate", "Aobj", "Args",
 "ArgsBFM", "ArgsTypes", …},
 {"Block"},
 {"DynamicModule"},
 {"Function", "AssignL", "Attributes1", "AttributesH",
 "BinaryListQ", "BlockQ1", "ComplexQ", "ContextActQ",

V.Z. Aladjev, V.A. Vaganov

 326

 "ContextFromFile", "ContextQ", "CopyDir", …},
 {"Others", "AcNb", "ActUcontexts", "ClearOut", "CloseAll",
 "CsProcsFuncs", …}}

The procedure call ProcsAct[] returns the nested five-element list, sublists of
which define by the first element the types of objects in the context {"Block",
"Module", "DynamicModule", "Function", "Others"} that are activated in the
current session while other elements define names of objects corresponding
to the first element of type. Meanwhile, it should be noted the performance of
the ProcsAct procedure quite significantly depends on quantity of both the
user means and the system means activated in the current session. Again it
should be noted that in the Mathematica-procedures local variables initially
aren't considered as undefinite; however, is possible to give them the status
undefinite in the body of a procedure what visually illustrates the following
rather transparent example, namely:

In[2547]:= A[x___] := Module[{a, b, c}, b = {Attributes[a], Definition[a]};
 ClearAll[a]; c = {Attributes[a], Definition[a]}; {b, c}]
In[2548]:= A[]
Out[2548]= {{{Temporary}, Null}, {{}, Null]}}

Such reception is used and in the ProcsAct procedure, providing return of
the type of an object h through the second argument t – an undefinite variable –
at the call ProcQ1[h, t]. In general, the ProcsAct procedure represents quite
certain interest for certain appendices above all in procedural programming
of problems of the system character.

The next fragment represents rather useful function NamesProc, whose call
NamesProc[] returns the sorted list of names of the user modules, functions
and blocks activated in the current session. In certain cases the NamesProc
function can appear as a rather useful means. The next fragment represents
source code of the NamesProc function with typical examples of its usage.

In[3617]:= NamesProc[] := Select[Sort[Names["`*"]],
 Quiet[BlockFuncModQ[#]] && ToString[Definition[#]] != "Null" &&
 ToString[Definition[#]] != "Attributes[" <> ToString[#] <> "] =
 {Temporary}" && ! MemberQ[{ToString[#] <> " = {Temporary}",
 ToString[#] <> " = {Temporary}"}, ToString[Definition[#]]] &]

Extension of Mathematica system functionality

 327

In[3618]:= NamesProc[]
Out[3618]= {A, Art, Df, F, G, H, Kr, NamesProc, ProcQ, Spos, Subs, Uprocs}

As one more example we will present the Uprocs procedure which is quite
useful in the practical relation and also illustrates an approach to a certain
expansion of the standard Mathematica means. The procedure call Uprocs[]
returns simple or the nested list. In the first case in the current session the
user procedures of any of 2 types {Block, Module} have been not activated,
while in the second case the list elements returned by the Uprocs procedure
are 3-element sublists whose first elements define names of the user blocks/
modules activated in the current session, the second define their headings in
string format, the third elements define type of procedures {Block|Module}.
The following fragment represents source code of the Uprocs procedure and
the most typical example of its usage.

In[2448]:= Gs[x_] := Block[{a, b, c}, Evaluate[(a*x + x^b)/c]]
In[2449]:= S[x_] := Block[{y = a, h = b}, G[Pi/2, y*x]]
In[2450]:= S[x_] := Module[{y = a, h = b}, G[Pi/2, y*x]]
In[2451]:= S[x_, y_] := Block[{z = a, h = b}, G[Pi/2, (y*x)/z]]
In[2452]:= Bl[y_] := Block[{h = z}, G[Pi/2, y]]
In[2453]:= MM[x_, y_] := Module[{}, x + y]

In[2454]:= Uprocs[] := Module[{a, b, c, d, h, g, k, t1, t2},
 a := "_$Art25_Kr18$_.txt"; {c, g} = {{}, {}}; Save[a, "`*"];
 b := Map[ToString, Flatten[DeleteDuplicates[ReadList[a, String]]]];
 For[k = 1, k <= Length[b], If[StringCount[First[b[[{k}]]],
 " := Module[{"] != 0 && StringTake[First[b[[{k}]]], {1}] != " " ||
 StringCount[First[b[[{k}]]], " := Block[{"] != 0 &&
 StringTake[First[b[[{k}]]], {1}] != " ",
 AppendTo[c, First[b[[{k}]]]], Null]; k = k + 1];
 For[k = 1, k <= Length[c], d = Quiet[First[c[[{k}]]]];
 h = Quiet[Symbol[StringTake[d, First[First[StringPosition[d, "["]]] – 1]]];
 t1 = If[StringCount[d, " := Module[{"] != 0, Module, Block];
 t2 = Quiet[StringTake[d, Last[First[StringPosition[d, "]"]]]]];
 If[BlockModQ[h], AppendTo[g, {h, t2, t1}], Null]; k = k + 1];
 DeleteFile[a]; g]

V.Z. Aladjev, V.A. Vaganov

 328

In[2455]:= Uprocs[]
Out[2455]= {{Bl, "Bl[y_]", Block}, {Gs, "Gs[x_]", Block}, {H, "H[t_]", Module},
 {P, "P[x_, y_]", Module}, {MM, "MM[x_, y_]", Module}}

The procedure call ExtrCall[z, y] returns True if the user block, function or
module y contains the calls of a block/function/module z, otherwise False
is returned. If the call as an argument z defines the list of names of blocks/
functions/modules, the sublist of names from z of blocks/functions/modules
whose calls enter into an object y is returned. In the case if the first optional
argument z is absent, then the call ExtrCall[y] returns the list of the system
means whose calls enter into definition of the user function, block, module
y. The following fragment represents source code of the ExtrCall procedure
along with the most typical examples of its usage.

In[2547]:= ExtrCall[z___, y_ /; BlockFuncModQ[y]] := Module[{b, p, g, x,
 a = Join[CharacterRange["A", "Z"], CharacterRange["a", "z"]]},
 If[{z} == {}, p = PureDefinition[y]; If[ListQ[p], Return[$Failed]];
 g = ExtrVarsOfStr[p, 2];
 g = Select[g = Map[" " <> # <> "[" &, g], ! StringFreeQ[p, #] &];
 g = Select[Map[If[SystemQ[p = StringTake[#, {2, –2}]], p] &, g],
 ! SameQ[#, Null] &]; If[Length[g] == 1, g[[1]], g],
 b[x_] := Module[{c = DefFunc3[ToString[y]], d, h, k = 1, t = {}},
 h = StringPosition[c, ToString[x] <> "["];
 If[h == {}, Return[False], d = Map[First, h];
 For[k, k <= Length[d], k++,
 AppendTo[t, If[! MemberQ[a, StringTake[c, {d[[k]] – 1, d[[k]] – 1}]],
 True, False]]]]; t[[1]]]; If[! ListQ[z], b[z], Select[z, b[#] &]]]]

In[2548]:= Map3[ExtrCall, Run, {Attrib, SearchDir, SearchFile, Df, Uprocs}]
Out[2548]= {True, True, True, False, False}
In[2549]:= ExtrCall[{Run, Write, Read, If, Return}, Attrib]
Out[2549]= {Run, Read, If, Return}
In[2550]:= Map[ExtrCall, {BlockFuncModQ, ExtrCall}]
Out[2550]= {{"Flatten", "FromCharacterCode", "If", "Module", "StringTake",
"StringReplace"}, {"Append", "CharacterRange", "For", "If", "Join", "Length",
"Module", "Return", "Select", "StringJoin", "StringPosition", "StringTake"}}

Extension of Mathematica system functionality

 329

The definition of the ExtrCall procedure along with the standard means uses
a number of our tools such as BlockFuncModQ, PureDefinition, SystemQ,
DefFunc3 and ExtrVarsOfStr which are considered in the present book and
in [30,33]. The ExtrCall procedure has a series of useful enough appendices,
first of all, in the problems of system character. Meanwhile, it must be kept
in mind that the ExtrCall procedure correctly processes only unique objects,
but not objects of the same name by returning on them $Failed.

In addition to earlier presented TestArgsTypes procedure providing the call
of a specified block, function, module in such manner that returns result of
this procedure call in the absence of inadmissible actual arguments or the
list consisting off values {True, False} whose order corresponds to an order
of the actual arguments at a call of the tested object of the specified type the
TestProcCalls procedure is of a certain interest. The call TestProcCalls[x, y]
returns the nested list whose elements have format {j, "n", True|False} where
j – the ordinal number of a formal argument, "n" – a formal argument in the
string format, {True|False} – value which determines admissibility (True) or
inadmissibility (False) of an actual value determined by a list y and received
by a formal argument {j, n} in a point of the call of an object x. Furthermore,
it is supposed that an object x defines the fixed number of formal arguments
and lengths of lists defining formal arguments and y are identical, otherwise
the procedure call returns $Failed.

In[5057]:= TestProcCalls[x_ /; BlockFuncModQ[x], y_ /; ListQ[y]] :=
 Module[{d, p, a = Args[x], b = {}, r, c = "_ /; ", k = 1, v},
 a = Map[ToString1, If[NestListQ[a], a[[1]], a]];
 If[Length[a] != Length[y] || MemberQ[Map[! StringFreeQ[#, "__"] &, a],
 True], $Failed, v = If[NestListQ[v = Args[x, 90]], v[[1]], v];
 For[k, k <= Length[a], k++, p = a[[k]];
 AppendTo[b, If[StringTake[p, {–1, –1}] == "_", True,
 If[! StringFreeQ[p, c], d = StringSplit[p, c]; r = ToExpression[d[[1]]];
 {ToExpression[{d[[1]] <> "=" <> ToString1[y[[k]]], d[[2]]}][[2]],
 ToExpression[d[[1]] <> "=" <> ToString[r]]}[[1]], d = StringSplit[p, "_"];
 ToString[Head[y[[k]]]] == d[[2]]]]]];
 {k, d} = {1, Partition[Riffle[v, b], 2]};
 While[k <= Length[d], PrependTo[d[[k]], k]; k++]; d]]

V.Z. Aladjev, V.A. Vaganov

 330

In[5058]:= TestProcCalls[SuffPref, {"IAN_RANS_RAC_90_73", "90_73", 2}]
Out[5058]= {{1, "S", True}, {2, "s", True}, {3, "n", True}}
In[5059]:= TestProcCalls[SuffPref, {"IAN_RANS_RAC_90_73", 50.90, 7.3}]
Out[5059]= {{1, "S", True}, {2, "s", False}, {3, "n", False}}
In[5060]:= F[x_String, y_ /; IntegerQ[y]] := {x, y}; TestProcCalls[F, {6, "avz"}]
Out[5060]= {{1, "x", False}, {2, "y", False}}

The previous fragment presents source code of the TestProcCalls procedure
with examples of its usage. The procedure call TestProcCalls[x] successfully
processes the unique objects and the objects of the same name, at that in the
second case the first subobject from the list returned by the call Definition[x]
is processed. At checking of values on admissibility in the case of a formal
argument of format "arg_/; Test(arg)" is required previously to calculate arg
and only then to check a logical value Test(arg). However this operation in
body of the TestProcCalls procedure updates arg outside of the procedure
what in general is inadmissible. Therefore for elimination of this situation a
quite simple reception (that can be easily seen from the presented procedure code)
without redefinition of global variables of the current session that have the
same name with formal arguments of the tested object x of the type stated
above has been used. This approach to the organization of algorithm of the
procedure quite answers the concept of the robust programming. At that,
the TestProcCalls procedure allows a series of modifications useful enough
for procedural programming in the Mathematica system.

In contrast to the previous procedures the next ProcActCallsQ procedure
tests existence in the user block, function or module x the existence of calls
of the user means active in the current session that are provided by usages.
The procedure call ProcActCallsQ[x] returns True if definition of a module,
block, function x contains the calls of tools of the similar type, otherwise False
is returned. Moreover, thru the second optional argument y – an undefinite
variable – the procedure call ProcActCallsQ[x, y] returns the list of the user
software whose calls are in definition of a block, function or a module x.

In[5070]:= ProcActCallsQ[x_ /; BlockFuncModQ[x], y___] := Module[{a, b,
 c = {}, d, k = 1, h = "::usage = "}, Save[b = "Art26$Kr18", x];
 For[k, k < Infinity, k++, d = Read[b, String];
 If[SameQ[d, EndOfFile], Break[], If[! StringFreeQ[d, h],

Extension of Mathematica system functionality

 331

 AppendTo[c, StringSplit[StringTake[d,
 {1, Flatten[StringPosition[d, h]][[1]] – 1}], " /: "][[1]]]]]];
 DeleteFile[Close[b]]; c = Select[c, SymbolQ[#] &];
 b = If[MemberQ[c, ToString[x]], Drop[c, 1], c];
 If[{y} != {} && ! HowAct[{y}[[1]]], {y} = {b}]; If[b == {}, False, True]]

In[5071]:= {ProcActCallsQ[ProcQ, h], h}
Out[5071]= {True, {"SymbolQ", "SystemQ", "UnevaluatedQ", "ToString1",
 "StrDelEnds", "SuffPref", "ListStrToStr", "Definition2", "HowAct", "Mapp",
 "SysFuncQ", "Sequences", "Contexts1", "ClearAllAttributes", "SubsDel",
 "HeadPF", "BlockFuncModQ", "PureDefinition", "Map3", "MinusList"}}
In[5072]:= {ProcActCallsQ[ToString1, s], s}
Out[5072]= {True, {"StrDelEnds", "SuffPref"}}
In[5073]:= G[x_String, y_ /; ! HowAct[y]] := If[StringLength[x] == 90, y = x,
 y = x <> "500"]; {ProcActCallsQ[G, Gs], Gs}
Out[5073]= {True, {"HowAct"}}
In[5074]:= {ProcActCallsQ[StrStr, Sv], Sv}
Out[5074]= {False, {}}
In[5075]:= {ProcActCallsQ[ProcActCallsQ, Gsv], Gsv}
Out[5075]= {True, {"BlockFuncModQ", "PureDefinition", "UnevaluatedQ",
 "SymbolQ", "ToString1", "StrDelEnds", "SuffPref", "ListStrToStr",
 "Definition2", "HowAct", "SystemQ", "Mapp", "ProcQ",
 "ClearAllAttributes", "SubsDel", "Sequences", "HeadPF", "SysFuncQ",
 "Contexts1", "Map3", "MinusList"}}
In[5076]:= F[x_] := If[NestListQ[x], x, ToString1[x]]
In[5077]:= {ProcActCallsQ[F, v], v}
Out[5077]= {True, {"NestListQ", "ToString1", "StrDelEnds", "SuffPref"}}

The previous fragment gives source code of the ProcActCallsQ procedure
along with some typical examples of its usage. The procedure is of interest
at the structural analysis of the user blocks/functions/modules; furthermore,
the exhaustive analysis belongs only to the user means active in the current
session of the system and provided by the standard usages.

In certain cases the question of definition of all tools used by the user block,
function, module that are activated in the current session including means
for which the usages are missing represents a certain interest. This problem

V.Z. Aladjev, V.A. Vaganov

 332

is solved by the ProcContent procedure which provides the analysis of an
activated object x of the above type with a correct heading, concerning the
existence in its definition of the user means both internal, and external, that
are supplied with an usage or without it. The procedure call ProcContent[x]
returns the nested 3–element list whose first element defines the name of a
block/function/module x, the second element defines the list of names of all
external blocks, functions or modules used by the object x whereas the third
element defines the list of names of the internal blocks, functions or modules
defined in the body of x. The following fragment represents source code of
the ProcContent procedure along with typical examples of its usage.

In[5080]:= Kr[x_, y_] := Plus[x, y]; Art[x_] := Module[{a = 90, b = 500,
 c = ToString1[x], d, g}, c = Kr[a, b]; d[y_] := Module[{}, y];
 g[z_] := Block[{}, z + 90]; c]; V[x_] := Module[{c = StrStr[x], d, g},
 G[a, b]; d[y_] := Module[{}, y]; g[z_] := Block[{}, z]; c]

In[5081]:= ProcContent[x_ /; BlockFuncModQ[x]] := Module[{a, f,
 b = SubProcs[x][[1]]},
 f[y_] := Module[{a1 = "$Art2618Kr$", b1 = "", c = {y}, d, h = "", p},
 Save[a1, y]; While[! SameQ[b1, EndOfFile], b1 = Read[a1, String];
 If[! MemberQ[{" ", "EndOfFile"}, ToString[b1]],
 h = h <> ToString[b1]; Continue[], d = Flatten[StringPosition[h, " := ", 1]]];
 If[d == {} , h = ""; Continue[], p = StringTake[h, {1, d[[1]] – 1}];
 If[! SameQ[Quiet[ToExpression[p]], $Failed],
 AppendTo[c, StringTake[p, {1, Flatten[StringPosition[p, "[", 1]][[1]] – 1}]];
 h = "", Null]]]; a1 = Map[ToExpression, {DeleteFile[Close[a1]], c}[[2]]];
 DeleteDuplicates[a1]]; a = f[x]; {x, If[Length[a] > 1, a[[2 ;; –1]], {}],
 If[Length[b] > 1, Map[ToExpression, Map[HeadName, b[[2 ;; –1]]]], {}]}]

In[5082]:= ProcContent[V]
Out[5082]= {V, {StrStr, G, HowAct}, {d, g}}
In[5083]:= ProcContent[Art]
Out[5083]= {Art, {ToString1, StrDelEnds, SuffPref, Kr}, {d, g}}
In[5084]:= ProcContent[ToString1]
Out[5084]= {ToString1, {StrDelEnds, SuffPref}, {}}}
In[5085]:= V[x_] := Module[{a = 5, b = 6, c, d, g, Gt}, c = Gt[a, b]; d[y_] :=

Extension of Mathematica system functionality

 333

 Module[{}, y]; g[z_] := Block[{a = 6, b = 9}, z/73]; ToString1[x] <> StrStr[x]]
In[5086]:= ProcContent[V]
Out[5086]= {V, {ToString1, StrDelEnds, SuffPref, StrStr}, {d, g}}

At that, the ProcContent procedure along with standard functions enough
essentially uses the procedures BlockFuncModQ, SubProcs together with a
simple function, whose call HeadName[x] returns the name of a heading x
in string format. These means were considered in the present book above.

The function call ProcFuncCS[] returns the nested three-element list whose
sublists define names in string format according of the user blocks, modules
and functions, whose definitions were evaluated in the current session. The
next fragment represents source code of the ProcFuncCS function together
with a typical example of its usage.

In[2532]:= ProcFuncCS[] := Quiet[Map3[Select, Names["`*"], {BlockQ[#] &,
 FunctionQ[#] &, ModuleQ[Symbol[#]] &}]]

In[2533]:= G[x_String, y_ /; ! HowAct[y]] := If[StringLength[x] == 90, y = x,
 y = x <> "500"]; GS[x_] := Block[{a = 90, b = 500}, x];
 F[x_] := If[NestListQ[x], x, ToString1[x]]; GG[y_] := Module[{a = 90,
 b = 500, c = 2015, d = {42, 47, 67}}, y]; ProcFuncCS[]
Out[2533]= {{"GS"}, {"F", "G"}, {"GG"}}

The operator HeadCompose[a, b, c, d] which was in the previous releases of
the system (now the operator isn't documented) returns the composition of the
identifiers in the form given below, namely:

In[2545]:= HeadCompose[G, x, y, z]
Out[2545]= G[x][y][z]

Such form, for example, can be useful in various functional transformations.
The given operator can be useful enough also at the organization of the user
functions, allowing to transfer in quality of the actual values for their formal
arguments the headings of functions along with their formal arguments. At
the same time, this tool in general doesn't represent an especial interest what
induced its bringing outside the system. On the other hand, it is possible to
represent a certain analog of this tool which has significantly larger applied
interest, namely the FunCompose procedure whose call FunCompose[L, x]
allows to create the nested functions from the list L of functions, modules or

V.Z. Aladjev, V.A. Vaganov

 334

blocks from an expression given by its second argument x. The following a
quite simple fragment rather visually illustrates the aforesaid.

In[2551]:= FunCompose[t_ /; ListQ[t], x_] := Module[{a, k = 2}, a = t[[1]]@x;
 For[k, k <= Length[t], k++, a = t[[k]]@a]; a]

In[2552]:= FunCompose[{F, G, H, T, W, Q, V, U}, Sin[z]]
Out[2552]= F[G[H[T[W[Q[V[U[Sin[z]]]]]]]]]
In[2553]:= {FunCompose[{Sin, Cos, Log}, 9.42], FunCompose[{Sin, Cos,
 Tan, Sqrt}, 500.90]}
Out[2553]= {–0.0000114144, 0.786906}

For organization of transfer of identifiers of functions as the actual values it
is possible to use constructions, for example, of the following rather simple
formats, namely:

In[2555]:= F[x_] := x^3; SV[z_] := F@z + z^3; VSV[Id_, z_] :=
 Module[{}, Id@(z^2 + 6)]; {VSV[F, h], SV[45]}
Out[2555]= {(6 + h^2)^3, 182250}

along with a number of similar useful enough constructions.

For temporary removal from the current session of the Mathematica system
of the user blocks, functions or modules quite useful DelRestPF procedure
serves whose source code along with typical examples of usage represents
the following fragment.

In[2579]:= F[x_] := x^3; SV[z_] := F@z + z^3; VSV[Id_, z_] := Module[{},
 Id@(z^2 + 6)]; F[x_, y_] := x + y; SetAttributes[F, {Protected, Listable}];
 SetAttributes[SV, Listable]

In[2580]:= DelRestPF[r_ /; MemberQ[{"d", "r"}, r], x___] := Module[{b, c, p,
 f = "$Art26Kr18$.mx",
 a = Quiet[Select[{x}, BlockFuncModQ[#] &]], k = 1},
 If[r == "d", b = Map[Definition2, a]; Save[f, b];
 Map[ClearAllAttributes, a]; Map[Remove, a];, c = Get[f]; DeleteFile[f];
 For[k, k <= Length[c], k++, p = c[[k]]; ToExpression[p[[1 ;; –2]]];
 ToExpression["SetAttributes[" <> StringTake[p[[1]],
 {1, Flatten[StringPosition[p[[1]], "["]][[1]] – 1}] <>
 "," <> ToString[p[[–1]]] <> "]"]]]]

Extension of Mathematica system functionality

 335

In[2581]:= DelRestPF["d", F, SV, VSV]
In[2582]:= Map[Definition2, {F, SV, VSV}]
Out[2582]= {Definition2[F], Definition2[SV], Definition2[VSV]}
In[2583]:= DelRestPF["r"]
In[2584]:= Map[Definition2, {F, SV, VSV}]
Out[2584]= {{"F[x_] := x^3", "F[x_, y_] := x + y", {Listable, Protected}},
 {"SV[z_] := F[z] + z^3", {Listable}},
 {"VSV[Id_, z_] := Module[{}, Id[z^2 + 6]]", {}}}

In[2585]:= DelRestPF1[r_ /; MemberQ[{"d", "r"}, r], f_/; StringQ[f], x___] :=
 Module[{a = Quiet[Select[{x}, BlockFuncModQ[#] &]], b, c, p, k = 1},
 If[r == "d", b = Map[Definition2, a]; Save[f, b];
 Map[ClearAllAttributes, a]; Map[Remove, a];, c = Get[f]; DeleteFile[f];
 For[k, k <= Length[c], k++, p = c[[k]]; ToExpression[p[[1 ;; –2]]];
 ToExpression["SetAttributes[" <> StringTake[p[[1]],
 {1, Flatten[StringPosition[p[[1]], "["]][[1]] – 1}] <>
 "," <> ToString[p[[–1]]] <> "]"]]]]

In[2586]:= DelRestPF1["d", "C:\\Temp\\Tallinn", F, SV, VSV]
In[2587]:= Map[Definition2, {F, SV, VSV}]
Out[2587]= {Definition2[F], Definition2[SV], Definition2[VSV]}
In[2588]:= DelRestPF1["r", "C:\\Temp\\Tallinn"]
In[2589]:= Map[Definition2, {F, SV, VSV}]
Out[2589]= {{"F[x_] := x^3", "F[x_, y_] := x + y", {Listable, Protected}},
 {"SV[z_] := F[z] + z^3", {Listable}},
 {"VSV[Id_, z_] := Module[{}, Id[z^2 + 6]]", {}}}

The procedure call DelRestPF["d", x, y, …] returns Null, i.e. nothing, deleting
from the current session the user blocks, functions and/or modules {x, y, …}
while the subsequent call DelRestPF["r"] returns Null, i.e. nothing, restoring
their availability in the current session or in other session with preservation
of the options and attributes ascribed to them. The procedure is quite useful
in a number of applications, first of all, of system character. Moreover, the
procedure is oriented onto work only with one list of objects, creating only
a fixed file with the saved objects. Meanwhile, a very simple modification
of the procedure provides its expansion onto any number of lists of the user

V.Z. Aladjev, V.A. Vaganov

 336

blocks, functions and modules, allowing temporarily to delete them at any
moments from the current session with the subsequent their restoration in
the current session or other session of the system. So, the previous fragment
is completed by one of similar useful modifications which has a number of
useful appendices of the system character.

The procedure call DelRestPF1["d", w, x, y, z, …] returns Null, i.e. nothing,
deleting from the current session the user blocks, functions and/or modules
{x, y, z, …} with saving of them in a datafile w, whereas the subsequent call
DelRestPF1["r", w] returns Null, i.e. nothing, restoring their availability in
the current session or in other session from the datafile w with preservation
of the options and attributes ascribed to them.

The built–in Math–language for programming of the branching algorithms
along with the "If" offer allows use of unconditional transitions on the basis
of the Goto function which is encoded in the form Goto[h], unconditionally
passing control into a point defined by the construction Label[h]. As a rule,
the Goto function is used in procedural constructions, however unlike the
built–in goto–function of the Maple system it can be used also in the input
constructions of the Mathematica system. Moreover, as a Label any correct
expression is allowed, including also sequence of expressions whose the last
expression defines actually label; at that, the Label concerning a module can
be both the global variable, and the local variable. Meanwhile, in order to
avoid possible misunderstandings, the Label is recommended to be defined
as a local variable because the global Label calculated outside of a module
is always acceptable for the module, however calculated in the module body
quite can distort calculations outside of the module. At that, multiplicity of
occurrences of identical Goto–functions into a procedure is quite naturally
and is defined by the realized algorithm while with the corresponding tags
Label the similar situation, generally speaking, is inadmissible; at that, it is
not recognized at evaluation of a procedure definition and even at a stage
of its performance, often substantially distorting the planned task algorithm.
In this case only point of a module body which is marked by the first such
Label receives the control. Moreover, it must be kept in mind that lack of a
Label[a] for the corresponding call Goto[a] in a block or module at a stage
of evaluation of its definitions isn't recognized, however only at the time of
performance with the real appeal to such Goto[a]. The interesting examples

Extension of Mathematica system functionality

 337

illustrating the told can be found in our books [28-33].

In this connection the GotoLabel procedure can represent a certain interest
whose call GotoLabel[P] allows to analyse a procedure P on the subject of
formal correctness of use of Goto-functions and Label tags corresponding
to them. The procedure call GotoLabel[P] returns the nested 3–element list
whose first element defines the list of all Goto-functions used by a module P,
the second element defines the list of all tags (without their multiplicity), the
third element defines the list, whose sublists define Goto-functions with the
tags corresponding to them (at that, as the first elements of these sublists the calls
of the Goto-functions appear, whereas multiplicities of functions and tags remain).
The following fragment represents source code of the GotoLabel procedure
along with typical examples of its usage.

In[2540]:= GotoLabel[x_ /; BlockModQ[x]] := Module[{b, c = {{}, {}, {}}, d, p,
 a = Flatten[{PureDefinition[x]}][[1]], k = 1, j, h, v = {}, t},
 b = ExtrVarsOfStr[a, 1];
 b = DeleteDuplicates[Select[b, MemberQ[{"Label", "Goto"}, #] &]];
 If[b == {}, c, d = StringPosition[a, Map[" " <> # <> "[" &,
 {"Label", "Goto"}]];
 t = StringLength[a]; For[k, k <= Length[d], k++,
 p = d[[k]]; h = ""; j = p[[2]];
 While[j <= t, h = h <> StringTake[a, {j, j}];
 If[StringCount[h, "["] == StringCount[h, "]"],
 AppendTo[v, StringTake[a, {p[[1]] + 1, p[[2]] – 1}] <> h];
 Break[]]; j++]];
 h = DeleteDuplicates[v]; {Select[h, SuffPref[#, "Goto", 1] &],
 Select[h, SuffPref[#, "Label", 1] &],
 Gather[Sort[v], #1 == StringReplace[#2, "Label[" –> "Goto[", 1] &]}]]

In[2541]:= ArtKr[x_ /; IntegerQ[x]] := Module[{prime, agn}, If[PrimeQ[x],
 Goto[9; prime], If[OddQ[x], Goto[agn], Goto[Sin]]];
 Label[9; prime]; Print[x^2]; Goto[Sin]; Print[NextPrime[x]];
 Goto[Sin]; Label[9; prime]; Null]
In[2542]:= Kr[x_ /; IntegerQ[x]] := Module[{prime, agn, y},
 If[PrimeQ[x], Goto[prime], If[OddQ[x], Goto[agn], Goto[agn]]];

V.Z. Aladjev, V.A. Vaganov

 338

 Label[9; prime]; y = x^2; Goto[agn]; Label[agn];
 y = NextPrime[x]; Label[agn]; y]
In[2543]:= GotoLabel[ArtKr]
Out[2543]= {{"Goto[9; prime]", "Goto[agn]", "Goto[Sin]"}, {"Label[9; prime]"},
 {{"Goto[9; prime]", "Label[9; prime]","Label[9; prime]"},
 {"Goto[agn]"}, {"Goto[Sin]", "Goto[Sin]", "Goto[Sin]"}}}
In[2544]:= GotoLabel[Kr]
Out[2544]= {{"Goto[prime]", "Goto[agn]"}, {"Label[9; prime]", "Label[agn]"},
 {{"Goto[agn]", "Goto[agn]", "Goto[agn]", "Label[agn]",
 "Label[agn]"}, {"Goto[prime]"}, {"Label[9; prime]"}}}
In[2545]:= Map[GotoLabel, {GotoLabel, TestArgsTypes, }]
Out[2545]= {{{}, {}, {}}, {{}, {}, {}}}
In[2546]:= Map[GotoLabel, {SearchDir, StrDelEnds, OP, BootDrive}]
Out[2546]= {{{}, {}, {}}, {{}, {}, {}}, {{"Goto[ArtKr]"}, {"Label[ArtKr]"},
 {{"Goto[ArtKr]", "Label[ArtKr]"}}}, {{"Goto[avz]"}, {"Label[avz]"},
 {{"Goto[avz]", "Goto[avz]", "Goto[avz]", "Label[avz]"}}}

We will note that existence of a nested list with the third sublist containing
Goto–functions without tags corresponding to them, in the result returned
by a call GotoLabel[P] not necessarily speaks about existence of the function
calls Goto[x] for which not exists a tag Label[x]. It can be, for example, in the
case of generation of a value depending on some condition.

In[2550]:= Av[x_Integer, y_Integer, p_ /; MemberQ[{1, 2, 3}, p]] :=
 Module[{}, Goto[p];
 Label[1]; Return[x + y];
 Label[2]; Return[N[x/y]];
 Label[3]; Return[x*y]]

In[2551]:= Map[Av[500, 90, #] &, {1, 2, 3, 4}]
Out[2551]= {590, 5.55556, 45000, Av[500, 90, 4]}
In[2552]:= GotoLabel[Av]
Out[2552]= {{"Goto[p]"}, {"Label[1]", "Label[2]", "Label[3]"}, {{"Goto[p]"},
 {"Label[1]"}, {"Label[2]"}, {"Label[3]"}}}

For example, according to simple example of the previous fragment the call
GotoLabel[Av] contains {"Goto[p]"} in the third sublist what, at first sight, it
would be possible to consider as a certain impropriety of the corresponding

Extension of Mathematica system functionality

 339

call of Goto-function. However, all the matter is that a value of the actual p-
argument in the call Av[x, y, p] and defines a tag, really existing in definition
of this procedure, i.e. a Label[p]. Thus, the GotoLabel procedure only at the
formal level analyzes existence of Goto-functions, "incorrect" from its point
of view along with "excess" tags. Whereas refinement of the results received
on the basis of a call GotoLabel[P] lies on the user, first of all, by means of
analysis of accordance of source code of a P procedure to the correctness of
the required algorithm.

The structured paradigm of programming doesn't assume use in programs
of the goto-constructions allowing to transfer control from bottom to top. At
the same time, in a number of cases the use of Goto–function is effective, in
particular, at needing of embedding into the Mathematica environment of a
program which uses unconditional transitions on the basis of the goto-offer.
For example, Fortran–programs can be adduced as a quite typical example
that are very widespread in the scientific appendices. From our experience
follows, that the use of Goto–function allowed significantly to simplify the
embedding into the Mathematica environment of a number of rather large
Fortran–programs relating to engineering and physical applications which
very widely use the goto–constructions. Right there it should be noted that
from our standpoint the Goto-function of the Mathematica system is more
preferable, than goto–function of the Maple system in respect of efficiency
in the light of application in procedural programming of various appendices,
including appendices of the system character.

As it was already noted, the Mathematica allows existence of the objects of
the same name with various headings which identify objects, but not their
names. The standard Definition function and our procedures Definition2,
PureDefinition, and others by name of an object allow to receive definitions
of all active subobjects in the current session with identical names, but with
various headings. Therefore there is quite specific problem of removal from
the current Mathematica session not of all objects with a concrete name, but
only subobjects with concrete headings.

The RemovePF procedure solves this problem; its call RemovePF[x] returns
Null, i.e. nothing, providing removal from the current session of the objects
with headings x which are determined by the factual argument x (a heading
in string format or their list). In the case of the incorrect headings determined

V.Z. Aladjev, V.A. Vaganov

 340

by an argument x, the call RemovePF[x] is returned unevaluated. The given
procedure is quite useful in procedural programming. The fragment below
represents source code of the RemovePF procedure along with examples of
its typical usage for removal of subobjects at the objects of the same name.

In[2620]:= RemovePF[x_ /; HeadingQ1[x] || ListQ[x] &&
 DeleteDuplicates[Map[HeadingQ1, x]] == {True}] :=
 Module[{b, c = {}, d, p, k = 1, j,
 a = DeleteDuplicates[Map[HeadName, Flatten[{x}]]]},
 b = Map[If[UnevaluatedQ[Definition2, #], {"90", {}}, Definition2[#]] &, a];
 For[k, k <= Length[a], k++, p = b[[k]];
 AppendTo[c, Select[Flatten[{p[[1 ;; –2]], "SetAttributes[" <>
 a[[k]] <> ", " <> ToString[p[[–1]]] <> "]"}], ! SuffPref[#, x, 1] &]]];
 Map[ClearAllAttributes, a]; Map[Remove, a]; Map[ToExpression, c];
 a = Definition2[b = HeadName[x]]; If[a[[1]] === "Undefined",
 ToExpression["ClearAttributes[" <> b <> "," <>
 ToString[a[[2]]] <> "]"], Null]]]

In[2621]:= M[x_ /; SameQ[x, "avz"], y_] := Module[{a, b, c}, y];
 F[x_, y_Integer] := x + y; F[x_, y_] := x + y; F[x_, y_, z_] := x + y + z;
 M[x_ /; x == "avz"] := Module[{a, b, c}, x]; M[x_, y_, z_] := x + y + z;
 M[x_ /; IntegerQ[x], y_String] := Module[{a, b, c}, x];
 M[x_, y_] := Module[{a, b, c}, "agn"; x + y]; M[x_String] := x;
 M[x_ /; ListQ[x], y_] := Block[{a, b, c}, "agn"; Length[x] + y];
 SetAttributes[M, Protected]; SetAttributes[F, Listable]

In[2622]:= Definition[M]
Out[2622]= Attributes[M] = {Protected}
 "M[x_ /; x === \"avz\", y_] := Module[{a, b, c}, y]"
 "M[x_ /; x == \"avz\"] := Module[{a, b, c}, x]"
 "M[x_, y_, z_] := x + y + z"
 "M[x_ /; IntegerQ[x], y_String] := Module[{a, b, c}, x]"
 "M[x_ /; ListQ[x], y_] := Block[{a, b, c}, \"agn\"; Length[x] + y]"
 "M[x_, y_] := Module[{a, b, c}, \"agn\"; x + y]"
 "M[x_String] := x"

In[2623]:= Definition[F]

Extension of Mathematica system functionality

 341

Out[2623]= Attributes[F] = {Listable}
 "F[x_, y_Integer] := x + y"
 "F[x_, y_] := x + y"
 "F[x_, y_, z_] := x + y + z"
In[2624]:= RemovePF[{"M[x_, y_]", "F[x_, y_, z_]", "M[x_String]",
 "M[x_, y_, z_]"”, "F[x_, y_Integer]", "v[t_]"}]
In[2625]:= Definition[M]
Out[2625]= Attributes[M] = {Protected}
 "M[x_ /; x === \"avz\", y_] := Module[{a, b, c}, y]"
 "M[x_ /; x == \"avz\"] := Module[{a, b, c}, x]"
 "M[x_ /; IntegerQ[x], y_String] := Module[{a, b, c}, x]"
 "M[x_ /; ListQ[x], y_] := Block[{a, b, c}, \"agn\"; Length[x] + y]"
In[2626]:= Definition[F]
Out[2626]= Attributes[F] = {Listable}
 "F[x_, y_] := x + y"
In[2627]:= Definition[F]
Out[2627]= Null

For ensuring of correct uploading of the user block/function/module x in the
current session on condition of possible need of additional reloading in the
current session also of non-standard blocks/functions/modules whose calls
are used in such object x, the CallsInProc procedure can be useful enough,
whose call CallsInProc[x] returns the list of all standard functions, external
and internal blocks/functions/modules, whose calls are used by an object x
of the specified type. The following fragment represents source code of the
CallsInProc procedure along with the typical examples of its usage.

In[2660]:= CallsInProc[P_ /; BlockFuncModQ[P]] := Module[{b, c = {}, k = 1,
 a = ToString[FullDefinition[P]], TN},
 TN[S_/; StringQ[S], L_ /; ListQ[L] &&
 Length[Select[L, IntegerQ[#] &]] ==Length[L] && L != {}] :=
 Module[{a1 = "", c1, b1 = {}, k1, p = 1},
 For[p, p <= Length[L], p++,
 For[k1 = L[[p]] – 1, k1 != 0, k1––, c1 = StringTake[S, {k1, k1}];
 a1 = c1 <> a1; If[c1 === " ", a1 = StringTake[a1, {2, –1}];
 If[Quiet[Check[Symbol[a1], False]] === False, a1 = ""; Break[],

V.Z. Aladjev, V.A. Vaganov

 342

 AppendTo[b1, a1]; a1 = ""; Break[]]]]]; b1];
 b = TN[a, b = DeleteDuplicates[Flatten[StringPosition[a, "["]]]][[2 ;; –1]];
 b = Sort[DeleteDuplicates[Select[b, StringFreeQ[#, "`"] &&
 ! MemberQ[{"Block", ToString[P], "Module"}, #] &&
 ToString[Definition[#]] != "Null" &]]]; k = Select[b, SystemQ[#] &];
 c = MinusList[b, Flatten[{k, ToString[P]}]];
 {k, c, DeleteDuplicates[Map[Context, c]]}]

In[2661]:= CallsInProc[StringDependQ]
Out[2661]= {{"Attributes", "Flatten", "If", "Length", "ListQ", "Select",
 "StringFreeQ", "StringQ"}, {"HowAct", "ListStrQ"},
 {"AladjevProcedures`"}}
In[2662]:= G[x_] := ToString1[x]; CallsInProc[G]
Out[2662]= {{"Close", "DeleteDuplicates", "Flatten", "For", "If", "MemberQ",
 "Read", "Return", "StringLength", "StringQ", "StringTake",
 "StringTrim", "While", "Write"}, {"StrDelEnds", "SuffPref",
 "ToString1"}, {"AladjevProcedures`"}}

The procedure call CallsInProc[x] returns the nested 3–element list whose
the first element defines the list of standard functions, the second element
defines the list of external and internal functions, blocks and modules of the
user, whose calls uses an object x whereas the third element defines the list
of contexts which correspond to the user means and which are used by the
object x. The CallsInProc procedure represents essential interest for analysis
of the user means regarding existence of calls in them of both the user tools,
and the system software.

For operating with procedures and functions, whose definitions have been
evaluated in the current session, a simple CsProcsFuncs function is a rather
useful means whose call CsProcsFuncs[] returns the list of blocks, functions
and modules, whose definitions were evaluated in the current session. The
fragment represents source code of the function with an example of its use.

In[2719]:= CsProcsFuncs[] := Select[CNames["Global`"], ProcQ[#] ||
 FunctionQ[#] &]

In[2720]:= CsProcsFuncs[]
Out[2720]= {"A", "ArtKr", "Av", "B", "H72", "Kr", "V", "Vg", "W"}

Extension of Mathematica system functionality

 343

Naturally, the given list doesn't include the procedures and functions from
the packages uploaded into the current session, of both system means, and
user means for the reason that similar means are associated with contexts of
the corresponding packages. Moreover, due to the necessity of analysis of a
quite large number of means of the current session the performance of this
function can demand noticeable temporary expenses.

The CsProcsFuncs1 procedure is a rather useful modification of the previous
function whose call CsProcsFuncs1[] returns the nested list whose elements
define lists whose first elements define means similarly to the CsProcsFuncs
function while the second elements – multiplicities of their definitions. The
following fragment represents source code of the CsProcsFuncs1 procedure
along with typical examples of its usage.

In[2532]:= CsProcsFuncs1[] := Module[{a = CsProcsFuncs[], b, c},
 b = Map[Definition2, ToExpression[a]];
 c = Quiet[Mapp[Select, b, StringFreeQ[#1, ToString[#1] <>
 "Options[" <> ToString[#1] <> "] := "] &]];
 Select[Map9[List, a, Map[Length, c]], ! MemberQ[#, "CsProcsFuncs1"] &]]

In[2533]:= CsProcsFuncs1[]
Out[2533]= {{"LocalVars", 1}, {"V", 4}, {"W", 2}, {"Z", 2}, {"Art", 6}, {"Kr", 4}}

Analogously to the CsProcsFuncs function, the call CsProcsFuncs1[] of the
previous procedure because of necessity of analysis of a quite large number
of the means which are activated in the current session can demand enough
noticeable temporary expenses.

The next procedure ActCsProcFunc is a means rather useful in the practical
relation, its call ActCsProcFunc[] returns the nested two–element list whose
elements are sublists of variable length. The first element of the first sublist –
"Procedure" while others define the 2–element lists containing names of the
procedures with their headings activated in the current session. Whereas the
first element of the second sublist – "Function" whereas others determine the
2–element lists containing names of the functions with their headings which
were activated in the current session. At that, the procedures can contain in
own composition both the blocks, and the modules. The following fragment
represents source code of the ActCsProcFunc procedure along with the most
typical examples of its usage.

V.Z. Aladjev, V.A. Vaganov

 344

In[2742]:= ActCsProcFunc[] := Module[{a = Names["Global`*"], h = {}, d, t,
 b = {"Procedure"}, c = {"Function"}, k = 1, v},
 Map[If[TemporaryQ[#] || HeadPF[#] === #, Null,
 AppendTo[h, ToString[t = Unique["g"]]]; v = BlockFuncModQ[#, t];
 If[v && MemberQ[{"Block", "Module"}, t], AppendTo[b, {#, HeadPF[#]}],
 If[v && t === "Function", AppendTo[c, {#, HeadPF[#]}]]]] &, a];
 Map[Remove, h]; {b, c}]

In[2743]:= TemporaryQ[x_] := If[SymbolQ[x], MemberQ[{"Attributes[" <>
 ToString[x] <> "] = {Temporary}", "Null"},
 ToString[Definition[x]]], False]

In[2744]:= Map[TemporaryQ, {gs47, gs, a + b}]
Out[2744]= {True, True, False}
In[2745]:= g[x_] := Module[{}, x]; s[x_, y_] := Block[{}, x + y]; v[x_] := x;
 n[x_] := x; vs[x_, y_] := x + y; gs[x_] := x^2; hg[x___] := Length[{x}];
 hh[x_, y_] := x^2 + y^2; nm[x_, y_] := Module[{}, x*y];
 ts[x_Integer] := Block[{a = 72}, x + a]; w[x_] := x; w[x_, y_] := x*y;
In[2746]:= ActCsProcFunc[]
Out[2746]= {{"Procedure", {"g", "g[x_]"}, {"nm", "nm[x_, y_]"}, {"s", "s[x_, y_]"},
 {"ts", "ts[x_Integer]"}},
 {"Function", {"gs", "gs[x_]"}, {"hg", "hg[x___]"}, {"hh", "hh[x_, y_]"},
 {"n", "n[x_]"}, {"TemporaryQ", {"TemporaryQ[x_/; SymbolQ[x]]",
 "TemporaryQ[x_]"}}, {"v", "v[x_]"}, {"vs", "vs[x_, y_]"},
 {"w", {"w[x_]", "w[x_, y_]"}}}}
In[2747]:= A[___] := Module[{a, b = 590}, Map[TemporaryQ, {a, b}]]; A[]
Out[2747]= {True, False}

The given procedure materially uses the TemporaryQ function, whose call
TemporaryQ[x] returns True if a symbol x defines the temporary variable,
and False otherwise. In particular, for a local variable x without initial value
the call TemporaryQ[x] returns True. The TemporaryQ function is useful in
many appendices, above all of the system character. The previous fragment
represents source code of the function with typical examples of its usage.

Analogously to the means CsProcsFuncs and CsProcsFuncs1 the procedure
call ActCsProcFunc because of necessity of analysis of a quite large number
of the means which are activated in the current session can demand enough

Extension of Mathematica system functionality

 345

noticeable temporary expenses. Concerning the ActCsProcFunc procedure
it should be noted that it provides return only of blocks, functions, modules
whose definitions have been evaluated in the Input–paragraph mode without
allowing to receive objects of this type which were loaded into the current
session in the Input–paragraph mode, in particular, as a result of uploading
of the user package by means of the LoadMyPackage procedure as visually
illustrate the last examples of the previous fragment. The reason for this is
that this objects are associated with the context of a package containing them
but not with the context "Global`".

As it was noted above, the strict differentiation of objects in environment of
the Mathematica is carried out not by their names, but by their headings. For
this reason in a number of cases of procedural programming the problem of
organization of mechanisms of the differentiated processing of such objects
on the basis of their headings arises. Certain such means is presented in the
present book, here we will define two procedures ensuring the differentiated
operating with attributes of such objects. Unlike the Rename procedure, the
RenameH procedure provides in a certain degree selective renaming of the
blocks, functions, modules of the same name on the basis of their headings.
The successful call RenameH[x, y] returns Null, i.e. nothing, renaming an
object with a heading x onto a name y with saving of attributes; at that, the
initial object with heading x is removed from the current session.

In[2563]:= RenameH[x_ /; HeadingQ1[x], y_ /; ! HowAct[y], z___] :=
 Module[{c, a = HeadName[x], d = StandHead[x],
 b = ToExpression["Attributes[" <> HeadName[x] <> "]"]},
 c = Flatten[{PureDefinition[a]}];
 If[c == {$Failed}, $Failed, If[c == {}, Return[$Failed],
 ToExpression["ClearAllAttributes[" <> a <> "]"]];
 ToExpression[ToString[y] <> DelSuffPref[Select[c,
 SuffPref[#, d <> " := ", 1] &][[1]], a, 1]];
 If[{z} == {}, RemProcOnHead[d]];
 If[! SameQ[PureDefinition[a], $Failed],
ToExpression["SetAttributes[" <> ToString[a] <> "," <> ToString[b] <> "]"]];
 ToExpression["SetAttributes[" <> ToString[y] <>
 "," <> ToString[b] <> "]"];]]

V.Z. Aladjev, V.A. Vaganov

 346

In[2564]:= M[x_ /; SameQ[x, "avz"], y_] := Module[{a, b, c}, y];
 M[x_, y_] := Module[{a, b, c}, "agn"; x + y]; M[x_String] := x;
 M[x_ /; ListQ[x], y_] := Block[{a, b, c}, "agn"; Length[x] + y];
 SetAttributes[M, Protected]
In[2565]:= RenameH["M[x_,y_]", V]
In[2566]:= Definition[V]
Out[2566]= Attributes[V] = {Protected}
 V[x_, y_] := Module[{a, b, c}, "agn"; x + y]
In[2567]:= Definition[M]
Out[2567]= Attributes[M] = {Protected}
 M[x_ /; x === "avz", y_] := Module[{a, b, c}, y]
 M[x_ /; ListQ[x], y_] := Block[{a, b, c}, "agn"; Length[x] + y]
 M[x_String] := x
In[2568]:= RenameH["M[x_String]", S, 90]
In[2569]:= Definition[S]
Out[2569]= Attributes[S] = {Protected}
 S[x_String] := x
In[2570]:= Definition[M]
Out[2570]= Attributes[M] = {Protected}
 M[x_ /; x === "avz", y_] := Module[{a, b, c}, y]
 M[x_ /; ListQ[x], y_] := Block[{a, b, c}, "agn"; Length[x] + y]
 M[x_String] := x

At that, the procedure call RenameH[x, y, z] with the 3rd optional argument
z – an arbitrary expression – renames an object with heading x onto a name y
with saving of the attributes; meanwhile, the object with heading x remains
active in the current session. On an inadmissible tuple of factual arguments
the procedure call returns $Failed or returned unevaluated. The previous
fragment represents source code of the RenameH procedure along with the
most typical examples of its usage.

In a number of the procedures intended for processing of definitions or calls
of other procedures/functions, the problem of identification of the call format,
i.e. format of type F[args] where F – the name of a procedure/function and
args – the tuple of formal or factual arguments is a rather topical. The next
fragment represents source code of the CallQ procedure along with typical
enough examples of its usage.

Extension of Mathematica system functionality

 347

In[2540]:= CallQ[x_] := Module[{b, c, a=ToString[If[Quiet[Part[x, 1]] === –1,
 Part[x, 1]*x, x]]}, b = Flatten[StringPosition[a, "["]];
 If[b == {}, False, c = b[[1]]; If[SymbolQ[StringTake[a, {1, c – 1}]] &&
 StringTake[a, {c + 1, c + 1}] != "[" &&
 StringTake[a, –1] == "]", True, False]]]

In[2541]:= CallQ[A[x, y, z]]
Out[2541]= True
In[2542]:= Map[CallQ, {Sin[–90], Sin[9.0]}]
Out[2542]= {True, False}

In[2543]:= FormalArgs[x_] := Module[{a, b = Quiet[Part[x, 1]]}, If[CallQ[x],
 a = ToString[If[b === –1, Part[x, 1]*x, x]];
 ToExpression["{" <> StringTake[a,
 {Flatten[StringPosition[a, "["]][[1]] + 1, –2}] <> "}"], $Failed]]

In[2544]:= Map[FormalArgs, {Agn[x, y, x], Sin[–a + b],
 Agn[x_ /; StringQ[x], y_Integer, z_]}]
Out[2544]= {{x, y, x}, {a – b}, {x_ /; StringQ[x], y_Integer, z_}}
In[2545]:= Map[FormalArgs, {Agn[], a + b, 90, {a, b, c}}]
Out[2545]= {{}, $Failed, $Failed, $Failed}

The procedure call CallQ[x] up to a sign returns True if x is an expression of
the format F[args] where F – name of a procedure/function and args – tuple
of the actual arguments, and False otherwise. The above CallQ procedure is
of interest as a testing means for checking of the actual arguments of objects
for their admissibility. While the procedure call FormalArgs[x] returns the
list of formal arguments of a heading x irrespectively off definition ascribed
to it; on an inadmissible heading x $Failed is returned. The previous fragment
represents source code of the procedure along with an example of its usage.

In the Maple system in problems of procedural programming the procedural
"procname" variable is rather useful, whose use in the body of a procedure
allows to receive the heading of procedure in a point of its call. The variable
is useful enough at realization of some special mechanisms of processing in
procedures what was rather widely used by us for programming of system
means expanding the software of the Maple system [10-22,25-27,47]. Similar
means in the Mathematica system are absent, meanwhile, means of similar

V.Z. Aladjev, V.A. Vaganov

 348

character are useful enough at realization of the procedural paradigm of the
system. As one useful means of this type it is quite possible to consider the
$InBlockMod variable whose call in the body of a block or module in string
format returns source code of an object containing it without a heading in a
point of its call. The next fragment adduces source code of the $InBlockMod
variable along with examples of its typical usage.

In[2550]:= StringReplace3[S_/; StringQ[S], x__] := Module[{b = S, c, j = 1,
 a = Map[ToString, {x}]}, c = Length[a];
 If[OddQ[c], S, While[j <= c/2,
 b = StringReplace2[b, a[[2*j – 1]], a[[2*j]]]; j++]; b]]

In[2551]:= StringReplace3["Module[{a$ = 78, b$ = 90, c$ = 72}, xb$; a$*b$*6;
 (a$+b$+c$)*(x+y); aa$]", "a$", "a", "b$", "b", "c$", "c"]
Out[2551]= "Module[{a = 78, b = 90, c = 72}, xb$; a*b*6; (a+b+c)*(x+y); aa$]"

In[2552]:= $InBlockMod := Quiet[Check[StringTake[If[Stack[Block] != {},
 ToString[InputForm[Stack[Block][[1]]]], If[Stack[Module] != {},
 StringReplace3[ToString[InputForm[Stack[Module][[1]]]],
 Sequences[Riffle[Select[StringReplace[StringSplit[
 StringTake[SubStrSymbolParity1[ToString[InputForm[
 Stack[Module][[1]]]], "{", "}"][[1]], {2, –2}], " "], "," –> ""],
 StringTake[#, –1] == "$" &], Mapp[StringTake,
 Select[StringReplace[StringSplit[StringTake[
 SubStrSymbolParity1[ToString[InputForm[Stack[
 Module][[1]]]], "{", "}"][[1]], {2, –2}], " "], "," –> ""],
 StringTake[#, –1] == "$" &], {1, –2}]]]]], $Failed], {10, –2}], Null]]

In[2553]:= Avz[x_] := Block[{a = 6, b = 50, c = $InBlockMod}, Print[c]; a*b*x]
In[2554]:= Avz[42]
 "Block[{a = 6, b = 50, c = $InBlockMod}, Print[c]; a*b*42]"
Out[2554]= 12 600
In[2555]:= Agn[x_] := Module[{a=6, b=50, c=$InBlockMod}, Print[c]; a*b*x]
In[2556]:= Agn[47]
 "Module[{a = 6, b = 50, c = $InBlockMod}, Print[c]; a*b*47]"
Out[2556]= 14 100

Extension of Mathematica system functionality

 349

In[2557]:= Avs[x_] := Module[{a = $InBlockMod, b = 50, c = 500}, Print[a];
 b*c*x^2]: Avs[500]
 "Block[{a = $InBlockMod, b = 50, c = 500}, Print[a]; b*c*500^2]
Out[2557]= 6 250 000 000
In[2558]:= Av[x_] := Module[{a = $InBlockMod, b = 50, c = 500}, Print[a];
 b*c*x^2]: Av[660]
 "Module[{a = $InBlockMod, b = 50, c = 500}, Print[a]; b*c*660^2]"
Out[2558]= 10 890 000 000
In[2559]:= $InBlockMod
In[2560]:= G[x_, y_] := {x + y, $InBlockMod}: G[42, 47]
Out[2560]= {89, Null}

At that, for realization of algorithm of the above variable the StringReplace3
procedure which is an expansion of the StringReplace2 procedure is rather
significantly used. Its source code with examples of application is presented
in the beginning of the previous fragment. The call StringReplace3[W, x, x1,

y, y1, z, z1, …] returns the result of substitution into a string W of substrings
{x1, y1, z1,…} instead of all occurrences of substrings {x, y, z,…} accordingly;
in the absence of such occurrences the call returns an initial string W. This
procedure appears as a very useful tool of processing of string constructions
which contain expressions, expanding possibilities of the standard means.
At using of the procedural variable $InBlockMod it must be kept in mind
that it makes sense only in the body of a procedure of type {Block, Module},
returning nothing, i.e. Null, in other expressions or in an Input–paragraph
as visually illustrate examples of application of the variable $InBlockMod
in the previous fragment. At that it must be kept in mind in order to avoid
of misunderstanding the call of the variable $InBlockMod is recommended
to do at the beginning of procedures, for example, in area of local variables.

The next procedure is useful for operating with blocks/functions/modules.
The procedure call FullUserTools[x] returns the list of names, that enter in
definition of the active user block/function/module x; in addition, the first
element of the list is a context of these tools. Whereas in a case of tools with
various contexts a call returns the nested list of sublists of the above format.
In turn, a procedure call FullUserTools[x, y] thru the optional argument y –
an undefinite variable – returns 2–element list whose the first element defines
list of tools without usages, and the second element defines unidentified tools.

V.Z. Aladjev, V.A. Vaganov

 350

The next fragment represents source code of the procedure with examples.

In[2718]:= FullUserTools[x_ /; BlockFuncModQ[x], y___] := Module[{a, b,
 c, d, p = {}, n = {}}, Save[Set[a, ToString[x] <> ".txt"], x];
 b = ReadString[a]; DeleteFile[a]; c = StringSplit[b, "\r\n \r\n"];
 b = Select[c, ! StringFreeQ[#, "::usage = \""] &];
 d = MinusList[c, b]; c = Map[StringSplit[#, " /: ", 2][[1]] &, b];
 d = Map[StringSplit[#, " := "][[1]] &, d];
 Quiet[Map[If[HeadingQ[#],
 AppendTo[p, HeadName[#]], AppendTo[n, #]] &, d]];
 {a, p} = {Join[c, p], MinusList[c, p]};
 b = Map[MinusList[#, {ToString[x]}] &, {a, p}][[1]];
 b = DeleteDuplicates[Map[{#, Context[#]} &, b]];
 b = Gather[b, #1[[2]] == #2[[2]] &];
 b = Map[Sort[DeleteDuplicates[Flatten[#]]] &, b];
 d = Map[Sort[#, ContextQ[#1] &] &, b];
 d = Map[Flatten[{#[[1]], Sort[#[[2 ;; –1]]]}] &, d];
 d = If[Length[d] == 1, d[[1]], d];
 If[{y} != {} && ! HowAct[y], y = {p, n}; d, d]]

In[2719]:= FullUserTools[UnevaluatedQ]
Out[2719]= {"AladjevProcedures`", "ListStrToStr", "StrDelEnds", "SuffPref",
 "SymbolQ", "ToString1"}

In[2720]:= F[x_, y_] := Module[{a = 90, b = 500, c}, a*b*x*y; c = ToString1[c]];
 Sv[x_, y_] := x*y; G[x_, y_] := Module[{}, {ToString1[x*y], F[x] + Sv[x, y]}]
In[2721]:= FullUserTools[G]
Out[2721]= {{"AladjevProcedures`", "StrDelEnds", "SuffPref", "ToString1"},
 {"Global`", "F", "Sv"}}

Unlike the FullUserTools procedure the FullToolsCalls procedure provides
the analysis of the user block, function or module regarding existence in its
definition of calls of both the user and the system means. The procedure call
FullToolsCalls[x] returns the list of names, whose calls are in definition of
the active user block/function/module x; in addition, the first element of the
list is a context of these tools. While in case of means with different contexts

Extension of Mathematica system functionality

 351

the procedure call returns the nested list of sublists of the above format. In
case of absence in a x definition of the user or system calls the procedure call
FullToolsCalls[x] returns the empty list, i.e. {}.

In[2920]:= FullToolsCalls[x_ /; BlockFuncModQ[x]] := Module[{b, c = {}, d,
 a = Flatten[{PureDefinition[x]}][[1]], k = 1, g = {}, p, j, n},
 b = Gather[Map[#[[1]] &, StringPosition[a, "["]], Abs[#1 – #2] == 1 &];
 b = Flatten[Select[b, Length[#] == 1 &]];
 For[k, k <= Length[b], k++, n = ""; For[j = b[[k]] – 1, j >= 0, j––,
 If[SymbolQ[p = Quiet[StringTake[a, {j}]]] ||
 IntegerQ[Quiet[ToExpression[p]]], n = p <> n, AppendTo[c, n]; Break[]]]];
 c = MinusList[c, Join[Locals[x], Args[x, 90], {"Block", "Module"}]];
 c = Map[{#, Quiet[Context[#]]} &, MinusList[c, {ToString[x]}]];
 b = Map[Sort[DeleteDuplicates[Flatten[#]]] &, c];
 d = Map[Flatten, Gather[Map[Sort[#, Quiet[ContextQ[#1]] &] &, b],
 #1[[1]] == #2[[1]] &]]; d = Map[Flatten[{#[[1]], Sort[#[[2 ;; –1]]]}] &,
 Map[DeleteDuplicates, d]]; d = If[Length[d] == 1, d[[1]], d];
 Select[d, ! Quiet[SameQ[#[[1]], Context[""]]] &]]

In[2921]:= AH[x_] := (Sv[x] + GSV[x, 90, 500])*Sin[x] + Z[[a]] + Art[x]/Kr[x]
In[2922]:= FullToolsCalls[AH]
Out[2922]= {{"Tallinn`", "Sv"}, {"RansIan`", "GSV"}, {"System`", "Sin"},
 {"Global`", "Art", "Kr"}}
In[2923]:= FullToolsCalls[UnevaluatedQ]
Out[2923]= {{"AladjevProcedures`", "ListStrToStr", "SymbolQ"},
 {"System`", "Check", "If", "Module", "Quiet", "StringJoin", "ToString"}}

Unlike the previous procedure the FullToolsCallsM procedure provides the
above analysis of the user block, function or module of the same name.

In[2954]:= FullToolsCallsM[x_ /; BlockFuncModQ[x]] := Module[{b, c = {},
 a = Flatten[{PureDefinition[x]}], k = 1, n = ToString[x]},
 If[Length[a] == 1, FullToolsCalls[x],
 For[k, k <= Length[a], k++, b = ToString[Unique["sv"]];
 ToExpression[StringReplace[a[[k]], n <> "[" –> b <> "[", 1]];
 AppendTo[c, FullToolsCalls[b]]; Quiet[Remove[b]]];

V.Z. Aladjev, V.A. Vaganov

 352

 c = Map[If[NestListQ[#] && Length[#] == 1, #[[1]], #] &, c];
 Map[If[! NestListQ[#] && Length[#] == 1, {},
 If[! NestListQ[#] && Length[#] > 1, #, Select[#, Length[#] > 1 &]]] &, c]]]

In[2955]:= Ah[x_] := (Sv[x] + GSV[x, 90, 500])*Sin[x] + Z[[a]] + Art[x]/Kr[x];
 Ah[x_Integer] := Block[{a = 90}, ToString1[a*Cos[x]]];
 Ah[x_String] := Module[{a = "6"}, ToString1[x <> a]], FullToolsCallsM[Ah]
Out[2956]= {{"System`", "Cos"}, {"System`", "StringJoin"}, {{"Tallinn`", "Sv"},
 {"RansIan`", "GSV"}, {"System`", "Sin"}, {"Global`", "Art", "Kr"}}}

In[2957]:= G[x_, y_, z_] := Module[{}, x*y*z]; G[x_] := Module[{a = 6}, x/a]
In[2958]:= FullToolsCallsM[G]
Out[2958]= {{}, {}}
In[2958]:= ProcQ[x_, y_] := Block[{a=0, b=1}, ToString1[a*Sin[x]+b*Cos[y]]]
In[2959]:= FullToolsCallsM[ToString1]
Out[2959]= {{"System`", "Close", "DeleteFile", "For", "If", "Read", "Return",
 "StringJoin", "Write"}, {"AladjevProcedures`", "StrDelEnds"}}

In[2960]:= Avz[x_] := Module[{a = 90}, StrStr[x] <> ToString[a]]
In[2961]:= Map[#[Avz] &, {FullToolsCalls, FullToolsCallsM}]
Out[2961]= {{{"System`", "StringJoin", "ToString"}, {"AladjevProcedures`",
 "StrStr"}}, {{"System`", "StringJoin", "ToString"},
 {"AladjevProcedures`", "StrStr"}}}

The procedure call FullToolsCallsM[x] returns the nested list of results of
application of the FullToolsCalls procedure to subobjects (blocks, functions,
modules) that compose an object of the same name x. The order of elements
in the returned list corresponds to an order of definitions of the subobjects
returned by the call Definition[x]. Whereas, the procedure call AllCalls[x]
returns the nested list of sublists containing the full form of calls entering in
definitions of subobjects that compose an object of the same name or a simple
object x. The order of elements in the returned list corresponds to an order
of definitions of the subobjects returned by the call Definition[x].

In[2840]:= AllCalls[x_ /; BlockFuncModQ[x]] := Module[{a1, ArtKr, k1, b1,
 c1 = {}, d1, m = ToString[x]}, a1 = Flatten[{PureDefinition[x]}];
 ArtKr[y_] := Module[{a = Flatten[{PureDefinition[y]}][[1]],
 b, c = {}, d, k, g = {}, p, j, n},

Extension of Mathematica system functionality

 353

 b = Gather[Map[#[[1]] &, StringPosition[a, "["]], Abs[#1 – #2] == 1 &];
 b = Flatten[Select[b, Length[#] == 1 &]];
 For[k = 1, k <= Length[b], k++, n = ""; For[j = b[[k]] – 1, j >= 0, j––,
 If[SymbolQ[p = Quiet[StringTake[a, {j}]]] ||
 IntegerQ[Quiet[ToExpression[p]]], n = p <> n, AppendTo[c, n]; Break[]]]];
 For[k = 1, k <= Length[b], k++, For[j = b[[k]], j <= StringLength[a], j++,
 SubStrSymbolParity1[StringTake[a, {j, StringLength[a]}], "[", "]"][[1]];
 AppendTo[g, SubStrSymbolParity1[StringTake[a,
 {j, StringLength[a]}], "[", "]"][[1]]]; Break[]]];
 n = Select[Map[StringJoin[#] &, Partition[Riffle[c, g], 2]],
 # ! = HeadPF[y] &]; If[FunctionQ[y], n, n[[2 ;; –1]]]];

 If[Length[a1] == 1, ArtKr[x],
 For[k1 = 1, k1 <= Length[a1], k1++, b1 = ToString[Unique["v"]];
 ToExpression[StringReplace[a1[[k1]], m <> "[" –> b1 <> "[", 1]];
 AppendTo[c1, ArtKr[b1]]; Quiet[Remove[b1]]]; c1]]

In[2841]:= AH[x_] := (Sv[x] + GSV[x, 90, 500])*Sin[x] + Z[[a]] + Art[x]/Kr[x];
 AH[x_Integer] := Block[{a = 90}, ToString1[a*Cos[x]]]; AH[x_String] :=
 Module[{a="500"}, ToString1[x <> a]]; AH1[x_] := (Sv[x]+GSV[x,90,500])*
 Sin[x] + Z[[a]] + Art[x]/Kr[x]; F[x_, y_] := x + y
In[2842]:= AllCalls[AH]
Out[2842]= {{"ToString1[a*Cos[x]]", "Cos[x]"}, {"ToString1[StringJoin[x, a]]",
 "StringJoin[x, a]"}, {"Sv[x]", "GSV[x, 90, 500]", "Sin[x]", "Art[x]", "Kr[x]"}}
In[2843]:= AllCalls[F]
Out[2843]= {}
In[2844]:= AllCalls[AH1]
Out[2844]= {"Sv[x]", "GSV[x, 90, 500]", "Sin[x]", "Art[x]", "Kr[x]"}

On that the presentation of tools, serving for processing of the user objects,
is completed; at that, some tools accompanying them are considered below
or were already considered above. Classification of our tools has in a certain
measure a subjective character that is caused by their basic use or frequency
of usage at programming of the means represented in the given book and in
a number of important applications of the applied and the system character.
These means are mainly used at programming of the system tools.

V.Z. Aladjev, V.A. Vaganov

 354

Chapter 7. Means of input–output of the Mathematica

The Mathematica language being the built–in programming language that
first of all is oriented onto symbolical calculations and processing has rather
limited facilities for data processing which first of all are located in external
memory of the computer. In this regard the language significantly concedes
to the traditional programming languages C++, Basic, Fortran, Cobol, PL/1,
ADA, Pascal, etc. At the same time, being oriented, first of all, onto solution
of tasks in symbolic view, the Mathematica language provides a set of tools
for access to datafiles that can quite satisfy a rather wide range of the users
of mathematical applications of the Mathematica. In this chapter the means
of access to datafiles are considered rather superficially owing to the limited
volume, extensiveness of this theme and purpose of the present book. The
reader who is interested in means of access to datafiles of the Mathematica
system quite can appeal to documentation delivered with the system. At
the same time, for the purpose of development of methods of access to file
system of the computer we created a number of rather effective means that
are represented in the AVZ_Package package [48]. Whereas in the present
chapter the attention is oriented on the means expanding standard means
of the Mathematica system for ensuring work with files of the computer.
Some of them are rather useful to practical application in the environment
of the Mathematica system.

7.1. Means of the Mathematica for work with internal files

Means of Math-language provide access of the user to files of several types
which can be conditionally divided into two large groups, namely: internal
and external files. During the routine work the system deals with 3 various
types of internal files from which we will note the files having extensions
{"nd", "m", "mx"}, their structure is distinguished by the standard system
means and which are important enough already on the first stages of work
with system. Before further consideration we will note that the concept of
the file qualifier (FQ) defining the full path to the required file in file system
of the computer or to its subdirectory, practically, completely coincides with
similar concept for already mentioned Maple system excepting that if in the

Extension of Mathematica system functionality

 355

Maple for FQ the format of type {string, symbol} is allowed whereas for FQ
in the Mathematica system the string–type format is admissible only.

The call Directory[] of the system function returns an active subdirectory of
the current session of the system whereas the call SetDirectory[x] returns a
directory x, doing it active in the current session; at that, as an active (current)
directory is understood the directory whose files are processed by means of
access if only their names, but not full paths to them are specified. At that,
defining at the call SetDirectory[x] the system $UserDocumentsDirectory
variable as a factual x–argument, it is possible to redefine the user current
subdirectory by default. Meanwhile, the SetDirectory function allows only
real–life subdirectories as the argument, causing on nonexistent directories
the erroneous situation with returning $Failed. On the other hand, a rather
simple SetDir procedure provides possibility to determine also nonexistent
subdirectories as the current subdirectories. The procedure call SetDir[x] on
an existing subdirectory x does it current while a nonexistent subdirectory
is previously created and then it is defined by the current subdirectory. At
that, if the factual x-argument at the call SetDir[x] is determined by a chain
without name of the IO device, for example, "aa\\...\\bb", then a chain of
the subdirectories Directory[] <> "aa\\...\\bb" is created that determines a
full path to the created current subdirectory. The next fragment represents
source code of the SetDir procedure along with the most typical examples
of its usage.

In[2531]:= Directory[]
Out[2531]= "C:\\Users\\Aladjev\\Documents"
In[2532]:= SetDirectory["E:\\AVZ_Package"]
 SetDirectory::cdir: Cannot set current directory to E:\AVZ_Package. >>
Out[2532]= $Failed
In[2533]:= SetDirectory[$UserDocumentsDirectory]
Out[2533]= "C:\\Users\\Aladjev\\Documents"
In[2534]:= SetDirectory[]
Out[2534]= "C:\\Users\\Aladjev"

In[2535]:= SetDir[x_/; StringQ[x]] := Module[{a}, If[StringLength[x] == 1 ||
 StringLength[x] >= 2 && StringTake[x, {2, 2}] != ":",
 Return[Quiet[SetDirectory[Quiet[CreateDirectory[

V.Z. Aladjev, V.A. Vaganov

 356

 StringReplace[Directory[] <> "\\" <> x, "\\\\" –> "\\"]]]]]], Null];
 a = Quiet[CreateDirectory[StringTake[x, 1] <> ":\\"]];
 If[a === $Failed, Return[$Failed], Null];
 Quiet[Check[If[DirectoryQ[x], SetDirectory[x],
 SetDirectory[CreateDirectory[x]]], Null]]; Directory[]]

In[2536]:= SetDir["C:\\Temp\\111\\222\\333\\444\\555\\666\\777"]
Out[2536]= "C:\\Temp\\111\\222\\333\\444\\555\\666\\777"
In[2537]:= SetDir["H:\\111\\222\\333\\444\\555\\666\\777\\888"]
Out[2537]= $Failed
In[2538]:= Directory[]
Out[2538]= "C:\\Temp\\111\\222\\333\\444\\555\\666\\777"
In[2539]:= SetDir["kr\\6"]
Out[2539]= "C:\\Temp\\111\\222\\333\\444\\555\\666\\777\\kr\\6"
In[2540]:= SetDir["E:\\AVZ_Package"]
Out[2540]= "E:\\AVZ_Package"

In[2541]:= Adrive[] := Module[{a, b, c, d, k = 1},
 {a, b} = {CharacterRange["A", "Z"], {}};
 For[k, k <= 26, k++, c = a[[k]] <> ":\\";
 d = Quiet[CreateDirectory[c]];
 If[d === $Failed, Null, AppendTo[b, StringTake[d, 1]]]]; Sort[b]]

In[2542]:= Adrive[]
Out[2542]= {"C", "D", "E", "F", "G"}

Meanwhile, in attempt of definition of a nonexistent directory as the current
directory the emergence of a situation is quite real when as a IO device has
been specified a device which at the moment isn't existing in the system or
inaccessible. Therefore rather actually to have the means allowing to verify
availability of IO devices in the system. In this regard the Adrive procedure
solves this problem, whose call Adrive[] returns the list of logical names in
string format of IO devices, available at the moment. The given procedure
is an analog of the procedure of the same name for the Maple system [47],
the last part of the previous fragment represents source code of the Adrive
procedure with an example of its usage. Both procedures of the previous
fragment are useful enough at programming in the Mathematica system of
various means of access to the datafiles.

Extension of Mathematica system functionality

 357

The following Adrive1 procedure expands the above Adrive procedure and
returns the 2-element nested list whose first element represents the list with
names in string format of all active direct access devices whereas the second
element represents the list with names in string format of all inactive direct
access devices of the computer. The next fragment represents source code of
the Adrive1 procedure along with a typical example of its usage.

In[2560]:= Adrive1[] := Module[{a = CharacterRange["A", "Z"], b = {}, c = 1,
 d, p = {}, h, t = "$Art26$Kr18$"},
 For[c, c <= 26, c++, d = a[[c]] <> ":\\"; If[DirQ[d], AppendTo[b, a[[c]]];
 h = Quiet[CreateDirectory[d <> t]];
 If[h === $Failed, Continue[], DeleteDirectory[d <> t];
 AppendTo[p, a[[c]]]; Continue[]]]]; {p, MinusList[b, p]}]

In[2561]:= Adrive1[]
Out[2561]= {{"C", "D", "G"}, {"A", "E"}}

In[2562]:= SetDir1[x_ /; StringQ[x]] := Module[{a = SetDir[x], b, c, k},
 If[! SameQ[a, $Failed], a, k = 1; b = Adrive[];
 c = Map[FreeSpaceVol, b];
 While[k <= Length[b], PrependTo[c[[k]], b[[k]]]; k++];
 c = SortNL1[c, 2, Greater];
 SetDir[StringJoin[c[[1]][[1]], StringTake[x, {2, –1}]]]]]

In[2563]:= SetDir1["G:\\Galina/Svetla\\ArtKr/Tampere\\Tallinn"]
Out[2563]= "C:\\Galina/Svetla\\ArtKr/Tampere\\Tallinn"

At last, the SetDir1 procedure presented at the end of the previous fragment
expands the SetDir procedure onto the case when attempt to create a chain
of directories meets the especial situation caused by lack of the demanded
device on which creation of this chain of subdirectories was planned. In the
absence of such device of direct access the procedure call SetDir1[x] returns
the created chain of subdirectories on a device having the greatest possible
volume of available memory among all active devices of direct access in the
current session of the Mathematica system.

Files with documents which in one of 11 formats by the chain of command
"File –> {Save As|Save}" of the GUI (the most used formats "nb", "m") are

V.Z. Aladjev, V.A. Vaganov

 358

saved, the files with the Mathematica–objects saved by the Save function
(input format), and datafiles with Mathematica packages (format "m", "mx")
belong to the internal files. These files represent quite certain interest at the
solution of many problems demanding both the standard methods, and the
advanced methods of programming. For standard support of operating with
them the Mathematica system has a number of means whereas for ensuring
expanded work with similar datafiles a set of means can be created, some of
which are considered in the present book and also have been included to our
AVZ_Package package [48]. At that, files of any of the specified formats with
the definitions of objects saved in them by the Save function as a result of
uploading of these files by the Get function into the subsequent sessions of
the system provide availability of these objects.

It is rather simple to be convinced that the datafiles created by means of the
Save function contain definitions of objects in Input Mathematica–format
irrespective of extension of a datafile name. It provides possibility of rather
simple organization of processing of such datafiles for various appendices.
In particular, on the basis of structure of such datafiles it is possible without
their uploading into the current session to obtain lists of names of the objects
which are in them. For this purpose the Nobj procedure can be used, whose
call Nobj[x, y] returns the list of names of the objects in string format which
have been earlier saved in a datafile x by means of the Save function while
through the second actual argument y the list of headings in string format of
these objects is returned. Such decision is rather essential since in a datafile
can be objects of the same name with various headings, exactly that identify
uniqueness of an object.

At that, can arise a need not to upload by means of the Get function into the
current session completely a file which has been earlier created by means of
the Save function with activation of all objects containing in it, but to upload
the objects containing in the file selectively, i.e. to create a kind of libraries of
the user means. Concerning the packages created by means of a chain "File

→→→→ Save As →→→→ Mathematica Package (*.m)" of the GUI commands, the given
problem can be solved by means of the Aobj procedure, whose call Aobj[x,
y] makes active in the current session all objects with a name y from m–file
x which has been earlier created by the above chain of the GUI commands.
The fragment below represents source codes of the above procedures Aobj

Extension of Mathematica system functionality

 359

and Nobj along with the most typical examples of their usage.

In[2626]:= Art1 := #^2 &; Art2 = #^3 &; Art3 := #^4 &; Art4 = #^5 &;
 Art := 26; Kr = 18; Agn[y_] := 67; Avz[x_] := 90*x + 500;
 SetAttributes[Avz, {Listable, Protected}]
In[2627]:= Save["C:/Temp/Obj.m", {Adrive, SetDir, Art1, Art2, Art3, Art4,
 Art, Nobj, Kr, Agn, Avz}]

In[2628]:= Nobj[x_ /; FileExistsQ[x] && StringTake[x, –2] == ".m",
 y_ /; ! HowAct[y]] := Module[{a, b, c, d, p, h, t, k = 1},
 If[FileExistsQ[x] && MemberQ[{"Table", "Package"},
 Quiet[FileFormat[x]]], {a, b, d, h} = {OpenRead[x], {}, "90", {}};
 While[! SameQ[d, "EndOfFile"], d = ToString[Read[a, String]];
 If[! SuffPref[d, " ", 1], If[! StringFreeQ[d, "::usage = \""], AppendTo[b,
 StringSplit[StringTake[d, {1, Flatten[StringPosition[d,
 "::usage"]][[1]] – 1}], " /: "][[1]]],
 p = Quiet[Check[StringTake[d,
 {1, Flatten[StringPosition[d, {" := ", " = "}]][[1]] – 1}], $Failed]];
 If[! SameQ[p, $Failed], If[SymbolQ[p] &&
 StringFreeQ[p, {" ", "{", "`"}] || StringFreeQ[p, {" ", "{", "`"}] &&
 HeadingQ1[p] === True, AppendTo[b, p]]]]]; k++];
 Close[a]; b = Sort[DeleteDuplicates[b]]; h = Select[b, ! SymbolQ[#] &];
 t = Map[If[SymbolQ[#], #, HeadName[#]] &, h]; b = MinusList[b, h];
 b = Sort[DeleteDuplicates[Join[b, t]]];
 y = MinusList[Sort[DeleteDuplicates[Join[h,
 Select[Map[If[! UnevaluatedQ[HeadPF, #],
 HeadPF[#]] &, b], ! SameQ[#, Null] &]]]], b]; b, $Failed]]

In[2629]:= Clear[ArtKr]; Nobj["C:\\Temp\\Obj.m", ArtKr]
Out[2629]= {"Adrive", "Agn", "Art", "Art1", "Art2", "Art3", "Art4", "Avz",
 "BlockFuncModQ", "ClearAllAttributes", "Contexts1", "Definition2",
 "HeadingQ", "HeadingQ1", "HeadName", "HeadPF", "HowAct", "Kr",
 "ListStrToStr", "Map3", "Mapp", "MinusList", "Nobj", "ProcQ",
 "PureDefinition", "RedSymbStr", "Sequences", "SetDir", "StrDelEnds",
 "StringMultiple", "StringSplit1", "SubsDel", "SuffPref", "SymbolQ",

V.Z. Aladjev, V.A. Vaganov

 360

 "SymbolQ1", "SysFuncQ", "SystemQ", "ToString1", "UnevaluatedQ"}
In[2630]:= ArtKr
Out[2630]= {"Adrive[]", "Agn[y_]", "Avz[x_]", "BlockFuncModQ[x_, y___]",
"ClearAllAttributes[x__]", "Contexts1[]", "Definition2[x_ /; SymbolQ[x] ===
HowAct[x]]", "HeadingQ1[x_ /; StringQ[x]]", "HeadingQ[x_ /; StringQ[x]]",
"HeadName[x_ /; HeadingQ[x] || HeadingQ1[x]]", "HowAct[x_]",
===
"ToString1[x_]", "UnevaluatedQ[F_ /; SymbolQ[F], x___]"}

In[2650]:= Aobj[x_ /; FileExistsQ[x] && StringTake[x, –2] == ".m",
 y_ /; SymbolQ[y] || ListQ[y] &&
 DeleteDuplicates[Map[SymbolQ[#] &, y]] == {True}] :=

 Module[{a, b = "(*", c = "*)", d = $AobjNobj,
 p = {Read[x, String], Close[x]}[[1]],
 h = Mapp[StringJoin, Map[ToString, Flatten[{y}]], "["],
 k, j, g, s, t = {}, v = {}},
 If[p != "(* ::Package:: *)", $Failed, a = ReadFullFile[x];
 If[StringFreeQ[a, d], $Failed, a = StringSplit[a, d][[2 ;; –1]];
 a = Map[StringReplace[#, {b –> "", c –> ""}] &, a];
 a = Select[a, SuffPref[#, h, 1] &];
 For[k = 1, k <= Length[h], k++, g = h[[k]];
 For[j = 1, j <= Length[a], j++, s = a[[j]];
 c = StrSymbParity[s, g, "[", "]"]; c = If[c == {}, False,
 HeadingQ1[Quiet[ToString[ToExpression[c[[1]]]]]] ||
 HeadingQ[c[[1]]]]; If[SuffPref[s, g, 1] && c, AppendTo[t, s];
 AppendTo[v, StringTake[g, {1, –2}]]]]];
 Map[ToExpression, t];
 If[v != {}, Print["Software for " <> ToString[v] <> " is downloaded"],
 Print["Software for " <> ToString[Flatten[{y}]] <> " was not found"]]]]]

In[2651]:= Art1[] := #^2 &
In[2652]:= Art2[] = #^3 &;
In[2653]:= Art3[] := #^4 &
In[2654]:= Art4[] = #^5 &;

Extension of Mathematica system functionality

 361

In[2655]:= Art[] := 26
In[2656]:= Kr[] = 18;
In[2657]:= Agn[y_] := 67
In[2658]:= Avz[x_] := 90*x + 500
In[2659]:=Aobj["c:/tmp/Obj.m", {Art1, Art2, Art3, Art4, Art, Kr, Agn, Avz}]
 Software for {Nobj, Avz, Agn, ArtKr, Sv} is downloaded
In[2659]:=Aobj["C:/Tmp/Obj.m", {Nobj90, Avz500, Agn67, Vsv47}]
 Software for {Nobj90, Avz500, Agn67, Vsv47} was not found
In[2660]:= Map[PureDefinition, {Art1, Art2, Art3, Art4, Art, Kr, Agn, Avz}]
Out[2660]= {"Art1[] := #1^2 & ", "Art2[] = #1^3 & ", "Art3[] := #1^4 & ",
 "Art4[] = #1^5 & ", "Art[] := 26", "Kr[] = 18", "Agn[y_] := 67",
 "Avz[x_] := 90*x + 500"}

The top part of the previous fragment represents a saving in a m–file of the
Mathematica–objects from this fragment and the objects given a little above
in the same section. Further the source code of the Nobj procedure and an
example of its application is represented. Right there it should be noted that
performance of the Nobj procedure will demand certain temporary expenses.
At that, if the main result of the procedure call Nobj[x, y] contains the list of
names in string format of the means contained in a file x, thru the second y
argument the headings of the means possessing them are returned.

Whereas the second part of the fragment represents source code of the Aobj
procedure with an example of its use for activization in the current session
of the objects {Art1, Art2, Art3, Art4, Art, Kr, Agn, Avz} which are in a m–file

which is earlier created by means of chain "File →→→→ Save As →→→→ Mathematica

Package (*.m)" of the GUI commands. Verification confirms availability of
the specified objects in the current session. Moreover, as the 2nd argument y
at the procedure call Aobj the separate symbol or their list can be. Besides
that is supposed, before saving in a m–datafile x all definitions of objects in
the current document should have headings and be evaluated in separate
Input–paragraphs. The successful call Aobj[x, y] returns Null, i.e. nothing
with output of the message concerning those means which were uploaded
from a m-datafile x or which are absent in the datafile. The procedures Nobj
and Aobj process the main erroneous situations with returning on them the
value $Failed. Both procedures can be extended by means of replenishment
their by new useful enough functions.

V.Z. Aladjev, V.A. Vaganov

 362

The following Aobj1 procedure is a rather useful extension of the previous
Aobj procedure. Like the Aobj procedure the Aobj1 procedure also is used
for activation in the current session of the objects which are in a m–datafile

which is earlier created by means of chain "File →→→→ Save As →→→→ Mathematica
Package (*.m)" of the GUI commands. The successful call Aobj1[x, y] returns
Null, i.e. nothing with output of the messages concerning those means that
were uploaded from a m-file x and that are absent in the datafile. Moreover,
as the second argument y at the procedure call Aobj1 the separate symbol or
their list can be. Besides that is supposed, before saving in a m–datafile x all
definitions of objects in the saved document should be evaluated in separate
Input–paragraphs on the basis of delayed assignments however existence of
headings not required. Right there it should be noted that for ability of correct
processing of the m–files created in the specified manner the predetermined
$AobjNobj variable is used, that provides correct processing of the datafiles
containing the procedures, in particular, Aobj and Aobj1. The next fragment
represents source code of the Aobj1 procedure along with the most typical
examples of its usage.

In[2672]:= Aobj1[x_ /; FileExistsQ[x] && StringTake[x, -2] == ".m",
 y_ /; SymbolQ[y] || ListQ[y] &&
 DeleteDuplicates[Map[SymbolQ[#] &, y]] == {True}] :=
 Module[{a, c = "*)(*", d = $AobjNobj, k, t = {}, g = {},
 h = Map[ToString, Flatten[{y}]], p, j = 1, v},
 a = StringSplit[ReadFullFile[x], d][[2 ;; –1]];
 a = Map[StringTake[#, {3, –3}] &, a];
 For[j, j <= Length[h], j++, p = h[[j]];
 For[k = 1, k <= Length[a], k++,
 If[SuffPref[a[[k]], Map[StringJoin[p, #] &, {"[", "=", ":"}], 1],
 AppendTo[t, StringReplace[a[[k]], c –> ""]]; AppendTo[g, p], Null]]];
 v = {t, MinusList[h, g]};
 If[v[[1]] != {}, ToExpression[v[[1]]];
 Print["Software for " <> ToString[g] <> " is downloaded"], Null];
 If[v[[2]] != {}, Print["Software for " <>
 ToString[v[[2]]] <> " was not found"], Null]]

Extension of Mathematica system functionality

 363

In[2673]:= Aobj1["Obj42.m", {Nobj90, Avz500, Agn67, Vsv47}]
 Software for {Nobj90, Avz500, Agn67, Vsv47} was not found
In[2674]:= Aobj1["Obj42.m", {Art1, Art2, Art3, Art4, Art, Agn, Avz, Rans,
 IAN, Rae, Nobj}]
 Software for {Art1, Art2, Art3, Art4, Art, Agn, Avz, Nobj} is downloaded
 Software for {Rans, IAN, Rae} was not found

There is a number of other rather interesting procedures for ensuring work
with files of the Mathematica Input–format whose names have extensions
{"nb", "m", "txt"}, etc. All such means are based on the basis of analysis of
structure of the contents of files returned by access functions, in particular,
ReadFullFile. Some of them gives a possibility to create the rather effective
user libraries containing definitions of the Mathematica–objects. These and
some other means have been implemented as a part of the special package
supporting the releases 8 ÷ 10 of the Mathematica system [48]. The part of
these means will be considered in the present book slightly below.

Certain remarks should be made concerning the Save function which saves
the objects in a given file in the Append-mode; at that, undefinite symbols in
the datafile are not saved without output of any messages, i.e. the Save call
returns Null, i.e. nothing. Meanwhile, at saving of a procedure or a function
with a name Avz in a datafile by means of the Save function in the datafile
all active objects of the same name Avz in the current session with different
headings – the identifiers of their originality – are saved too. For elimination of
this situation a generalization of the Save function concerning possibility of
saving of objects with concrete headings is offered. So, the Save1 procedure
solves the given problem whose source code along with typical examples of
its usage are represented by the following fragment.

In[2742]:= A[x_] := x^2; A[x_, y_] := x+y; A[x_, y_, z_] := x+y+z;
 A[x__] := {x}; DefFunc3[A]
Out[2742]= {"A[x_] := x^2", "A[x_, y_] := x + y", "A[x_, y_, z_] := x + y + z",
 "A[x__] := {x}"}

In[2743]:= Save1[x_ /; StringQ[x],
 y_ /; DeleteDuplicates[Map[StringQ, Flatten[{y}]]][[1]]] :=
 Module[{Rs, t = Flatten[{y}], k = 1},
 Rs[n_, m_] := Module[{b, c = ToString[Unique[b]],

V.Z. Aladjev, V.A. Vaganov

 364

 a = If[SymbolQ[m], Save[n, m],
 If[StringFreeQ[m, "["], $Failed,
 StringTake[m, {1, Flatten[StringPosition[m, "["]][[1]] – 1}]]]},
 If[a === Null, Return[], If[a === $Failed, Return[$Failed],
 If[SymbolQ[a], b = DefFunc3[a], Return[$Failed]]]];
 If[Length[b] == 1, Save[n, a], b = Select[b, SuffPref[#, m, 1] &]];
 If[b != {}, b = c <> b[[1]], Return[$Failed]]; ToExpression[b]; a = c <> a;
 ToExpression["Save[" <> ToString1[n] <> "," <> ToString1[a] <> "]"];
 BinaryWrite[n, StringReplace[ToString[StringJoin[Map[
 FromCharacterCode, BinaryReadList[n]]]], c –> ""]]; Close[n];];
 For[k, k <= Length[t], k++, Rs[x, t[[k]]]]]

In[2744]:= Save1["rans_ian.m", {"A[x_, y_, z_]", "A[x__]"}]
In[2745]:= Clear[A]; DefFunc3[A]
Out[2745]= DefFunc3[A]
In[2746]:= << "rans_ian.m"
In[2747]:= B[x_] := x^2; DefFunc3[A]
Out[2747]= {"A[x_, y_, z_] := x + y + z", "A[x__] := {x}"}
In[2748]:= Agn = 67; Save1["Avz.m", {"A[x_, y_, z_]", "B", "A[x__]", "Agn"}]
In[2749]:= Clear[A, B, Agn]; Map[DefFunc3, {A, B, Agn}]
Out[2749]= {DefFunc3[A], DefFunc3[B], Agn}
In[2750]:= << "Avz.m"
Out[2750]= 67
In[2751]:= DefFunc3[A]
Out[2751]= {"A[x_, y_, z_] := x + y + z", "A[x__] := {x}"}
In[2752]:= {DefFunc3["B"], Agn}
Out[2752]= {{"B[x_] := x^2"}, 67}

The procedure call Save1[x, y] saves in a datafile defined by the first factual
argument x, the definitions of the objects determined by the second factual
argument y – the name of an active object in the current session or its heading in
string format, or their combinations in the list form. So, the Save1 procedure can
be used as the standard Save function, and solving a saving problem of the
chosen objects activated in the current session in the datafile differentially on
the basis of their headings. Thus, the successful procedure call returns Null,
carrying out the demanded savings; otherwise $Failed or unevaluated call

Extension of Mathematica system functionality

 365

are returned. The previous fragment represents results of application of the
Save1 procedure for a selective saving in datafiles of the objects which have
been activated in the Mathematica current session. In a number of cases the
procedure Save1 represents undoubted interest.

In a number of cases there is an urgent need of saving in a datafile of a state
of the current session with possibility of its subsequent restoration by means
of uploading of the datafile into current session different from the previous
session. In this context, the SaveCurrentSession and RestoreCS procedures
are rather useful for saving and restoration of a state of the current session
respectively. So, the procedure call SaveCurrentSession[] saves a state of the
Mathematica current session in the m–file "SaveCS.m" with returning of the
name of a target datafile. While the call SaveCurrentSession[x] saves a state
of the Mathematica current session in a m–file x with returning of the name
of the target datafile x; at that, if a datafile x has not extension "m" then this
extension is added to the x–string. The procedure call RectoreCS[] restores
the Mathematica current session that has been previously stored by means
of the SaveCurrentSession procedure in datafile "SaveCS.m" with returning
the Null, i.e. nothing. While the call RectoreCS[x] restores the Mathematica
current session that has been previously stored by means of the procedure
SaveCurrentSession in a m–datafile x with returning the Null, i.e. nothing.
In absence of the above datafile the procedure call returns $Failed. The next
fragment represents source codes of the above procedures along with typical
examples of their usage.

In[2742]:= SaveCurrentSession[x___String] := Module[{a = Names["*"],
 b = If[{x} == {}, "SaveCS.m", If[SuffPref[x, ".m", 2], x, x <> ".m"]]},
 Save1[b, a]; b]
In[2743]:= SaveCurrentSession["Tallinn"]
Out[2743]= "Tallinn.m"

In[2744]:= RestoreCS[x___String] := Module[{a = If[{x} == {}, "SaveCS.m",
 If[FileExtension[x] == "m", x, $Failed]]},
 If[a === $Failed, $Failed, On[General]; Quiet[Get[a]]; Off[General]]]

In[2745]:= RestoreCS["Tallinn.m"]
In[2746]:= RestoreCS["AvzAgnVsv.m"]
Out[2746]= $Failed

V.Z. Aladjev, V.A. Vaganov

 366

So, the presented tools are rather useful in a case when is required to create
copies of current sessions at certain moments of work with the system.

The DumpSave function serves as other tool for saving of definitions of the
objects in datafiles, creating datafiles of binary format that is optimized for
input into the Mathematica system. Names of datafiles of this format have
extension "mx", and analogously to the previous format they can be loaded
into the current session by the Get function. Unlike the Save function, the
call of the DumpSave function returns the list of names and/or definitions
of the objects saved in a mx–file. Meanwhile, it must be kept in mind a very
essential circumstance that the datafiles created by means of the DumpSave
function not only are most optimum for input into Mathematica, but also
can't be loaded on a computing platform different from the platform on that
they were created. Many interesting examples of application of the function
DumpSave can be found in [30-33], some from them will be presented and
a little below. Thus, it is necessary to work with datafiles of binary format
only in the case when their usage in rather broad aspect isn't planned, i.e. in
the sense this format has obviously internal character, without providing of
the portability of the created means.

In a number of cases there is a necessity of loading into the current session
of datafiles of types {nb, m, mx, txt} or datafiles of the ASCII format without
name extension which are located in one of directories of file system of the
computer; moreover, having a full name of datafile we may not have certain
information concerning its location in file system of the computer. In this
context the LoadFile procedure solves this problem, whose source code and
typical examples of its application the following fragment represents.

In[2575]:= LoadFile[F_ /; StringQ[F]] := Module[{a, b, c},
 If[! MemberQ[{"nb", "m", "mx", "txt", ""}, FileExtension[F]],
 Return["File <" <> F <> "> has an inadmissible type"],
 a = Flatten[{FindFile[F]}];
 a = If[a === {$Failed}, SearchFile[F], a]; $Load$Files$ = a];
 If[a == {}, Return["File <" <> F <> "> has not been found"],
 Quiet[Check[Get[$Load$Files$[[1]]],
 c = {$Failed}, {Syntax::sntxc, Syntax::sntxi}]];
 If[c === {$Failed},

Extension of Mathematica system functionality

 367

 "File <" <> $Load$Files$[[1]] <> "> has inadmissible syntax",
 "File <" <> $Load$Files$[[1]] <> "> has been loaded;
 \n$Load$Files$ defines the list with full paths to the found files."],
 Return["File <" <> F <> "> has not been found"]]]

In[2576]:= LoadFile["Obj42.m"]
Out[2576]= "File <C:\\aladjev\\mathematica\\Obj42.m> has been loaded;
 $Load$Files$ defines the list with full paths to the found files."
In[2577]:= $Load$Files$
Out[2577]= {"C:\\users\\aladjev\\mathematica\\Obj42.m"}

In[2578]:= LoadFile["AvzAgn.m"]
Out[2578]= "File <C:\\Mathematica\\AvzAgn.m> has been loaded;
 $Load$Files$ defines the list with full paths to the found files."

In[2579]:= $Load$Files$
Out[2579]= {"C:\\Mathematica\\AvzAgn.m"}
In[2580]:= LoadFile["Obj47.m"]
Out[2580]= "File <Obj47.m> has not been found"

The procedure call LoadFile[w] uploads into the current session a data file
given by its name w and with an extension {m, nb, mx, txt} or at all without
extension. Moreover, at finding of the list of datafiles with an identical name
w uploading of the first of the list with return of the corresponding message
is made, while thru the global $Load$Files$ variable the procedure returns
the list of all w datafiles found in search process. The procedure processes
the main erroneous and especial situations, including syntax of the found
datafile, unacceptable for the Get function. In the case of lack of w datafiles
through the $Load$Files$ variable the empty list, i.e. {} is returned.

A rather simple and in certain cases the useful MathematicaDF procedure
completes this section, its call MathematicaDF[] returns the list of ListList–
type, whose two–element members by the first elements contain type of the
elements of Mathematica file system whereas by the second elements contain
quantity of elements of this type. At that, "NoExtension" defines datafiles
without extension, "Dir" defines directories while the others defines type of
extension of a datafile. The following fragment represents source code of the
MathematicaDF procedure along with a typical example of its application
concerning the system Mathematica 10.

V.Z. Aladjev, V.A. Vaganov

 368

In[2982]:= MathematicaDF[] := Module[{a = "Art26$Kr18$", b = {}, c = "", d},
 Run["Dir " <> " /A/B/S " <> StrStr[$InstallationDirectory] <> " > " <> a];
 While[! SameQ[c, EndOfFile], c = Read[a, String];
 Quiet[If[DirectoryQ[c], AppendTo[b, "Dir"],
 If[FileExistsQ[c], d = FileExtension[c];
 AppendTo[b, If[d === "", "NoExtension", d]],
 AppendTo[b, "NoFile"]]]]]; DeleteFile[Close[a]];
 Map[{#[[1]], Length[#]} &, Gather[b, #1 === #2 &]]]

In[2983]:= MathematicaDF[]
Out[2983]= {{"CDCode", 1}, {"CreationID", 3}, {"PatchLevel", 1},
 {"VersionID", 1}, {"Dir", 2076}, {"exe", 169}, {"m", 3477},
 {"nb", 13355}, {"gen", 46}, {"NoExtension", 993}, {"cfs", 42},
 {"jar", 168}, {"cmd", 2}, {"vbs", 2}, {"sh", 6}, {"pbs", 1}, {"json", 3},
 ==
 {"sln", 1}, {"cache", 3}, {"Cache", 1}, {"resources", 1}, {"vb", 1},
 {"cl", 31}, {"py", 2}, {"so", 4}, {"jnilib", 2}, {"poly", 2}, {"node", 1},
 {"cmap", 1}, {"cset", 1}, {"rws", 1}, {"kbd", 1}, {"ini", 1}, {"msg", 1}}
In[2984]:= Plus[Sequences[Map[#[[2]] &, %]]]
Out[2984]= 27 931

At last, the procedure call OpSys[] returns the type of operational platform.
The procedure is useful in certain appendices above all of system character.
The fragment represents source code of the procedure with an example.

In[5334]:= OpSys[] := Module[{a = ToString[Unique["s"]], b},
 Run["SystemInfo >" <> a]; b = StringTrim[StringTake[ReadList[a,
 String][[2]], {9, –1}]]; DeleteFile[a]; b]
In[5335]:= OpSys[]
Out[5335]= "Microsoft Windows 7 Professional"

On that the representation of access means to the system files is completed,
and means of operating with external datafiles will be presented in the next
section. Meanwhile, the represented means of processing of system datafiles
in a number of cases represent a quite certain interest, first of all, for various
applications of the system character. So, certain means of the AVZ_Package
package use the above means [48].

Extension of Mathematica system functionality

 369

7.2. Means of the Mathematica system for operating with
external datafiles

According to such quite important indicator as means of access to datafiles
the Mathematica system, in our opinion, possesses a number of advantages
in comparison with the Maple system. First of all, Mathematica carries out
automatic processing of hundreds of formats of data and their subformats
on the basis of the unified usage of symbolical expressions. For each specific
format the correspondence between internal and external representation of
a format is determined, using the general mechanism of data elements of the
Mathematica system. For today Mathematica 10 as a whole supports many
various formats of datafiles for different purposes, their list can be received
by means of the predetermined variables $ImportFormats (the imported files)
and $ExportFormats (the exported files) in quantities 172 and 144 respectively.
While the basic formats of datafiles are considered rather in details in [33].

By the function call FileFormat[x] an attempt to define an input format for a
datafile given by a name x in string format is made. In the case of existence
for a datafile x of name extension the FileFormat function is, almost, similar
to the FileExtension function, returning the available extension, except for
the case of packages (m–datafiles) when instead of extension the datafile type
"Package" is returned. Meanwhile, in some cases the format identification
is carried out incorrectly, in particular, the attempt to test a doc–file without
an extension returns "XLS", ascribing it to the datafiles created by Excel 95/
97/2000/XP/2003 that is generally incorrect.

In[2557]:= Map[FileFormat, {"AVZ_Package_1.nb", "AVZ_Package_1.m"}]
Out[2557]= {"NB", "Package"}

In[2558]:= FileFormat["D:\\AVZ_Package\\Art1"]
Out[2558]= "Text"

In[2559]:= FileExtension["D:\\AVZ_Package\\Art1"]
Out[2559]= ""

In[2560]:= FileFormat["Art1"]
 FileFormat::nffil: File not found during FileFormat[Art1]. >>
Out[2560]= $Failed

In[2561]:= FileFormat["D:\\AVZ_Package\\AVZ_Package_1"]

V.Z. Aladjev, V.A. Vaganov

 370

 FileFormat::nffil: File not found during
 FileFormat[D:\AVZ_Package\AVZ_Package_1]. >>
Out[2561]= $Failed

In[2562]:= Map[FileFormat, {"C:/AVZ_P", "C:/AVZ_P1", "C:/Temp/Der"}]
Out[2562]= {"NB", "Package", "XLS"}

In[2563]:= FileFormat["C:\\Temp\\Der.doc"]
Out[2563]= "DOC"

In[2564]:= FileFormat1[x_ /; StringQ[x]] := Module[{a}, If[FileExistsQ[x],
 {x, FileFormat[x]}, a = SearchFile[x];
 If[a == {}, {}, a = Map[{#, FileFormat[#]} &, a];
 If[Length[a] == 1, a[[1]], a]]]]

In[2565]:= FileFormat1["AVZ_Package.m"]
Out[2565]= {{"C:\\Users\\Mathematica\\AVZ_Package.m", "Package"},
 {"C:\\Temp\\Mathematica\\AVZ_Package.m", "Package"},
 {"C:\\Mathematica\\AVZ_Package.m", "Package"},
 {"D:\\Temp\\Mathematica\\AVZ_Package.m", "Package"}}

In[2566]:= FileFormat1["Z123456789"]
Out[2566]= {}

In[2567]:= FileFormat1["C:\\Users\\Mathematica\\AVZ_Package.m"]
Out[2567]= {"C:\\Users\\Mathematica\\AVZ_Package.m", "Package"}

In[2610]:= Map[FileFormat, {"C:/", "C:\\"}]
 General::cdir: Cannot set current directory to $RL69B50. >>
 General::cdir: Cannot set current directory to $RRMBM4A.>>
 ==
 General::stop: Further output of General::dirdep will be suppressed during
 this calculation. >>

Out[2610]= {"KML", "KML"}

In[2611]:= FileFormat2[x_ /; StringQ[x]] := Module[{a, b = {}, c, k = 1},
 If[StringLength[x] == 3,
 If[MemberQ[{":/", ":\\"}, StringTake[x, –2]] &&
 MemberQ[Adrive[], ToUpperCase[StringTake[x, 1]]],
 Return["Directory"], Null],
 If[DirectoryQ[x], Return["Directory"], a = SearchFile[x]];

Extension of Mathematica system functionality

 371

 If[a == {}, Return[{}], For[k, k <= Length[a], k++, c = a[[k]];
 AppendTo[b, {c, FileFormat[c]}]]]];
 If[Length[b] == 1, b[[1]], b]]

In[2612]:= Map[FileFormat2, {"C:/", "C:\\", "C:/Temp", "C:\\Temp"}]
Out[2612]= {"Directory", "Directory", "Directory", "Directory"}

In[2613]:= FileFormat2["Obj47.m"]
Out[2613]= {{"C:\\Users\\Aladjev\\Mathematica\\Obj47.m", "Package"},
 {"D:\\AVZ_Package\\Obj47.m", "Package"}}

Moreover, by the function call FileFormat[x] an attempt to define the format
of a datafile x is made, that is located only in the subdirectories determined
by $Path variable otherwise returning $Failed with print of the appropriate
message as illustrates an example of the previous fragment. For elimination
of similar situation the simple enough FileFormat1 procedure is offered that
expands the possibilities of the standard FileFormat function, and uses the
SearchFile procedure which will be presented a little below. The procedure
call FileFormat1[x] returns the simple or nested list, first element of a simple
list defines the full path to a datafile x while the second element – its format
that is recognized by the FileFormat function; at that, the required datafile
can be located in any directory of file system of the computer; absence of a
datafile x initiates the return of the empty list, i.e. {}. Moreover, at finding
several datafiles with an identical name the nested list whose sublists have
the specified format is returned. The previous fragment represents source
code of the FileFormat1 procedure along with typical examples of its usage.
In some cases the FileFormat1 procedure is more preferable than standard
FileFormat function.

As it is noted above, the call FileFormat[F] tries to define an Import-format
for import of a datafile or URL corresponding to argument F; meanwhile, on
main directories of external memory (disk, flash memory, etc.) the call causes
erroneous situation; at that, the function recognizes only the datafiles which
are in the directories determined by $Path variable; for elimination of the
last situation the FileFormat1 procedure above has been offered whereas the
procedure can be quite simply extended for the purpose of elimination and
the first situation. The FileFormat2 procedure was programmed on the basis
of the FileFormat1 procedure, this procedure correctly processes the main

V.Z. Aladjev, V.A. Vaganov

 372

directories, inaccessible or nonexistent devices of the external memory, and
also datafiles from directories of file system of the computer. The previous
fragment represents source code of the procedure with typical examples of
its usage. Thus, earlier presented FileFormat1 procedure provides check of
format of the datafiles which are located in directories of file system of the
computer irrespectively from their presence in the $Path variable. While the
FileFormat2 procedure in addition correctly processes also main directories
of external memory, bearing in mind the important circumstance that they
are the key elements of file system of the computer. Indeed, examples of the
previous fragment visually illustrate that the function call FileFormat[x] on
main directory of a volume x returns "KML" format that is the GIS standard
format which serves for storage of cartographical information instead of the
Directory format. The call FileFormat2[x] eliminates this defect with return
on similar objects "Directory" while in other situations a call FileFormat2[x]
is equivalent to a call FileFormat1[x].

At last, a version of the standard FileFormat function attempts to identify a
datafile type without extension, being based on information of the creator of
the datafile that is contained in the contents of the datafile. The FileFormat3
procedure rather accurately identifies datafiles of the following often used
types {DOC, PDF, ODT, TXT, HTML}. At that, concerning the TXT type the
verification of a datafile is made in the latter case, believing that the datafile
of this type has to consist only of symbols with the following decimal codes:

0 ÷ 127 – ASCII symbols
1 ÷ 31 – the control ASCII symbols
32 ÷ 126 – the printed ASCII symbols
97 ÷ 122 – letters of the Latin alphabet in the lower register
129 ÷ 255 – Latin–1 symbols of ISO
192 ÷ 255 – letters of the European languages

The procedure call FileFormat3[x] returns the type of a datafile given by a
name or a classifier x; at that, if the datafile has an extension, it relies as the
extension of the datafile. Whereas the call FileFormat3[x, y] with the second
optional argument – an arbitrary expression y – in the case of datafile without
extension returns its full name with the extension defined for it, at the same
time renaming the datafile x, taking into account the calculated format. The
fragment below represents source code of the FileFormat3 procedure along

Extension of Mathematica system functionality

 373

with the most typical examples of its usage.

In[2554]:= FileFormat3[x_ /; FileExistsQ[x], t___] := Module[{b, c,
 a = FileExtension[x]},
 If[a != "", ToUpperCase[a],
 c = If[Quiet[StringTake[Read[x, String], {1, 5}]] === "%PDF–",
 {Close[x], "PDF"}[[–1]], Close[x]; b = ReadFullFile[x];
 If[! StringFreeQ[b, "MSWordDoc"], "DOC",
 If[! StringFreeQ[b, ".opendocument.textPK"], "ODT",
 If[! StringFreeQ[b, {"!DOCTYPE HTML ", "text/html"}], "HTML",
 If[MemberQ3[Range[0, 255], DeleteDuplicates[Flatten[Map[
 ToCharacterCode[#] &,
 DeleteDuplicates[Characters[b]]]]]], "TXT", Undefined]]]]];
 If[{t} != {}, Quiet[Close[x]]; RenameFile[x, x <> "." <> c], c]]]

In[2555]:= Map[FileFormat3, {"C:\\Temp.Burthday", "C:\\Temp.cinema",
 "C:/Temp/ransian", "C:/Temp/Book_Grodno", "C:/Temp/Math_Trials"}]
Out[2555]= {"DOC", "TXT", "HTML", "PDF", "DOC"}
In[2556]:= FileFormat3["C:/Temp/Math_Trials", 500]
Out[2556]= "C:\\Temp\\Math_Trials.DOC"

Using the algorithm implemented by the FileFormat3 procedure it is rather
simple to modify it for testing of other types of datafiles whose full names
have no extension. That can be rather useful in the processing problems of
the datafiles. In a certain relation the Format3 procedure complements the
standard Format function along with the procedures Format1 and Format2.

The Mathematica provides effective enough system–independent access to
all aspects of datafiles of any size. For ensuring operations of opening and
closing of datafiles the following basic functions of access are used, namely:
OpenRead, OpenWrite, OpenAppend, Close. Moreover, the name or full
path to a datafile in string format acts as the only formal argument of the
first three functions; at that, the function call OpenWrite[] without factual
arguments is allowed, opening a new datafile located in the subdirectory
intended for temporary files for writting. Whereas the Close function closes
a datafile given by its name, full path or a Stream–object. In attempt to close
the closed or nonexistent file the system causes an erroneous situation. For

V.Z. Aladjev, V.A. Vaganov

 374

elimination of such situation, undesirable in many cases, it is possible to use
very simple Closes function providing the closing of any datafile including
a closed or nonexistent datafile, without output of any erroneous messages
with returning Null, i.e. nothing, but, perhaps, the name or full path to the
closed datafile, for example:

In[2351]:= Close["D:/Math_myLib/test72.txt"]
 General::openx: D:/Math_myLib/test72.txt is not open. >>
Out[2351]= Close["D:/Math_myLib/test72.txt"]

In[2352]:= Closes[x_] := Quiet[Check[Close[x], Null]]

In[2353]:= Closes["D:/Math_myLib/test72.txt"]

An object of the following rather simple format is understood as the Stream-
object of functions of access of OpenRead, OpenWrite and OpenAppend:

{OutputStream|InputStream}[<Datafile>, <Logical IO channel>]

By the function call Streams[] the list of Stream-objects of datafiles opened
in the current session including system files is returned. For obtaining the
list of Stream-objects of datafiles, different from the system files it is possible
to use the function call StreamsU[].

In[2642]:= Streams[]
Out[2642]= {OutputStream["stdout", 1], OutputStream["stderr", 2]}

In[2643]:= S1 = OpenRead["C:/Temp/Math_Trials.doc"]
Out[2643]= InputStream["C:/Temp/Math_Trials.doc", 163]

In[2644]:= S2 = OpenWrite["C:\\Temp/Book_Grodno.pdf"]
Out[2644]= OutputStream["C:\\Temp/Book_Grodno.pdf", 164]

In[2645]:= Streams[]
Out[2645]= {OutputStream["stdout", 1], OutputStream["stderr", 2],
 InputStream["C:/Temp/Math_Trials.doc", 163],
 OutputStream["C:\\Temp/Book_Grodno.pdf", 164]}

In[2646]:= OpenWrite[]
Out[2646]= OutputStream["C:\\Users\\Aladjev\\AppData\\Local\\
 Temp\\m-e88a7f8c-339f-42e2-8da9-b6bd16e6cd50", 165]

In[2647]:= StreamsU[] := Select[Streams[], ! MemberQ[{"[stdout", "[stderr"},
 StringTake[ToString[#1], {13, 19}]] &]

Extension of Mathematica system functionality

 375

In[2648]:= StreamsU[]
Out[2648]= {InputStream["C:/Temp/Math_Trials.doc", 163],
 OutputStream["C:\\Temp/Book_Grodno.pdf", 164],
 OutputStream["C:\\Users\\Aladjev\\AppData\\Local\\
 Temp\\m-e88a7f8c-339f-42e2-8da9-b6bd16e6cd50", 165]}
In[2649]:= Close["C:\\Temp/Book_Grodno.pdf"]
Out[2649]= "C:\\Temp/Book_Grodno.pdf"
In[2650]:= StreamsU[]
Out[2650]= {InputStream["C:/Temp/Math_Trials.doc", 163],
 OutputStream["C:\\Users\\Aladjev\\AppData\\Local\\
 Temp\\m-e88a7f8c-339f-42e2-8da9-b6bd16e6cd50", 165]}

In[2658]:= CloseAll[] := Map[Close, StreamsU[]]

In[2659]:= CloseAll[]
Out[2659]= {"C:/Temp/Math_Trials.doc", "C:\\Users\\Aladjev\\
 AppData\\Local\\Temp\\m-e88a7f8c-339f-42e2-8da9-b6bd16e6cd50"}
In[2660]:= Streams[]
Out[2660]= {OutputStream["stdout", 1], OutputStream["stderr", 2]}

It must be kept in mind that after the termination of work with an opened
datafile, it remains opened up to its obvious closing by the Close function.
For closing of all channels and datafiles opened in the current session of the
system, excepting system files, it is possible to apply quite simple CloseAll
function, whose call CloseAll[] closes all mentioned open both channels and
datafiles with return of the list of datafiles.

Similar to the Maple system the Mathematica system also has opportunity
to open the same datafile on different streams and in various modes, using
different coding of its name or path using alternative registers for letters or/
and replacement of separators of subdirectories "\\" on "/", and vice versa
at opening of datafiles. The simple fragment below illustrates application of
this approach for opening of the same datafile on two different channels on
reading with the subsequent alternating reading of records from it.

In[2534]:= F = "C:\\Mathematica\\AvzAgn"; {S, S1} = {OpenRead[F],
 OpenRead[If[UpperCaseQ[StringTake[F, 1]],
 ToLowerCase[F], ToUpperCase[F]]]}

V.Z. Aladjev, V.A. Vaganov

 376

Out[2534]= InputStream["C:\\Mathematica\\AvzAgn.m", 118],
 InputStream["c:\\mathematica\\avzagn.m", 119]}
In[2535]:= t = {}; For[k = 1, k <= 3, k++, AppendTo[t, {Read[S], Read[S1]}]]
Out[2535]= {"RANS1", "RANS1", "RANS2", "RANS2", "RANS3", "RANS3"}

Meanwhile, it must be kept in mind that the special attention at opening of
the same datafile on different channels is necessary and, above all, at various
modes of access to the datafile in order to avoid of the possible especial and
erroneous situations, including distortion of data in the datafile. Whereas in
certain cases this approach at operating with large enough datafiles can give
quite notable temporal effect along with simplification of certain algorithms
of data processing which are in datafiles. The interesting enough examples
of usage of the given approach can be found in our books [30-33].

Similar to the Maple system the Mathematica system has very useful means
for work with the pointer defining the current position of scanning of a file.
The following functions provide such work, namely: StreamPosition, Skip,
SetStreamPosition, Find. The functions StreamPosition, SetStreamPosition
allow to make monitoring of the current position of the pointer of an open
datafile and to establish for it a new position respectively. Moreover, on the
closed or nonexistent datafiles the calls of these functions cause erroneous
situations. Reaction to the status of a datafile of the Skip function is similar,
while the function call Find opens a stream on reading from a datafile. The
sense of the presented functions is rather transparent and in more detail it is
possible to familiarize with them, for instance, in [30,33]. In connection with
the told arises the question of definition of the status of a datafile – opened,
closed or doesn't exist. In this regard the FileOpenQ procedure can be quite
useful, whose source code with examples of application represents the next
fragment together with an example of usage of the standard Skip function.

In[2542]:= FileOpenQ[F_ /; StringQ[F]] := Module[{A, a = FileType[F], b, d,
 x = inputstream, y = outputstream,
 c = Map[ToString1, StreamsU[]],
 f = ToLowerCase[StringReplace[F, "\\" –> "/"]]},
 A[x_] := Module[{a1 = ToString1[x],
 b1 = StringLength[ToString[Head[x]]]},
 ToExpression["{" <> StrStr[Head[x]] <> "," <>

Extension of Mathematica system functionality

 377

 StringTake[a1, {b1 + 2, –2}] <> "}"]];
 If[MemberQ[{Directory, None}, a], Return[$Failed],
 Clear[inputstream, outputstream];
 d = ToExpression[ToLowerCase[StringReplace[ToString1[Map[A,
 StreamsU[]]], "\\\\" –> "/"]]]; a = Select[d, #[[2]] === f &];
 If[a == {}, {inputstream, outputstream} = {x, y}; False,
 a = {ReplaceAll[a, {inputstream –> "read", outputstream –> "write"}],
 {inputstream, outputstream} = {x, y}}[[1]]]]; If[Length[a] == 1, a[[1]], a]]

In[2543]:= OpenRead["C:\\Temp\\cinema.txt"]; Write["rans.ian"];
 Write["C:\\Temp/Summ.doc"]; Write["C:\\Temp/Grin.pdf"]
In[2544]:= Map[FileOpenQ, {"rans.ian", "C:\\Temp\\Grin.pdf",
 "C:\\Temp/Summ.doc", "C:\\Temp/cinema.txt"}]
Out[2544]= {{"write", "rans.ian", 85}, {"write", "c:/temp/grin.pdf", 87},
 {"write", "c:/temp/summ.doc", 86}, {"read", "c:/temp/cinema.txt", 84}}
In[2545]:= Map[FileOpenQ, {"C:\\Temp\\Books.doc", "C:\\Books.doc"}]
Out[2545]= {{}, $Failed}

The procedure call FileOpenQ[F] returns the nested list {{R, F, Channel},…}
if a datafile F is open on reading/writing (R = {"read" | "write"}), F defines
actually the datafile F in the stylized format (LowerCase + all "\\" are replaced
on "/") while Channel defines the logical channel on which the datafile F in
the mode specified by the first element of the list R was open; if datafile F is
closed, the empty list is returned, i.e. {}, if datafile F is absent, then $Failed is
returned. At that, the nested list is used with the purpose, that the datafile F
can be opened according to syntactically various file specifiers, for example,
"Agn47" and "AGN47", allowing to carry out its processing in the different
modes simultaneously.

The FileOpenQ1 procedure is an useful enough extension of the FileOpenQ
procedure considered above. The procedure call FileOpenQ1[F] returns the
nested list of the format {{R, x, y,...,z}, {{R, x1, y1,...,z1}} if a datafile F is open
for reading or writing (R = {"in" | "out"}), and F defines the datafile in any
format (Register + "/" and/or "\\"); if the datafile F is closed or is absent, the
empty list is returned, i.e. {}. Moreover, sublists {x, y, ..., z} and {x1, y1, ..., z1}
define datafiles or full paths to them that are open for reading and writing
respectively. Moreover, if in the current session all user datafiles are closed,

V.Z. Aladjev, V.A. Vaganov

 378

except system files, the call FileOPenQ1[x] on an arbitrary string x returns
$Failed. The datafiles and paths to them are returned in formats which are
defined in the list returned by the function call Streams[], irrespective of the
format of the datafile F. The following fragment presents source code of the
FileOpenQ1 procedure along with typical examples of its usage.

In[2615]:= FileOpenQ1[F_ /; StringQ[F]] := Module[{a = StreamFiles[], b, c,
 d, k = 1, j}, If[a === "AllFilesClosed", Return[False],
 c = StringReplace[ToLowerCase[F], "/" –> "\\"];
 b = Mapp[StringReplace, Map[ToLowerCase, a], "/" –> "\\"]];
 For[k, k <= 2, k++, For[j = 2, j <= Length[b[[k]]], j++,
 If[Not[SuffPref[b[[k]][[j]], c, 2] ||
 SuffPref[b[[k]][[j]], "\\" <> c, 2]], a[[k]][[j]] = Null;
 Continue[], Continue[]]]]; b = Mapp[Select, a, ! # === Null &];
 b = Select[b, Length[#] > 1 &]; If[Length[b] == 1, b[[1]], b]]

In[2616]:= OpenWrite["Kherson.doc"]; OpenWrite["C:/Temp/Books.doc"];
 OpenWrite["RANS"]; OpenRead["C:/Temp\\Cinema.txt"];
 Read["C:/Temp\\Cinema.txt", Byte];

In[2617]:= CloseAll[]; FileOpenQ1["AvzAgnArtKrSv"]
Out[2617]= False

In[2618]:= Map[FileOpenQ1, {"Kherson.doc", "C:/Temp\\Books.doc",
 "RANS", "C:/Temp\\Cinema.txt", "Agn"}]
Out[2618]= {{"out", "Kherson.doc"}, {"out", "C:/Temp\\Books.doc"},
 {"out", "RANS"}, {"in", "C:/Temp\\Cinema.txt"}, {}}
In[2619]:= Map[FileOpenQ1, {"Kherson.doc", "C:/Temp\\Books.doc",
 "RANS", "C:/Temp\\Cinema.txt", "Agn"}]
Out[2619]= {{"write", "kherson.doc", 1458}, {"write", "c:/temp/books.doc",
 1459}, {"write", "rans", 1460}, {"read", "c:/temp/cinema.txt", 1461}, $Failed}

So, functions of access Skip, Find, StreamPosition and SetStreamPosition
provide quite effective tools for rather thin manipulation with datafiles and
in combination with a number of other functions of access they provide the
user with the standard set of functions for processing of datafiles, and give
opportunity on their base to create own tools allowing how to solve specific
problems of work with datafiles, and in a certain degree to extend standard

Extension of Mathematica system functionality

 379

opportunities of the system. A number of similar means is presented and in
the present book, and in our AVZ_Package package [48]. In addition to the
represented standard operations of datafiles processing, a number of other
means of the package rather significantly facilitates effective programming
of higher level at the solution of many problems of datafiles processing and
management of the system. Naturally, the consideration rather in details of
earlier presented tools of access to datafiles and the subsequent tools doesn't
enter purposes of the present book therefore we will present relatively them
only short excursus in the form of a brief information with some comments
on the represented means.

Among standard means of the datafiles processing, the following functions
can be noted, namely: FileNames – depending on the coding format returns
the list of full paths to the datafiles and/or directories contained in the given
directory onto arbitrary nesting depth in file system of the computer. While
the functions CopyFile, RenameFile, DeleteFile serve for copying, renaming
and removal of the given datafiles accordingly. Except listed means for work
with datafiles the Mathematica has a number of rather useful functions that
here aren't considered but with which the interested reader can familiarize
in reference base of the system or in the corresponding literature [55,60,64].
Along with the above functions OpenRead, OpenWrite, Read, Write, Skip
and Streams of the lowest level of access to datafiles, the functions Get, Put,
Export, Import, ReadList, BinaryReadList, BinaryWrite, BinaryRead are not
less important for support of access to datafiles which support operations of
reading and writing of data of the required format. With these means along
with a whole series of rather interesting examples and features of their use,
at last with certain critical remarks to their address the reader can familiarize
in [30-33]. Meantime, these tools of access together with already considered
means and means remaining without our attention form a rather developed
system of effective processing of datafiles of various formats.

On the other hand, along with actually processing of the internal contents of
datafiles, the Mathematica has a number of means for search of files, their
testing, work with their names, etc. We will list only some of them, namely:
FindFile, FileExistsQ, FileNameDepth, FileNameSplit, ExpandFileName,
FileNameJoin, FileBaseName, FileNameTake. With the given means along
with a whole series of rather interesting examples and features of their use,

V.Z. Aladjev, V.A. Vaganov

 380

at last with certain critical remarks to their address the reader can familiarize
in [30-33]. In particular, as it was noted earlier, the FileExistsQ function like
some other functions of access in the course of search is limited only to the
directories defined in the predetermined $Path variable. For the purpose of
elimination of this shortcoming simple enough FileExistsQ1 procedure has
been offered. The next fragment represents source code of the FileExistsQ1
procedure along with typical examples of its usage.

In[2534]:= FileExistsQ1[x__ /; StringQ[{x}[[1]]]] := Module[{b = {x},
 a = SearchFile[{x}[[1]]]},
 If[a == {}, False, If[Length[b] == 2 && ! HowAct[b[[2]]],
 ToExpression[ToString[b[[2]]] <> " = " <> ToString1[a]], Null]; True]]

In[2535]:= {FileExistsQ1["Mathematica.doc", t], t}
Out[2535]= {True, {"C:\\Mathematica\\Mathematica.doc",
 "E:\\Mathematica\\Mathematica.doc"}}
In[2536]:= FileExistsQ["Books.doc"]
Out[2536]= False
In[2537]:= FileExistsQ1["Books.doc"]
Out[2537]= True
In[2538]:= FileExistsQ1["Book_avz.doc"]
Out[2538]= False

The procedure call FileExistsQ1[x] with one actual argument returns True if
x determines a datafile, really existing in the file system of the computer and
False otherwise; whereas the call FileExistsQ1[x, y] in addition through the
actual argument y – an undefinite variable – returns the list of full paths to the
found datafile x if the main result of the call is True.

The previous procedure enough essentially uses the SearchFile procedure
providing search of the given datafile in file system of the computer. At that,
the procedure call SearchFile[f] returns the list of paths to a datafile f found
within file system of the computer; in the case of absence of the required file
f the procedure call SearchFile[f] returns the empty list, i.e. {}. We will note,
the procedure SearchFile essentially uses the standard Run function of the
Mathematica system that is used by a number of tools of our AVZ_Package
package [48]. The fragment below represents source code of the SearchFile
procedure along with typical examples of its usage.

Extension of Mathematica system functionality

 381

In[2532]:= SearchFile[F_ /; StringQ[F]] := Module[{a, b, f, dir,
 h = StringReplace[ToUpperCase[F], "/" –> "\\"]},
 {a, b, f} = {Map[ToUpperCase[#] <> ":\\" &, Adrive[]], {},
 ToString[Unique["d"]] <> ".txt"};
 dir[y_ /; StringQ[y]] := Module[{a, b, c, v},
 Run["Dir " <> "/A/B/S " <> y <> " > " <> f];
 c = {}; Label[b];
 a = StringReplace[ToUpperCase[ToString[v =
 Read[f, String]]], "/" –> "\\"];
 If[a == "ENDOFFILE", Close[f]; DeleteFile[f];
 Return[c], If[SuffPref[a, h, 2],
 If[FileExistsQ[v], AppendTo[c, v]]; Goto[b], Goto[b]]]];
 For[k = 1, k <= Length[a], k++, AppendTo[b, dir[a[[k]]]]]; Flatten[b]]

In[2533]:= SearchFile["AVZ_Package.nb"]
Out[2533]= {"C:\\Users\\Aladjev\\Mathematica\\AVZ_Package.nb",
 "E:\\AVZ_Package\\AVZ_Package.nb"}
In[2534]:= SearchFile["init.m"]
Out[2534]= {"C:\\Program Files\\Wolfram Research\\Mathematica\\10.0
 \\AddOns\\Applications\\AuthorTools\\Kernel\\init.m",
 ==
 "C:\\Users\\All Users\\Mathematica\\Kernel\\init.m"}
In[2535]:= Length[%]
Out[2535]= 100
In[2536]:= SearchFile["Mathematica.doc"]
Out[2536]= {"C:\\Mathematica\\Mathematica.doc",
 "E:\\Mathematica\\Mathematica.doc"}
In[2537]:= SearchFile["AVZ_AGN_VSV_ART_KR.590"]
Out[2537]= {}
In[2538]:= SearchFile["Cinema.txt"]
Out[2538]= {"C:\\Temp\\Cinema.txt"}

In[2587]:= SearchFile1[x_ /; StringQ[x]] := Module[{a, b, c, d, f = {}, k = 1},
 If[PathToFileQ[x], If[FileExistsQ[x], x, {}],
 a = $Path; f = Select[Map[If[FileExistsQ[# <> "\\" <> ToUpperCase[x]], #,

V.Z. Aladjev, V.A. Vaganov

 382

 "Null"] &, a], # != "Null" &];
 If[f != {}, f, d = Map[# <> ":\\" &, Adrive[]];
 For[k, k <= Length[d], k++, a = Quiet[FileNames["*", d[[k]], Infinity]];
 f = Join[f, Select[Map[If[FileExistsQ[#] &&
 SuffPref[ToUpperCase[#], "\\" <> ToUpperCase[x], 2], #, "Null"] &, a],
 # != "Null" &]]]; If[f == {}, {}, f]]]]

In[2588]:= SearchFile1["BirthDay.doc"]
Out[2588]= {"C:\\Temp\\Birthday.doc",
 "E:\\ARCHIVE\\MISCELLANY\\ Birthday.doc",
 "E:\\Temp\\Birthday.doc"}
In[2589]:= SearchFile1["Cinema.txt"]
Out[2589]= {"C:\\Program Files\\Wolfram Research\\Mathematica\\10.0
 \\SystemFiles\\Links"}
In[2590]:= SearchFile1["C:\\Mathematica\\Tuples.doc"]
Out[2590]= "C:\\Mathematica\\Tuples.doc"

The SearchFile1 procedure which is a functional analog of the SearchFile
procedure completes the previous fragment. The call SearchFile[F] returns
the list of full paths to a datafile F found within file system of the computer;
in the case of absence of the required file F the procedure call SearchFile[F]
returns the empty list, i.e. {}. Unlike the previous procedure the SearchFile1
procedure seeks out a datafile in 3 stages: (1) if the required datafile is given
by the full path only existence of the concrete datafile is checked, at detection
the full path to it is returned, (2) search is done in the list of the directories
determined by the predetermined $Path variable, (3) search is done within
all file system of the computer. The procedure SearchFile1 essentially uses
the procedure Adrive that is used by a number of our means of access [48].
It should be noted that speed of both procedures generally very essentially
depends on the sizes of file system of the computer, first of all, if a required
datafile isn't defined by the full path and isn't in the directories determined
by the $Path variable. Moreover, in this case the search is done even in the
Windows "C:\\$Recycle.Bin" directory.

Along with means of processing of external datafiles the system has also the
set of useful enough means for manipulation with directories of both the
Mathematica, and file system of the personal computer in general. We will

Extension of Mathematica system functionality

 383

list only some of these important functions, namely:

DirectoryQ[D] – the call returns True if a string D defines an existing directory,
and False otherwise; unfortunately, the standard procedure at coding "/" at the end
of the string D returns False irrespective of existence of the tested directory; a quite
simple DirQ procedure eliminates the defect of this standard means.

In[2602]:= DirQ[d_ /; StringQ[d]] := DirectoryQ[StringReplace[d, "/" –>
 "\\"]]

In[2603]:= Map1[{DirectoryQ, DirQ}, {"C:/Mathematica\\"}]
Out[2603]= {True, True}
In[2604]:= Map1[{DirectoryQ, DirQ}, {"C:/Mathematica/"}]
Out[2604]= {False, True}
In[2605]:= Map1[{DirectoryQ, DirQ}, {"C:/Mathematica"}]
Out[2605]= {True, True}

DirectoryName[W] – the call returns a path to a directory containing datafile W;
moreover, if W is a real subdirectory, the chain of subdirectories to it is returned; at
that, taking into account the file concept that identifies datafiles and subdirectories,
and the circumstance that the call DirectoryName[W] doesn't consider the actual
existence of W, similar approach in a certain measure could be considered justified,
but on condition of taking into account of reality of a tested path W such approach
causes certain questions. Therefore from this standpoint a quite simple DirName
procedure which returns "None" if W is a subdirectory, the path to a subdirectory
containing datafile W, and $Failed otherwise is offered. Moreover, search is done
within all file system of the computer, but not within only system of subdirectories
determined by the predetermined $Path variable.

In[2605]:= DirName[F_/; StringQ[F]] := If[DirQ[F], "None",
 If[! FileExistsQ1[F], $Failed,
 Quiet[Check[FileNameJoin[FileNameSplit[F][[1; –2]]], "None"]]]]

In[2606]:= Map[DirectoryName, {"C:/Temp/Cinema.txt", "C:/Temp"}]
Out[2606]= {"D:\\MathMyLib\\", "D:\\"}
In[2607]:= Map[DirName, {"C:/Temp/Cinema.txt", "C:/Temp", "G:\\"}]
Out[2607]= {"Temp", "None", $Failed}

CreateDirectory[d] – the call creates the given directory d with return of the path
to it; meanwhile this tool doesn't work in the case of designation of the nonexistent

V.Z. Aladjev, V.A. Vaganov

 384

device of external memory (disk, flash card, etc.) therefore we created a rather simple
CDir procedure which resolves this problem: the procedure call CDir[d] creates the
given directory d with return of the full path to it; in the absence or inactivity of the
device of external memory the directory is created on a device from the list of active
devices of external memory that has the maximal volume of available memory with
returning of the full path to it:

In[2612]:= CDir[d_ /; StringQ[d]] := Module[{a},
 Quiet[If[StringTake[d, {2, 2}] == ":", If[MemberQ[a, StringTake[d, 1]],
 CreateDirectory[d], a = Adrive[];
 CreateDirectory[Sort[a, FreeSpaceVol[#1] >= FreeSpaceVol[#2] &][[1]] <>
 StringTake[d, {2, –1}]]], CreateDirectory[d]]]]

In[2613]:= CreateDirectory["G:\\Temp\\GSV/ArtKr"]
 CreateDirectory::nffil: File not found during CreateDirectory ... >>
Out[2613]= $Failed
In[2614]:= CDir["G:\\Temp\\GSV/ArtKr"]
Out[2614]= "G:\\Temp\\GSV\\ArtKr"
In[2615]:= CDir["A:/Temp\\AVZ\\Tallinn\\IAN\\Grodno/Kherson"]
Out[2615]= "C:\\Temp\\AVZ\\Tallinn\\IAN\\Grodno\\Kherson"

CopyDirectory[d1, d2] – the function call completely copies a d1 directory into a
d2 directory, however in the presence of the accepting directory d2 the function call
CopyDirectory[d1, d2] causes an erroneous situation with return of $Failed that
in a number of cases is undesirable. For the purpose of elimination of such situation
a rather simple CopyDir function can be offered, which in general is similar to the
standard CopyDirectory function, but with the difference that in the presence of
the accepting directory d2 the d1 directory is copied as a subdirectory of the d2 with
returning of the full path to it, for example:

In[2625]:= CopyDirectory["C:/Mathematica", "C:/Temp"]
 CopyDirectory::filex: Cannot overwrite existing file C:/Temp. >>
Out[2626]= $Failed

In[2626]:= CopyDir[d_ /; StringQ[d], p_ /; StringQ[p]] := CopyDirectory[d,
 If[DirQ[p], p <> "\\" <> FileNameSplit[d][[–1]], p]]

In[2627]:= CopyDir["C:/Mathematica", "C:/Temp"]
Out[2627]= "C:\\Temp\\Mathematica"

Extension of Mathematica system functionality

 385

DeleteDirectory[W] – the call deletes from file system of the computer the given
directory W with return Null, i.e. nothing, regardless of attributes of the directory
(Archive, Read–only, Hidden, System). Meanwhile, such approach, in our opinion,
isn't quite justified, relying only on the circumstance that the user is precisely sure
that he deletes. While in the general case there has to be an insurance from removal,
for example, of the datafiles and directories having such attributes as Read-only (R),
Hidden (H) and System (S). To this end, for example, it is possible before removal
of an element of file system to previously check up its attributes what useful enough
Attrib procedure considered in the following section provides.

The reader can familiarize with other useful enough means of processing of
datafiles and directories in reference base on the Mathematica system and,
in particular, in such editions, as [28-33,51-53,60,62,64,71].

7.3. Means of the Mathematica system for processing of
attributes of directories and datafiles

The Mathematica system has no means for work with attributes of datafiles
and directories what, in our opinion, is a rather essential shortcoming, first
of all, at creation on its basis of various data processing systems. By the way,
similar means are absent also in the Maple system therefore we created for
it a set of procedures {Atr, F_atr, F_atr1, F_atr2} [47] which have solved the
given problem. The means represented below solve the similar problem for
the Mathematica system too. The following fragment represents the Attrib
procedure providing processing of attributes of datafiles and directories.

In[2670]:= Attrib[F_ /; StringQ[F], x_ /; ListQ[x] &&
 DeleteDuplicates[Map3[MemberQ, {"–A", "–H", "–S", "–R",
 "+A", "+H", "+S", "+R"}, x]] == {True} || x == {} || x == "Attr"] :=
 Module[{a, b = "attrib ", c, d = " > ", h = "attrib.exe", p, f, g, t, v},
 a = ToString[v = Unique["ArtKr"]];
 If[Set[t, LoadExtProg["attrib.exe"]] === $Failed, Return[$Failed], Null];
 If[StringLength[F] == 3 && DirQ[F] &&
 StringTake[F, {2, 2}] == ":", Return["Drive " <> F],
 If[StringLength[F] == 3 && DirQ[F], f = StandPath[F],
 If[FileExistsQ1[StrDelEnds[F, "\\", 2], v], g = v;

V.Z. Aladjev, V.A. Vaganov

 386

 f = StandPath[g[[1]]]; Clear[v],
 Return["<" <> F <> "> is not a directory or a datafile"]]]];
 If[x === "Attr", Run[b <> f <> d <> a],
 If[x === {}, Run[b <> " –A –H –S –R " <> f <> d <> a],
 Run[b <> StringReplace[StringJoin[x], {"+" –> " +", "–" –> " –"}] <>
 " " <> f <> d <> a]]];
 If[FileByteCount[a] == 0, Return[DeleteFile[a]],
 d = Read[a, String]; DeleteFile[Close[a]]];
 h = StringSplit[StringTrim[StringTake[d,
 {1, StringLength[d] – StringLength[f]}]]]; Quiet[DeleteFile[t]];
 h = Flatten[h /. {"HR" –> {"H", "R"}, "SH" –> {"S", "H"},
 "SHR" –> {"S", "H", "R"}, "SRH" –> {"S", "R", "H"},
 "HSR" –> {"H", "S", "R"}, "HRS" –> {"H", "R", "S"},
 "RSH" –> {"R", "S", "H"}, "RHS" –> {"R", "H", "S"}}];
 If[h === {"File", "not", "found", "–"} ||
 MemberQ[h, "C:\\Documents"], "Drive " <> f, {h, g[[1]]}]]

In[2671]:= Attrib["C:\\Temp\\Cinema.txt", {"+A", "+S", "+R"}]
In[2672]:= Attrib["Cinema.txt", {"+A", "+S", "+R"}]
In[2673]:= Attrib["C:\\Temp\\Cinema.txt", "Attr"]
Out[2673]= {{"A", "S", "R"}, "C:\\Temp\\Cinema.txt"}

In[2674]:= Attrib["Cinema.txt", "Attr"]
Out[2674]= {{"A", "S", "R"}, "C:\\Program Files\\Wolfram Research\\
 Mathematica\\10.0\\Cinema.txt"}
In[2675]:= Attrib["C:\\Temp\\Cinema.txt", {}]
In[2676]:= Attrib["C:\\Temp\\Cinema.txt", "Attr"]
Out[2676]= {{}, "C:\\Temp\\Cinema.txt"}

In[2677]:= Attrib["C:\\", "Attr"]
Out[2677]= "Drive C:\\"

In[2678]:= Attrib["G:\\", "Attr"]
Out[2678]= "<G:\\> is not a directory or a datafile"

In[2679]:= Attrib["RANS.IAN", "Attr"]
Out[2679]= {{"A"}, "C:\\Users\\Aladjev\\Documents\\rans.ian"}

In[2680]:= Attrib["RANS.IAN", {"+A", "+S", "+H", "+R"}]

Extension of Mathematica system functionality

 387

In[2681]:= Attrib["RANS.IAN", "Attr"]
Out[2681]= {{"A", "S", "H", "R"},
 "C:\\Users\\Aladjev\\Documents\\rans.ian"}
In[2682]:= Attrib["RANS.IAN", {"–S", "–R", "–H"}]
In[2683]:= Attrib["RANS.IAN", "Attr"]
Out[2683]= {{"A"}, "C:\\Users\\Aladjev\\Documents\\rans.ian"}
In[2684]:= Attrib["c:/temp\\", "Attr"]
Out[2684]= {{}, {"C:\\Temp"}}
In[2685]:= Attrib["c:/temp\\", {"+A"}]
In[2686]:= Attrib["c:/temp\\", "Attr"]
Out[2686]= {{"A"}, "C:\\Temp"}

The successful procedure call Attrib[f, "Attr"] returns the list of attributes of
a given datafile or directory f in the context Archive ("A"), Read–only ("R"),
Hidden ("H") and System ("S"). At that, also other attributes inherent to the
system datafiles and directories are possible; thus, in particular, on the main
directories of devices of external memory "Drive f", while on a nonexistent
directory or datafile the message "f isn't a directory or datafile" is returned.
At that, the call is returned in the form of the list of the format {x, y, …, z, F}
where the last element determines a full path to a datafile or directory f; the
datafiles and subdirectories of the same name can be in various directories,
however processing of attributes is made only concerning the first datafile/
directory from the list of the objects of the same name. If the full path to a
datafile/directory f is defined as the first argument of the Attrib procedure,
specifically only this object is processed. The elements of the returned list
that precede its last element determine attributes of a processed directory or
datafile. The procedure call Attrib[f, {}] returns Null, i.e. nothing, canceling
all attributes for a processed datafile/directory f whereas the procedure call

Attrib[f, {"x", "y",…, "z"}] where x, y, z∈∈∈∈{"–A", "–H", "–S", "–R", "+A", "+H",
"+S", "+R"}, also returns Null, i.e. nothing, setting/cancelling the attributes
of the processed datafile/directory f determined by the second argument. At
impossibility to execute processing of attributes the procedure call Attrib[f,x]
returns the corresponding messages. The Attrib procedure allows to carry
out processing of attributes of both the file, and the directory located in any
place of file system of the computer. This procedure is represented to us as
a rather useful means for operating with file system of the computer.

V.Z. Aladjev, V.A. Vaganov

 388

In turn, the following Attrib1 procedure in many respects is similar to the
Attrib procedure both in the functional, and in the descriptive relation, but
the Attrib1 procedure has certain differences. The successful procedure call
Attrib[f, "Attr"] returns the list of attributes in string format of a directory or
datafile f in the context Archive ("A"), Read-only ("R"), Hidden ("H"), System
("S"). The procedure call Attrib1[f, {}] returns Null, i.e. nothing, canceling all
attributes for the processed datafile/directory f whereas the procedure call

Attrib1[f, {"x", "y",…, "z"}] where x, y, z∈∈∈∈{"–A", "–H", "–S", "–R", "+A", "+H",
"+S", "+R"}, also returns Null, i.e. nothing, setting/cancelling the attributes
of the processed datafile/directory f determined by the second argument,
while call Attrib1[f, x, y] with the 3rd optional argument y – an expression – in
addition deletes the program file "attrib.exe" from the directory determined
by the call Directory[]. The following fragment represents source code of the
Attrib1 procedure along with the most typical examples of its usage.

In[2670]:= Attrib1[F_ /; StringQ[F], x_ /; ListQ[x] &&
 DeleteDuplicates[Map3[MemberQ, {"–A", "–H", "–S", "–R", "+A",
 "+H", "+S", "+R"}, x]] == {True} || x == {} || x == "Attr", y___] :=

 Module[{a = "$ArtKr$", b = "attrib ", c, d = " > ", h = "attrib.exe",
 p, f, g = Unique["agn"]},

 If[LoadExtProg["attrib.exe"] === $Failed, Return[$Failed], Null];
 If[StringLength[F] == 3 && DirQ[F] && StringTake[F, {2, 2}] == ":",
 Return["Drive " <> F],
 If[StringLength[F] == 3 && DirQ[F], f = StandPath[F],
 If[FileExistsQ1[StrDelEnds[StringReplace[F, "/" –> "\\"], "\\", 2], g];
 f = StandPath[g[[1]]]; Clear[g],
 Return["<" <> F <> "> is not a directory or a datafile"]]]];
 If[x === "Attr", Run[b <> f <> d <> a],
 If[x === {}, Run[b <> " –A –H –S –R " <> f <> d <> a],
 Run[b <> StringReplace[StringJoin[x], {"+" –> " +", "–" –> " –"}] <>
 " " <> f <> d <> a]]];
 If[FileByteCount[a] == 0, Return[DeleteFile[a]],
 d = Read[a, String]; DeleteFile[Close[a]]];
 h = StringSplit[StringTrim[StringTake[d,

Extension of Mathematica system functionality

 389

 {1, StringLength[d] – StringLength[f]}]]]; Quiet[DeleteFile[f]];

 If[{y} != {}, DeleteFile[Directory[] <> "\\" <> "attrib.exe"], Null];
 h = Flatten[h /. {"HR" –> {"H", "R"}, "SH" –> {"S", "H"},
 "SHR" –> {"S", "H", "R"}, "SRH" –> {"S", "R", "H"},
 "HSR" –> {"H", "S", "R"}, "HRS" –> {"H", "R", "S"},
 "RSH" –> {"R", "S", "H"}, "RHS" –> {"R", "H", "S"}}];
 If[h === {"File", "not", "found", "–"} ||
 MemberQ[h, "C:\\Documents"], "Drive " <> f, h]]

In[2671]:= Mapp[Attrib1, {"C:/tmp/a b c", "C:/tmp/I a n.doc"}, {"+A", "+R"}]
Out[2671]= {Null, Null}

In[2672]:= Mapp[Attrib1, {"C:/tmp/a b c", "C:\\tmp\\I a n.doc"}, "Attr"]
Out[2672]= {{"A", "R"}, {"A", "R"}}

In[2673]:= Attrib1["G:\\Temp\\Cinema.txt", "Attr"]
Out[2673]= {"A", "S", "R"}

In[2674]:= Attrib1["G:\\Temp\\Cinema.txt", {}]
In[2675]:= Attrib1["G:\\Temp\\Cinema.txt", "Attr"]
Out[2675]= {}

Both procedures essentially use our procedures LoadExtProg, StrDelEnds,
StandPath, FileExistsQ1 and DirQ along with usage of the standard Run
function and the Attrib function of the MS DOS operating system. At that,
the possibility of removal of the "attrib.exe" program file from the directory
which is defiined by the call Directory[] after a call of the Attrib1 procedure
leaves file Mathematica system unchanged. So, in implementation of both
procedures the system Run function was enough essentially used, that has
the following coding format, namely:

Run[s1, …, sn] – in the basic operational system (for example, MS DOS) executes
a command formed from expressions sj (j=1..n) which are parted by blank symbols
with return of code of success of the command completion in the form of an integer.
As a rule, the Run function doesn't demand of an interactive input, but on certain
operational platforms it generates text messages. To some extent the Run function
is similar to the functions {system, ssystem} of the Maple system. In [33] rather
interesting examples of application of the Run for performance in the environment
of the Mathematica with the MS DOS commands are represented.

V.Z. Aladjev, V.A. Vaganov

 390

We will note that usage of the Run function illustrates one of useful enough
methods of providing the interface with the basic operational platform, but
here two very essential moments take place. Above all, the function on some
operational platforms (for example, Windows XP Professional) demands certain
external reaction of the user at an exit from the Mathematica environment
into an operational environment, and secondly, a call by means of the Run
function of functions or the system DOS commands assumes their existence
in the directories system determined by the $Path variable since otherwise
Mathematica doesn't recognize them. In particular, similar situation takes
place in the case of usage of the external DOS commands, for this reason in
realization of the procedures Attrib and Attrib1 that thru the Run function
use the external attrib command of DOS system, a connection to system of
directories of $Path of the directories containing the "attrib.exe" utility has
been provided whereas for internal commands of the DOS it isn't required.

So, at using of the internal dir command of DOS system of an extension of
the list of directories defined by the $Path isn't required. At the same time,
on the basis of standard reception on the basis of extension of the list defined
by the $Path variable the Mathematica doesn't recognize the external DOS
commands. In this regard a rather simple procedure has been created whose
successful call LoadExtProg[x] provides search in file system of the computer
of a program x given by the full name with its subsequent copying into the
subdirectory defined by the call Directory[]. The successful procedure call
LoadExtProg[x] searches out a datafile x in file system of the computer and
copies it into the directory defined by the function call Directory[], returning
Directory[]<>"\\"<>x if the datafile already was in this subdirectory or has
been copied into this directory. In addition the first directory containing the
found datafile x supplements the list of the directories determined by the
predetermined $Path variable. Whereas the procedure call LoadExtProg[x,
y] with the second optional argument y – an undefinite variable – in addition
through y returns the list of all full paths to the found datafile x without a
modification of the directories list determined by the predetermined $Path
variable. In the case of absence of opportunity to find a required datafile x
$Failed is returned. The following fragment represents source code of the
LoadExtProg procedure with examples of its application, in particular, for
uploading into the directory defined by the the function call Directory[] of a

Extension of Mathematica system functionality

 391

copy of external "attrib.exe" command of MS DOS with check of the result.

In[2566]:= LoadExtProg[x_ /; StringQ[x], y___] := Module[{a = Directory[],
 b = Unique["agn"], c, d, h},
 If[PathToFileQ[x] && FileExistsQ[x], CopyFileToDir[x, Directory[]],
 If[PathToFileQ[x] && ! FileExistsQ[x], $Failed, d = a <> "\\" <> x;
 If[FileExistsQ[d], d, h = FileExistsQ1[x, b];
 If[h, CopyFileToDir[b[[1]], a];
 If[{y} == {}, AppendTo[$Path,
 FileNameJoin[FileNameSplit[b[[1]]][[1 ;; –2]]]], y = b]; d, $Failed]]]]]

In[2567]:= LoadExtProg["C:\\attrib.exe"]
Out[2567]= $Failed

In[2568]:= LoadExtProg["attrib.exe"]
Out[2568]= "C:\\Users\\Aladjev\\Documents\\attrib.exe"

In[2569]:= FileExistsQ[Directory[] <> "\\" <> "attrib.exe"]
Out[2569]= True

In[2570]:= LoadExtProg["tlist.exe"]
Out[2570]= $Failed

In[2571]:= LoadExtProg["tasklist.exe", t]
Out[2571]= "C:\\Users\\Aladjev\\Documents\\tasklist.exe"

In[2572]:= t
Out[2572]= {"C:\\WINDOWS\\System32\\tasklist.exe",
 "C:\\WINDOWS\\SysWOW64\\tasklist.exe",
 "C:\\WINDOWS\\winsxs\\amd64_microsoft\\–windows–
 tasklist_31bf3856ad364e35_6.1.7600.16385_none_
 843823d87402ab36\\tasklist.exe",
 "C:\\WINDOWS\\winsxs\\x86_microsoft–windows–
 tasklist_31bf3856ad364\\e35_6.1.7600.16385_none_
 28198854bba53a00\\tasklist.exe"}
In[2573]:= Attrib1["C:\\Temp\\Cinema.txt", "Attr"]
Out[2573]= {"A", "S", "R"}

Therefore, in advance by means of the call LoadExtProg[x] it is possible to
provide access to a necessary datafile x if, of course, it exists in file system of
the computer. Thus, using the LoadExtProg procedure in combination with

V.Z. Aladjev, V.A. Vaganov

 392

the system Run function, it is possible to carry out a number of very useful
{exe|com}-programs in the environment of the Mathematica – the programs
of different purpose which are absent in file system of Mathematica thereby
significantly extending the functionality of the software of the Mathematica
system that can be quite demanded by wide range of various appendices.

The above LoadExtProg procedure along with our FileExistsQ1 procedure
also uses the CopyFileToDir procedure whose the call CopyFileToDir[x, y]
provides copying of a datafile or directory x into a directory y with return of
the full path to the copied datafile or directory. If the copied datafile already
exists, it isn't updated if the target directory already exists, the directory x is
copied into its subdirectory of the same name. The next fragment represents
source code of the CopyFileToDir procedure with examples of its usage.

In[2557]:= CopyFileToDir[x_ /; PathToFileQ[x], y_ /; DirQ[y]] :=
 Module[{a, b}, If[DirQ[x], CopyDir[x, y],
 If[FileExistsQ[x], a = FileNameSplit[x][[–1]];
 If[FileExistsQ[b = y <> "\\" <> a], b, CopyFile[x, b]], $Failed]]]

In[2558]:= CopyFileToDir["C:\\Temp\\Cinema.txt", "C:\\Mathematica"]
Out[2558]= "C:\\Mathematica\\Cinema.txt"

In[2559]:= CopyFileToDir["C:\\Temp", "C:\\Mathematica\\Temp"]
Out[2559]= "C:\\Mathematica\\Temp\\Temp"

In[2560]:= CopyFileToDir["C:\\Temp\\Gefal.htm", "C:\\Mathematica"]
Out[2560]= "C:\\Mathematica\\Gefal.htm"

The given procedure has a variety of appendices in problems of processing
of file system of the computer.

In conclusion of the section a rather useful procedure is represented which
provides only two functions – (1) obtaining the list of the attributes ascribed
to a datafile or directory, and (2) removal of all ascribed attributes. The call
Attribs[x] returns the list of attributes in string format which are ascribed to
a datafile or directory x. On the main directories of volumes of direct access
the procedure call Attribs returns $Failed. While the call Attribs[x, y] with
the second optional argument y – an expression – deletes all attributes which
are ascribed to a datafile or directory x with returning at a successful call 0.
The following fragment represents source code of the procedure along with

Extension of Mathematica system functionality

 393

the most typical examples of its usage.

In[2660]:= Attribs[x_ /; FileExistsQ[x] || DirectoryQ[x], y___] :=
 Module[{b, a = StandPath[x], c = "attrib.exe", d = ToString[Unique["g"]], g},
 If[DirQ[x] && StringLength[x] == 3 &&
 StringTake[x, {2, 2}] == ":", $Failed,
 g[] := Quiet[DeleteFile[Directory[] <> "\\" <> c]];
 If[! FileExistsQ[c], LoadExtProg[c]];
 If[{y} == {}, Run[c <> " " <> a <> " > ", d]; g[];
 b = Characters[StringReplace[StringTake[Read[d, String],
 {1, –StringLength[a] – 1}], " " –> ""]]; DeleteFile[Close[d]]; b,
 a = Run[c <> " –A –H –R –S " <> a]; g[]; a]]]

In[2661]:= Attribs["C:\\Temp\\Avz"]
Out[2661]= {"A", "S", "H", "R"}
In[2662]:= Map[Attribs, {"C:/", "E:\\"}]
Out[2662]= {$Failed, $Failed}
In[2663]:= Attribs["C:/Temp/Agn/aaa bbb ccc"]
Out[2663]= {"A", "R"}
In[2664]:= Attribs["C:/Temp/Agn/Elisa.pdf"]
Out[2664]= {"R"}
In[2665]:= Attribs["C:/Temp/Agn/Vsv\\G r s u.doc"]
Out[2665]= {"A", "R"}
In[2666]:= Attribs["C:/Temp/Agn/Vsv\\G r s u.doc", 90]
Out[2666]= 0
In[2667]:= Attribs["C:/Temp/Agn/Vsv\\G r s u.doc"]
Out[2667]= {}

It should be noted that as argument x the usage of an existing datafile, full
path to a datafile, or a directory is supposed. At that, the file "attrib.exe" is
removed from the directory defined by the call Directory[] after a call of the
procedure. The Attribs procedure is enough fast-acting, supplementing the
procedures Attrib and Attrib1. The Attribs procedure is effectively applied
in programming of certain means of access to elements of file system of the
computer at processing their attributes. Thus, it should be noted once again
that the Mathematica has no standard means for processing of attributes of
datafiles and directories therefore the offered procedures Attrib, Attrib1 and

V.Z. Aladjev, V.A. Vaganov

 394

Attribs in a certain measure fill this niche.

So, the declared possibility of extension of the system of directories which is
defined by the $Path variable, generally doesn't operate already concerning
the external DOS commands what well illustrates both consideration of the
above our procedures Attrib, Attrib1, LoadExtProg and an example with the
external "tlist" command that is provided display of all active processes of
the current session with Windows XP Professional system, namely:

In[2565]:= Run["tlist", " > ", "C:\\Temp\\tlist.txt"]
Out[2565]= 1

In[2566]:= LoadExtProg["tlist.exe"];
 Run["tlist", " > ", "C:\\Temp\\tlist.txt"]
Out[2566]= 0

 0 System Process
 4 System
 488 smss.exe
 520 avgchsvx.exe
 676 csrss.exe
 716 winlogon.exe
 760 services.exe
 772 lsass.exe
 940 ati2evxx.exe
 960 svchost.exe
1016 svchost.exe
1092 svchost.exe
1240 svchost.exe
1300 vsmon.exe
1368 ati2evxx.exe
1656 explorer.exe Program Manager
1680 ctfmon.exe
 212 spoolsv.exe
 348 svchost.exe
 392 avgwdsvc.exe
 660 jqs.exe
1168 svchost.exe
1448 MsPMSPSv.exe

Extension of Mathematica system functionality

 395

1548 AVGIDSAgent.exe
2204 avgnsx.exe
2284 avgemcx.exe
2852 alg.exe
3600 zlclient.exe
3764 avgtray.exe
3884 vprot.exe
3936 Skype.exe
4056 AVGIDSMonitor.exe
3316 AmplusnetPrivacyTools.exe
2256 FreeCommander.exe – FreeCommander
2248 WINWORD.EXE Mathematica_Book – Microsoft Word
4348 avgrsx.exe
4380 avgcsrvx.exe
5248 Mathematica.exe Wolfram Mathematica 10.0 –
 [Running.AVZ_Package.nb]
4760 MathKernel.exe
4080 javaw.exe
4780 cmd.exe C:\WINDOWS\system32\cmd.exe
4808 tlist.exe

The first example of the previous fragment illustrates, that the attempt by
means of the Run function to execute the external tlist command of DOS
completes unsuccessfully (return code 1) whereas a result of the procedure
call LoadExtProg["tlist.exe"] with search and download into the directory
defined by the call Directory[] of the "tlist.exe" file, allows to successfully
execute by means of the Run the external command tlist with preservation
of result of its performance in the txt-file whose context is presented in the
text by the shaded area.

Meanwhile, use of external software on the basis of the Run function along
with possibility of extension of functionality of the Mathematica causes a
rather serious portability question. So, the means developed by means of this
technique with use the external DOS commands are subject to influence of
variability of the DOS commands depending on version of a basic operating
system. In a number of cases it demands a certain adaptation of the software
according to a basic operating system.

V.Z. Aladjev, V.A. Vaganov

 396

7.4. Additional means of processing of datafiles and
directories of file system of the computer

This section represents means of processing of datafiles and directories of
file system of the computer that supplement and in certain cases and extend
means of the previous section. Unlike the system functions DeleteDirectory
and DeleteFile the following DelDirFile procedure removes a directory or
datafile x from file system of the computer, returning Null, i.e. nothing. At
that, the procedure call DelDirFile[x] with one argument x is analogous to a
call DeleteFile[x] or DeleteDirectory[x] depending on the type of argument
x – a datafile or directory. Whereas the call DelDirFile[x, y] with the second
optional argument y – an arbitrary expression – deletes a datafile or a catalog
even if datafile x or elements of directory x of file system of the computer
have the Read-only attribute; in that case before its removal the attributes of
an element x are cancelled, providing correct removal of the element x what
unlike the system means expands opportunities for removal of elements of
file system of the computer. The procedure eccentially uses our procedures
Attribs, DirQ, StandPath. The following fragment represents source code of
the DelDirFile procedure along with examples of its most typical usage.

In[2560]:= DelDirFile[x_ /; StringQ[x] && DirQ[x]||FileExistsQ[x], y___]:=
 Module[{c, f, a = {}, b = "", k = 1},
 If[DirQ[x] && If[StringLength[x] == 3 &&
 StringTake[x, {2, 2}] == ":", False, True],
 If[{y} == {}, Quiet[DeleteDirectory[x, DeleteContents –> True]],
 a = {}; b = ""; c = StandPath[x]; f = "$Art2618Kr$";
 Run["Dir " <> c <> " /A/B/OG/S > " <> f]; Attribs[c, 90];
 For[k, k < Infinity, k++, b = Read[f, String];
 If[SameQ[b, EndOfFile], DeleteFile[Close[f]]; Break[],
 Attribs[b, 90]]]; DeleteDirectory[x, DeleteContents –> True]],
 If[FileExistsQ[x], If[{y} != {}, Attribs[x, 90]];
 Quiet[DeleteFile[x]], $Failed]]]

In[2561]:= DelDirFile["F:\\"]
Out[2561]= $Failed

Extension of Mathematica system functionality

 397

In[2562]:= DeleteFile["C:\\Temp\\Excel11.pip"]
 DeleteFile::privv: Privilege violation during DeleteFile … >>

Out[2562]= $Failed
In[2563]:= DelDirFile["C:\\Temp\\Excel11.pip", 90]
In[2564]:= FileExistsQ["C:\\Temp\\Excel11.pip"]
Out[2564]= False
In[2565]:= Map1[{DirectoryQ, Attribs}, {"C:\\Temp\\Agn"}]
Out[2565]= {True, {"A", "S", "H", "R"}}
In[2566]:= DelDirFile["C:\\Temp\\Agn"]
Out[2566]= $Failed
In[2567]:= DelDirFile["C:\\Temp\\Agn", 500]
In[2568]:= DirectoryQ["C:\\Temp\\Agn"]
Out[2568]= False

Meanwhile, before representation of the following means it is expedient to
determine one rather useful procedure whose essence is as follows. As it was
already noted above, a file qualifier depends both on a register of symbols,
and the used dividers of directories. Thus, the same datafile with different
qualifiers "C:\\Temp\\agn\\cinema.txt" and "C:/temp\\agn/cinema.txt"
opens in two various streams. Therefore its closing by means of the standard
Close function doesn't close the "cinema.txt" datafile, demanding closing of
all streams on which it was earlier open. For solution of the given problem
the Close1 procedure presented by the next fragment has been determined.

In[2580]:= Streams[]
Out[2580]= {OutputStream["stdout", 1], OutputStream["stderr", 2]}
In[2581]:= Read["C:/Temp\\cinema.txt"]; Read["C:/Temp/Cinema.txt"];
 Read["C:/Temp\\cinema.txt"]; Read["c:/temp/birthday.doc"];
 Read["C:/temp\\BirthDay.doc"];
In[2582]:= Streams[]
Out[2582]= {OutputStream["stdout", 1], OutputStream["stderr", 2],
 InputStream["C:/Temp\\cinema.txt", 1697],
 InputStream["C:/Temp/Cinema.txt", 1700],
 InputStream["c:/temp/birthday.doc", 1705],
 InputStream["C:/temp\\BirthDay.doc", 1706]}
In[2583]:= Close["C:/Temp\\cinema.txt"]
Out[2583]= "C:/Temp\\cinema.txt"

V.Z. Aladjev, V.A. Vaganov

 398

In[2584]:= Streams[]
Out[2584]= {OutputStream["stdout", 1], OutputStream["stderr", 2],
 InputStream["C:/Temp/Cinema.txt", 1700],
 InputStream["c:/temp/birthday.doc", 1705],
 InputStream["C:/temp\\BirthDay.doc", 1706]}

In[2585]:= Close1[x___String] := Module[{a = Streams[][[3 ;; –1]], b = {x},
 c = {}, k = 1, j},
 If[a == {} || b == {}, {}, b = Select[{x}, FileExistsQ[#] &];
 While[k <= Length[a], j = 1; While[j <= Length[b],
 If[ToUpperCase[StringReplace[a[[k]][[1]], {"\\" –> "", "/" –> ""}]] ==
 ToUpperCase[StringReplace[b[[j]], {"\\" –> "", "/" –> ""}]],
 AppendTo[c, a[[k]]]]; j++]; k++];
 Map[Close, c]; If[Length[b] == 1, b[[1]], b]]]

In[2586]:= Close1["C:/Temp\\cinema.txt", "C:/temp\\BirthDay.doc"]
Out[2586]= {"C:/Temp\\cinema.txt", "C:/temp\\BirthDay.doc"}
In[2587]:= Streams[]
Out[2587]= {OutputStream["stdout", 1], OutputStream["stderr", 2]}
In[2588]:= Close1[]
Out[2588]= {}
In[2589]:= Close1["C:/Temp\\cinema.txt", "C:/temp\\BirthDay.doc"]
Out[2589]= {}
In[2590]:= Close1["C:/Temp\\Agn/Cinema.txt", AvzAgnVsvArtKr]
Out[2590]= Close1["C:/Temp\\Agn/Cinema.txt", AvzAgnVsvArtKr]
In[2591]:= Closes[x_] := Quiet[Check[Close[x], Null]]
In[2591]:= Closes["C:\\Temp\\Svetlana\\Kherson\\Cinema.txt"]

In[2667]:= Close2[x___String] := Module[{a = Streams[][[3 ;; –1]], b = {}, c,
 d = Select[{x}, StringQ[#] &]},
 If[d == {}, {}, c[y_] := ToLowerCase[StringReplace[y, "/" –> "\\"]];
 Map[AppendTo[b, Part[#, 1]] &, a];
 d = DeleteDuplicates[Map[c[#] &, d]];
 Map[Close, Select[b, MemberQ[d, c[#]] &]]]]
In[2668]:= Close2[]
Out[2668]= {}

Extension of Mathematica system functionality

 399

In[2669]:= Close2["C:/Temp\\cinema.txt", "C:/temp\\BirthDay.doc"]
Out[2669]= {"C:/Temp\\cinema.txt", "C:/Temp/Cinema.txt",
 "c:/temp/birthday.doc", "C:/temp\\BirthDay.doc"}
In[2670]:= Streams[]
Out[2670]= {OutputStream["stdout", 1], OutputStream["stderr", 2]}

The procedure call Close1[x, y, z, …] closes all off really–existing datafiles in
a list {x, y, z, …} irrespective of quantity of streams on which they have been
opened by various files qualifiers with returning their list. In other cases the
call on admissible actual arguments returns the empty list, i.e. {} whereas on
inadmissible actual arguments a call is returned unevaluated. The previous
fragment represents source code of the Close1 procedure with examples of
its usage. In end of the fragment the simple Closes function and the Close2
procedure are presented. The function call Closes[x] returns nothing, closing
a datafile x, including the closed and empty datafiles without output of any
erroneous messages. In certain appendices this function is quite useful.

The procedure Close2 is a functional analog of the above procedure Close1.
The procedure call Close2[x, y, z, …] closes all off really–existing datafiles in
a list {x, y, z, …} irrespective of quantity of streams on which they have been
opened by various files qualifiers with returning their list. In other cases the
call on admissible actual arguments returns the empty list, i.e. {} whereas on
inadmissible actual arguments a call is returned unevaluated. The previous
fragment represents source code of the Close2 procedure with examples of
its usage. In a number of appendices Close1 and Close2 are quite useful.

The following DelDirFile1 procedure – an useful enough extension of the
DelDirFile procedure on case of open datafiles in addition to the Read-only
attribute of both the separate datafiles, and the datafiles being in the deleted
directory. The call DelDirFile1[x] is equivalent to the call DelDirFile[x, y],
providing removal of a datafile or directory x irrespective of openness of a
separate datafile x and the Read-only attribute ascribed to it, or existence of
similar datafiles in a directory x. The fragment below represents source code
of the DelDirFile1 procedure along with typical examples of its usage.

In[2725]:= DelDirFile1[x_ /; StringQ[x] && FileExistsQ[x] || DirQ[x] &&
 If[StringLength[x] == 3 && StringTake[x, {2, 2}] == ":", False, True]] :=
 Module[{a = {}, b = "", c = StandPath[x], d, f = "$Art590Kr$", k = 1},

V.Z. Aladjev, V.A. Vaganov

 400

 If[DirQ[x], Run["Dir " <> c <> " /A/B/OG/S > " <> f]; Attribs[c, 90];
 For[k, k < Infinity, k++, b = Read[f, String];
 If[SameQ[b, EndOfFile], DeleteFile[Close[f]]; Break[],
 Attribs[b, 90]; Close2[b]]];
 DeleteDirectory[x, DeleteContents –> True], Close2[x];
 Attribs[x, 90]; DeleteFile[x]]]

In[2726]:= Map[Attribs, {"C:/Temp\\Agn/Cinema.txt",
 "C:/Temp\\Agn/BirthDay.doc", "C:/Temp\\Agn"}]
Out[2726]= {{"A", "S", "H", "R"}, {"A", "S", "H", "R"}, {"A", "S", "H", "R"}}

In[2727]:= Read["C:/Temp\\Agn/Cinema.txt"];
 Read["C:/Temp\\Agn/BirthDay.doc"];
In[2728]:= Streams[]
Out[2728]= {OutputStream["stdout", 1], OutputStream["stderr", 2],
 InputStream["C:/Temp\\Agn/Cinema.txt", 131],
 InputStream["C:/Temp\\Agn/BirthDay.doc", 132]}
In[2729]:= DelDirFile1["C:/Temp\\Agn"]
In[2730]:= Streams[]
Out[2730]= {OutputStream["stdout", 1], OutputStream["stderr", 2]}
In[2731]:= DirQ["C:\\Temp\\Agn"]
Out[2731]= False
In[2732]:= Attribs["C:\\GrGu_Books\\Cinema.TXT"]
Out[2732]= {"A", "S", "H", "R"}
In[2733]:= Read["C:\\GrGu_Books\\cinema.TXT"];
In[2734]:= Streams[]
Out[2734]= {OutputStream["stdout", 1], OutputStream["stderr", 2],
 InputStream["C:\\GrGu_Books\\cinema.TXT", 149]}

In[2735]:= DelDirFile1["C:\\GrGu_Books\\cinema.TXT"]
In[2736]:= FileExistsQ["C:\\GrGu_Books\\cinema.TXT"]
Out[2736]= False

The means representing quite certain interest at working with file system of
the computer as independently, and as a part of means of processing of the
datafiles and directories complete this section. They are used and by a series
of means of our AVZ_Package package [48]. In particular, at working with
files the OpenFiles procedure can be rather useful, whose call OpenFiles[]

Extension of Mathematica system functionality

 401

returns the 2–element nested list, whose the first sublist with the first "read"
element contains full paths to the datafiles opened on reading whereas the
second sublist with the first "write" element contains full paths to the files
opened on writing in the current session. In the absence of such datafiles the
procedure call returns the empty list, i.e. {}. Whereas the call OpenFiles[x]
with one actual argument x – a datafile classifier – returns result of the above
format relative to the open datafile x irrespective of a format of coding of its
qualifier. If x defines a closed or nonexistent datafile then the procedure call
returns the empty list, i.e. {}. The fragment below represents source code of
the procedure along with rather typical examples of its use.

In[2628]:= OpenFiles[x___String] := Module[{a = Streams[][[3 ;; –1]], b, c, d,
 h1 = {"read"}, h2 = {"write"}},
 If[a == {}, {}, d = Map[{Part[#, 0], Part[#, 1]} &, a];
 b = Select[d, #[[1]] == InputStream &];
 c = Select[d, #[[1]] == OutputStream &];
 b = Map[DeleteDuplicates,
 Map[Flatten, Gather[Join[b, c], #1[[1]] == #2[[1]] &]]];
 b = Map[Flatten, Map[If[SameQ[#[[1]], InputStream],
 AppendTo[h1, #[[2 ;; –1]]], AppendTo[h2, #[[2 ;; –1]]]] &, b]];
 If[{x} == {}, b, If[SameQ[FileExistsQ[x], True],
 c = Map[Flatten,
 Map[{#[[1]], Select[#, StandPath[#] === StandPath[x] &]} &, b]];
 If[c == {{"read"}, {"write"}}, {}, c = Select[c, Length[#] > 1 &];
 If[Length[c] > 1, c, c[[1]]], {}]]]]]

In[2629]:= OpenFiles[]
Out[2629]= {{"read", "C:/Temp\\cinema.txt", "C:/Temp/Cinema.txt",
 "c:/temp/birthday.doc", "C:/temp\\BirthDay.doc",
 "C:/GrGu_Books/Birthday1.doc"},
 {"write", "C:\\GrGu_Books\\Birthday1.doc"}}

In[2630]:= OpenFiles["AvzArnVsvArtKr"]
Out[2630]= {}

In[2631]:= OpenFiles["C:\\Temp\\Cinema.txt"]
Out[2631]= {"read", "C:/Temp\\cinema.txt", "C:/Temp/Cinema.txt"}

V.Z. Aladjev, V.A. Vaganov

 402

In[2632]:= OpenFiles["C:\\GrGu_Books/Birthday1.doc"]
Out[2632]= {{"read", "C:/GrGu_Books/Birthday1.doc"},
 {"write", "C:\\GrGu_Books\\Birthday1.doc"}}

At that, as the full path it is understood or really full path to a datafile in file
system of the computer, or its full name if it is located in the current directory
determined by the function call Directory[].

As the procedure similar to the OpenFiles, the following procedure can be
used, whose call StreamFiles[] returns the nested list from two sublists, the
first sublist with the first "in" element contains full paths/names of the files
opened on the reading while the second sublist with the first "out" element
contains full paths/names of the datafiles opened on the recording. Whereas
in the absence of the open datafiles the procedure call StreamFiles[] returns
"AllFilesClosed". The next fragment presents source code of the OpenFiles
procedure along with some typical examples of its usage.

In[2555]:= StreamFiles[] := Module[{a = Map[ToString1, StreamsU[]], b = {},
 w = {"out"}, r = {"in"}, c, k = 1},
 If[a == {}, Return["AllFilesClosed"],
 For[k, k <= Length[a], k++, c = a[[k]];
 If[SuffPref[c, "Out", 1], AppendTo[w, StrFromStr[c]],
 AppendTo[r, StrFromStr[c]]]]];
 c = Select[Map[Flatten, {r, w}], Length[#] > 1 &];
 If[Length[c] == 1, c[[1]], c]]

In[2556]:= StreamFiles[]
Out[2556]= {{"in", "C:/Temp\\cinema.txt", "C:/Temp/Cinema.txt",
 "c:/temp/birthday.doc", "C:/temp\\BirthDay.doc"},
 {"out", "C:\\GrGu_Books\\Birthday1.doc"}}

In[2557]:= Close["C:\\GrGu_Books\\Bithday1.doc"]
Out[2557]= "C:\\GrGu_Books\\Birthday1.doc"

In[2558]:= StreamFiles[]
Out[2558]= {"in", "C:/Temp\\cinema.txt", "C:/Temp/Cinema.txt",
 "c:/temp/birthday.doc", "C:/temp\\BirthDay.doc"}

In[2559]:= CloseAll[]; StreamFiles[]
Out[2559]= "AllFilesClosed"

Extension of Mathematica system functionality

 403

In[2560]:= Read["Book_3.doc"];
In[2561]:= StreamFiles[]
Out[2561]= {"in", "Book_3.doc"}

In a number of cases at work with datafiles the following procedure can be
very useful, whose call IsFileOpen[f] returns True if a datafile f determined
by a name or full path is open and False otherwise. If the argument f doesn't
define an existing datafile the procedure call is returned unevaluated. While
the call IsFileOpen[f, h] with the second optional argument h – an undefinite
variable – returns through h the nested list whose elements are sublists of the
format {{"read"|"write"}, {The list of streams on which the datafile f is open on
reading|recording}} if the main result is True. The fragment below represents
source code of the IsFileOpen procedure along with examples of its usage.

In[2550]:= IsFileOpen[F_ /; FileExistsQ[Ff], h___] :=
 Module[{a = OpenFiles[F]},
 If[a == {}, False, If[{h} != {} && ! HowAct[h], h = a, Null]; True]]

In[2551]:= OpenWrite["C:/temp/cinema.doc"];
 OpenRead["C:/temp\\cinema.doc"];
In[2552]:= Streams[]
Out[2552]= {OutputStream["stdout", 1], OutputStream["stderr", 2],
 OutputStream["C:/temp/cinema.doc", 84],
 InputStream["C:/temp\\cinema.doc", 85]}

In[2553]:= IsFileOpen["C:/Temp\\Cinema.doc", t90]
Out[2553]= True

In[2554]:= t90
Out[2554]= {{"read", {"C:/temp/cinema.doc"}},
 {"write", {"C:/temp\\cinema.doc"}}}

In[2555]:= Read["C:/temp/birthday.doc"];
In[2556]:= IsFileOpen["C:\\temp\\BirthDay.doc", h500]
Out[2556]= True

In[2557]:= h500
Out[2557]= {"read", {"C:/temp/birthday.doc"}}

In[2558]:= CloseAll[]; IsFileOpen["C:\\temp\\BirthDay.doc"]
Out[2558]= False

V.Z. Aladjev, V.A. Vaganov

 404

The following quite simple procedure is represented as a rather useful tool
at operating with file system of the computer, whose the call DirEmptyQ[d]
returns True if a directory d is empty, otherwise False is returned. Moreover,
the call DirEmptyQ[d] is returned unevaluated if d isn't a real directory. The
following fragment presents source code of the DirEmptyQ procedure with
typical enough examples of its usage.

In[2602]:= DirEmptyQ[d_ /; DirQ[d]] := Module[{a = "$DirFile$", b, c,
 p = StandPath[StringReplace[d, "/" –> "\\"]], h = " 0 File(s) "},
 b = Run["Dir " <> p <> If[SuffPref[p, "\\", 2], "", "\\"] <> "*.* > " <> a];
 If[b != 0, $Failed, Do[c = Read[a, String], {6}]];
 DeleteFile[Close[a]]; ! StringFreeQ[c, h]]

In[2603]:= Map[DirEmptyQ, {"C:\\Mathematica/Avz", "C:/temp", "C:\\",
 "c:/Mathematica", "Rans", "c:/Mathematica/Avz/Agn/Art/Kr"}]
Out[2603]= {False, False, False, False, DirEmptyQ["Rans"], True}
In[2604]:= DirEmptyQ["C:\\Mathematica/Avz/Agn/Art/Kr/"]
Out[2604]= True
In[2605]:= Map[DirEmptyQ, {"C:\\Mathematica/Avz", "C:/Temp/", "C:/"}]
Out[2605]= {False, False, False}
In[2606]:= DirEmptyQ["C:\\Program Files (x86)"]
Out[2606]= False

At that in addition to the previous DirEmptyQ procedure the procedure call
DirFD[j] returns the two-element nested list whose the first element defines
the list of subdirectories of the first nesting level of a directory j whereas the
second element – the list of datafiles of a directory j; if a directory j is empty,
the procedure call returns the empty list, i.e. {}. The fragment below presents
source code of the DirFD procedure along with examples of its usage.

In[2575]:= DirFD[d_ /; DirQ[d]] := Module[{a = "$DirFile$", b = {{}, {}}, c, h, t,
 p = StandPath[StringReplace[d, "/" –> "\\"]]},
 If[DirEmptyQ[p], Return[{}], Null];
 c = Run["Dir " <> p <> " /B " <> If[SuffPref[p, "\\", 2], "", "\\"] <>
 "*.* > " <> a]; t = Map[ToString, ReadList[a, String]]; DeleteFile[a];
 Map[{h = d <> "\\" <> #; If[DirectoryQ[h], AppendTo[b[[1]], #],
 If[FileExistsQ[h], AppendTo[b[[2]], #], Null]]} &, t]; b]

Extension of Mathematica system functionality

 405

In[2576]:= DirFD["C:/Program Files/Wolfram Research/Mathematica/10.1
 \\Documentation\\English\\Packages"]
Out[2576]= {{"ANOVA", "Audio", "AuthorTools", "BarCharts",
 "Benchmarking", "BlackBodyRadiation", "Calendar",
 "Combinatorica", "Compatibility", "ComputationalGeometry",
 "ComputerArithmetic", "Developer", "EquationTrekker",
 "ErrorBarPlots", "Experimental", "FiniteFields", "FourierSeries",
 "FunctionApproximations", "Geodesy", "GraphUtilities",
 "HierarchicalClustering", "Histograms", "HypothesisTesting",
 "LinearRegression", "MultivariateStatistics", "Music",
 "NonlinearRegression", "Notation", "NumericalCalculus",
 "NumericalDifferentialEquationAnalysis", "PhysicalConstants",
 "PieCharts", "PlotLegends", "PolyhedronOperations",
 "Polytopes", "PrimalityProving", "Quaternions",
 "RegressionCommon", "ResonanceAbsorptionLines", "Splines",
 "StandardAtmosphere", "StatisticalPlots", "Units",
 "VariationalMethods", "VectorAnalysis", "VectorFieldPlots",
 "WorldPlot", "XML"}, {}}
In[2577]:= Length[%[[1]]]
Out[2577]= 48

In[2578]:= DirFD["C:\\Program Files"]
Out[2578]= {{"Common Files", "Dell Inc", "DVD Maker", "Extras",
 "File Association Helper", "Intel", "Internet Explorer",
 "MSBuild", "Nitro", "Realtek", "Reference Assemblies",
 "Softland", "Windows Defender", "Windows Journal",
 "Windows Mail", "Windows Media Player", "Windows NT",
 "Windows Photo Viewer", "Windows Portable Devices",
 "Windows Sidebar", "Wolfram Research", "Intel"}, {}}
In[2579]:= DirFD["C:\\Temp"]
Out[2579]= {{"Dialog_files"}, {"aaa.txt", "Addresses_for_book.doc",
 "Books.doc", "Books.mht", "Birthday.doc", "cinema.doc",
 "Cinema.txt", "Dialog.htm", "ISSN Application form.pdf",
 "Math_Trials.DOC", "potencial.txt", "regcleaner.exe"}}

In particular, in an example of the previous fragment the list of directories
with documentation on the packages delivered with the Mathematica 10.1.0

V.Z. Aladjev, V.A. Vaganov

 406

system is returned. Thus, with release 10.1.0 of the Mathematica system 48
packages of different purpose which is rather simply seen from the name of
the subdirectories containing them are being delivered.

In addition to the DirFD procedure the DirFull procedure represents a quite
certain interest, whose call DirFull[d] returns the list of all full paths to the
subdirectories and files contained in a directory d and its subdirectories; the
first element of this list – the directory d. While on an empty directory d the
call DirFull[d] returns the empty list, i.e. {}. The fragment below represents
source code of the DirFull procedure along with examples of its usage.

In[2595]:= DirFull[x_ /; DirQ[x]] := Module[{a = "$Art26Kr18$", c,
 b = StandPath[StringReplace[x, "/" –> "\\"]]},
 If[DirEmptyQ[x], {}, Run["Dir /S/B/A ", b, " > ", a];
 c = Map[ToString, ReadList[a, String]]; DeleteFile[a]; Prepend[c, b]]]

In[2596]:= DirFull["C:\\Mathematica\\avz\\agn/Art/Kr"]
Out[2596]= {}
In[2597]:= DirFull["C:\\Users\\Aladjev\\DownLoads"]
Out[2597]= {"c:\\users\\aladjev\\downloads",
 "c:\\users\\aladjev\\downloads\\Book_Grodno.doc",
 "c:\\users\\aladjev\\downloads\\CuteWriter.exe",
 "c:\\users\\aladjev\\downloads\\desktop.ini",
 "c:\\users\\aladjev\\downloads\\IMG_0389.MOV",
 "c:\\users\\aladjev\\downloads\\Mathematica_10.1.0_WIN.zip"}

In addition to the DirFull procedure the call TypeFilesD[d] of the procedure
TypeFilesD returns the sorted list of types of the files located in a directory
d with returning of "undefined" on datafiles without of a name extension. At
that, the datafiles located in the directory d and in all its subdirectories of an
arbitrary nesting level are considered. Moreover, on the empty directory d
the procedure call TypeFilesD[d] returns the empty list, i.e. {}. The following
fragment represents source code of the TypeFilesD procedure along with
typical enough examples of its usage.

In[5180]:= TypeFilesD[x_ /; DirQ[x]] := Module[{a = "$Art26Kr18$", d = {},
 c, p, b = StandPath[StringReplace[x, "/" –> "\\"]]},
 If[DirEmptyQ[x], {}, Run["Dir /S/B/A ", b, " > ", a];

Extension of Mathematica system functionality

 407

 c = Map[ToString, ReadList[a, String]]; DeleteFile[a];
 Sort[Select[DeleteDuplicates[Map[If[DirectoryQ[#], Null,
 If[FileExistsQ[#], p = ToLowerCase[ToString[FileExtension[#]]];
 If[! SameQ[p, ""], p, "undefined"]], Null] &, c]], ! SameQ[#, Null] &]]]]

In[5181]:= TypeFilesD["c:\\temp\\"]
Out[5181]= {"txt", "doc", "mht", "htm", "pdf", "exe", "jpg", "js", "css", "png",
 "gif", "php", "json", "undefined", "query", "xml"}
In[5182]:= TypeFilesD["C:/Tallinn\\Grodno/Kherson"]
Out[5182]= {}
In[5183]:= TypeFilesD["C:\\Mathematica"]
Out[5183]= {"css", "doc", "gif", "htm", "jpg", "js", "json", "pdf", "png", "tmp"}
In[5184]:= TypeFilesD["C:\\Program Files (x86)\\Maple 11"]
Out[5184]= {"access", "afm", "bfc", "cfg", "cpl", "csv", "dat", "del", "dll",
 "dtd", "ent", "err", "exe", "gif", "hdb", "html", "ico", "ind", "ini",
 "ja", "jar", "jpg", "jsa", "lib", "lic", "mat", "mla", "mod", "mw", "pf",
 "policy", "properties", "security", "src", "template", "ttf", "txt",
 "undefined", "vec", "wav", "xls", "xml", "xsd", "xsl"}

The FindFile1 procedure serves as useful extension of the standard FindFile
function, providing search of a datafile within file system of the computer.
The procedure call FindFile1[x] returns a full path to the found datafile x, or
the list of full paths (if datafile x is located in different directories of file system of
the computer), otherwise the call returns the empty list, i.e. {}. While the call
FindFile1[x, y] with the second optional argument y – full path to a directory –
returns a full path to the found datafile x, or the list of full paths located in
the directory y and its subdirectories. The fragment below represents source
code of the FindFile1 procedure along with typical examples of its usage.

In[2550]:= FindFile1[x_ /; StringQ[x], y___] := Module[{c, d = {}, k = 1,
 a = If[{y} != {} && PathToFileQ[y], {y}, Map[# <> ":\\" &, Adrive[]]],
 b = "\\" <> ToLowerCase[x]}, For[k, k <= Length[a], k++,
 c = Map[ToLowerCase, Quiet[FileNames["*", a[[k]], Infinity]]];
 d = Join[d, Select[c, SuffPref[#, b, 2] && FileExistsQ[#] &]]];
 If[Length[d] == 1, d[[1]], d]]

In[2551]:= FindFile1["Letter_5_02_15.doc"]

V.Z. Aladjev, V.A. Vaganov

 408

Out[2551]= {"C:\\Temp\\Letter_5_02_15.doc", "F:\\Letter_5_02_15.doc"}
In[2552]:= FindFile1["Cinema.txt", "C:\\Temp"]
Out[2552]= "c:\\temp\\cinema.txt"
In[2553]:= FindFile1["Cinema.txt"]
Out[2553]= {"C:\\GrGU_Books\\Cinema.txt", "C:\\Program Files\\
 Wolfram Research\\Mathematica\\10.1\\Cinema.txt",
 "C:\\Program Files\\Wolfram Research\\Mathematica\\10.1
 \\SystemFiles\\Cinema.txt", "C:\\Temp\\Cinema.txt",
 "E:\\CD_Book\\Cinema.txt"}
In[2554]:= FindFile1["AvzAgnVsvArtKr"]
Out[2554]= {}
In[2555]:= t = TimeUsed[]; FindFile1["Book_3.doc"]; TimeUsed[] – t
Out[2555]= 5.928
In[2556]:= t = TimeUsed[]; FileExistsQ1["Book_3.doc"]; TimeUsed[] – t
Out[2556]= 5.335

In particular, 2 last example of the previous fragment indicate, the FindFile1
in many respects is functionally similar to the FileExistsQ1 procedure but it
in the temporary relation is somewhat less fast-acting in the same file system
of the computer.

It is possible to give the SearchDir procedure as one more quite indicative
example, whose call SearchDir[d] returns the list of all paths in file system
of the computer which are completed by a subdirectory d; in case of lack of
such paths the procedure call SearchDir[d] returns the empty list, i.e. {}. In
combination with the procedures FindFile1 and FileExistsQ1 the SearchDir
procedure is useful at working with file system of the computer, as confirms
their usage for the solution of tasks of similar type. The following fragment
represents source code of the SearchDir procedure with examples of its use.

In[2595]:= SearchDir[d_ /; StringQ[d]] := Module[{a = Adrive[], c, t = {}, p,
 b = "\\" <> ToLowerCase[StringTrim[d, ("\\"|"/") ...]] <> "\\",
 g = {}, k = 1, v},
 For[k, k <= Length[a], k++, p = a[[k]];
 c = Map[ToLowerCase, Quiet[FileNames["*", p <> ":\\", Infinity]]];
 Map[If[! StringFreeQ[#, b] || SuffPref[#, b, 2] && DirQ[#],
 AppendTo[t, #], Null] &, c]];

Extension of Mathematica system functionality

 409

 For[k = 1, k <= Length[t], k++, p = t[[k]] <> "\\"; a = StringPosition[p, b];
 If[a == {}, Continue[], a = Map[#[[2]] &, a];
 Map[If[DirectoryQ[v = StringTake[p, {1, # – 1}]],
 AppendTo[g, v], Null] &, a]]]; DeleteDuplicates[g]]

In[2596]:= SearchDir["AvzAgnVsvArtKr"]
Out[2596]= {}
In[2597]:= SearchDir["\\Temp/"]
Out[2597]= {"c:\\temp", "c:\\users\\aladjev\\appdata\\local\\temp",
 "c:\\windows\\assembly\\nativeimages_v2.0.50727_32\\temp",
 "c:\\windows\\assembly\\nativeimages_v2.0.50727_64\\temp",
 "c:\\windows\\assembly\\nativeimages_v4.0.30319_32\\temp",
 "c:\\windows\\assembly\\nativeimages_v4.0.30319_64\\temp",
 "c:\\windows\\assembly\\temp", "c:\\windows\\temp",
 "c:\\windows\\system32\\driverstore\\temp",
 "c:\\windows\\winsxs\\temp"}
In[2598]:= SearchDir["Mathematica"]
Out[2598]= {"c:\\mathematica", "c:\\programdata\\mathematica",
 "c:\\program files\\wolfram research\\mathematica",
 "c:\\program files\\wolfram research\\mathematica\\10.1
 \\addons\\packages\\ guikit\\src\\mathematica",
 "c:\\users\\aladjev\\appdata\\local\\mathematica",
 "c:\\users\\aladjev\\appdata\\roaming\\mathematica",
 "c:\\users\\aladjev\\mathematica",
 "c:\\users\\all users\\mathematica", "e:\\mathematica"}

It is once again expedient to note that the mechanism of objects typification
which the Mathematica system has, is a significantly inferior to the similar
mechanism of the Maple system, but only relatively to the built-in types of
testing of objects. Meanwhile, and means of the Mathematica system allow
to test types of the most important objects. So, the system FileType function
provides the checking be a directory or a datafile as illustrates the following
simple enough examples, namely:

In[3742]:= FileType["D:\\Math_myLib"]
Out[3742]= Directory
In[3743]:= FileType["D:\\Math_myLib\\ArtKr.mx"]

V.Z. Aladjev, V.A. Vaganov

 410

Out[3743]= File
In[3744]:= FileExistsQ["D:\\Math_myLib\\ArtKr.mx"]
Out[3744]= True
In[3745]:= FileExistsQ["D:\\Math_myLib"]
Out[3745]= True

In the mean time, these means yield to our procedures isFile and isDir for
the Maple system, providing testing of datafiles and directories respectively
[47]. Thus, the isFile procedure not only tests the existence of a datafile, but
also the mode of its opening, what in certain cases is very important. There
are other interesting enough means for testing of the state of directories and
datafiles, including their types [25,47]. On the other hand, the Mathematica
system posesses the FileExistsQ function that returns True if a tested object
is a datafile or directory what from standpoint of file system of the computer
is quite correctly while for the user working with datafiles it is not the same
what rather visually illustrates the following very simple example, namely:

In[2645]:= F := "C:\\Mathematica"; If[FileExistsQ[F], OpenRead[F];
 Read[F], Message[F::file, "file is absent"]]
 OpenRead::noopen: Cannot open C:\\Mathematica. >>
 Read::openx: C:\\Mathematica is not open. >>
Out[2645]= Read["D:\\Mathematica"]

Check by means of the FileExistsQ function defines existence of the datafile
F (though instead of it the directory is specified), then the attempt to open this
datafile F on the reading with the subsequent reading its first logical record
are done, but both these procedures of access are completed with return of
erroneous diagnostics. Therefore for this purpose it is necessary to use the
testing function IsFile combining the functions FileExistsQ and DirectoryQ
or somewhat more complex organized procedure whose call FileQ[f] returns
True if the string f defines a real–existing datafile, and False otherwise. The
FileQ procedure serves sooner for a some illustration of development tools
of the procedures oriented on working with file system of the computer. The
fragment represents source codes of both means with examples of their use.

In[2622]:= IsFile[x_] := If[FileExistsQ[x], If[! DirectoryQ[x], True, False],
 False]; Map[FileType, {"c:\\mathem", "c:\\mathem\\ap.doc"}]

Out[2622]= {Directory, File}

Extension of Mathematica system functionality

 411

In[2623]:= FileQ[f_ /; StringQ[f]] := Module[{d = Adrive[], s = {}, k = 1,
 a = ToLowerCase[StringReplace[Flatten[OpenFiles[]], "\\\\" –> "/"]],
 b = ToLowerCase[StringReplace[Directory[], "\\" –> "/"]],
 c = ToLowerCase[StringReplace[f, "\\" –> "/"]]},
 For[k, k <= Length[d], k++, AppendTo[s, d[[k]] <> ":"]];
 If[StringLength[c] < 2 ||
 ! MemberQ[ToLowerCase[s], StringTake[c, {1, 2}]], c = b <> "/" <> c, Null];
 If[DirQ[c], False, If[MemberQ[a, c], True,
 If[Quiet[OpenRead[c]] === $Failed, False, Close[c]; True]]]]

In[2624]:= Map[FileQ, {"c:/Temp/Cinema.txt", "Book_3.doc", "E:/Art.Kr"}]
Out[2624]= {True, True, False}

For the differentiated testing of files the FileType function is used too:

In[2552]:= Map[FileType, {"c:/Mathematica", "c:/Mathematica/ap.doc"}]
Out[2552]= {Directory, File}

The Mathematica system has also some other similar testing means oriented
on processing of elements of file system of the computer. A number of such
functions has been considered slightly above along with our means. So, the
following fragment represents procedure, whose call EmptyFileQ[f] returns
True if a datafile f is empty, and False otherwise.

In[2640]:= EmptyFileQ[f_ /; StringQ[f], y___] := Module[{a, b, c, d = {}, k = 1},
 If[FileExistsQ[f], b = {f}, c = Art26Kr18; ClearAll[Art26Kr18];
 a = FileExistsQ1[f, Art26Kr18]];
 If[! a, Return[$Failed], b = Art26Kr18; Art26Kr18 = c];
 While[k <= Length[b], AppendTo[d, Quiet[Close[b[[k]]]];
 If[Quiet[Read[b[[k]]]] === EndOfFile, Quiet[Close[b[[k]]]; True],
 Quiet[Close[b[[k]]]]; False]]; k++]; d = If[Length[d] == 1, d[[1]], d];
 If[{y} != {}, {d, If[Length[b] == 1, b[[1]], b]}, d]]

In[2641]:= Map[EmptyFileQ, {"c:/temp/cinema.txt", "c:/temp/cinema.doc"}]
Out[2641]= {False, True}

In[2642]:= EmptyFileQ["cinema.txt"]
Out[2642]= {False, True, False, False, False, True, False}

V.Z. Aladjev, V.A. Vaganov

 412

In[2643]:= EmptyFileQ["C:\\Cinema.txt", 90]
Out[2643]= {{False, True, False, False, False, True, False},
 "C:\\GrGU_Books\\Cinema.txt", "C:\\Mathematica\\Cinema.txt",
 "C:\\Program Files\\Wolfram Research\\Mathematica\\10.1\\
 Cinema.txt", "C:\\Program Files\\Wolfram Research\\
 Mathematica\\10.1\\SystemFiles\\Links\\Cinema.txt",
 "C:\\Temp\\Cinema.txt", "E:\\Cinema.txt",
 "E:\\CD_Book\\Cinema.txt"}}
In[2644]:= EmptyFileQ["Appendix.doc", 90]
Out[2644]= $Failed
In[2645]:= EmptyFileQ["E:\\Cinema.txt", 500]
Out[2645]= {True, "E:\\Cinema.txt"}

If a datafile f is absent in file system of the computer, the call EmptyFileQ[f]
returns the $Failed. Moreover, if in the course of search of the datafile f its
multiplicity in file system of the computer is detected, all datafiles from list
of the found datafiles are tested, including also datafiles that are located in
the Recycle Bin directory. At that, the procedure call EmptyFileQ[f, y] with
two actual arguments where optional argument y – an expression, returns
the nested 2–element list whose first sublist defines emptiness/nonemptiness
(True|False) of the datafile f in the list of datafiles of the same name whereas
the second sublist defines full paths to the datafiles f of the same name. At
that, between both sublists the one–to–one correspondence takes place. The
previous fragment represents both source code, and the typical examples of
usage of the EmptyFileQ procedure.

The FindSubDir procedure provides search of the full paths that contain a
subdirectory x given by a full name in file system of the computer or in file
system of the given devices of direct access that are determined by names in
string format. The procedure call FindSubDir[x] returns the list of full paths
within all file system of the computer, while the call FindSubDir[x, y, z,…] –
within only file system of the devices {y, z,…}. The next fragment represents
source code of the FindSubDir procedure with examples of its application.

In[2542]:= FindSubDir[x_ /; StringQ[x], y___] := Module[{b = {}, c = "", p, t,
 k = 1, a = If[{y} == {}, Adrive[], {y}], f = "Art26Kr18.txt",
 h = ToLowerCase[x]},

Extension of Mathematica system functionality

 413

 While[k <= Length[a], Run["Dir ", a[[k]] <> ":\\", " /B/S/L > "<>f];
 While[! SameQ[c, "EndOfFile"], c = ToString[Read[f, String]];
 t = FileNameSplit[c]; p = Flatten[Position[t, h]];
 If[p != {} && DirectoryQ[FileNameJoin[t[[1 ;; p[[1]]]]]], AppendTo[b, c]];
 Continue[]]; Closes[f]; c = ""; k++]; {DeleteFile[f], b}[[2]]]

In[2543]:= FindSubDir["Dell Inc"]
Out[2543]= {"c:\\program files\\dell inc", "c:\\program files\\dell inc\\
 dell edoc viewer", "c:\\program files\\dell inc\\dell edoc viewer\\
 eddy.ini", "c:\\program files\\dell inc\\dell edoc viewer\\
 edocs.exe", "c:\\program files\\dell inc\\dell edoc viewer\\
 helppaneproxy.dll", "c:\\program files\\dell inc\\dell edoc
 viewer\\interop.helppane.dll", "c:\\program files\\dell inc\\dell
 edoc viewer\\sweepdocs.exe"}
In[2544]:= FindSubDir["Dell Inc", "F"]
Out[2544]= {}
In[2545]:= FindSubDir["AVZ_Package", "C", "E"]
Out[2545]= {"e:\\avz_package", "e:\\avz_package\\avz_package.cdf",
 "e:\\avz_package\\avz_package.m",
 "e:\\avz_package\\avz_package.mx",
 "e:\\avz_package\\avz_package.nb"}

The following FilesDistrDirs procedure in a certain degree bears structural
character for a directory given by the actual argument of the procedure. The
call FilesDistrDirs[x] returns the nested list whose elements – sublists of the
following format {dir_p, f1, f2, f3,…, fn}, where dir_p – a directory x and all
its subdirectories of any nesting level, whereas f1, f2, f3, …, fn – names of the
datafiles located in this directory. The following fragment represents source
code of the FilesDistrDirs procedure along with an example of its usage.

In[2555]:= FilesDistrDirs[x_ /; DirQ[x]] := Module[{a = {}, b, d, g, h = {}, t,
 c = FromCharacterCode[17], f = "$Art26Kr18$", k = 1},
 Run["Dir " <> StandPath[x] <> " /A/B/OG/S > " <> f];
 For[k, k < Infinity, k++, b = Read[f, String];
 If[SameQ[b, EndOfFile], DeleteFile[Close[f]]; Break[], AppendTo[a, b]]];
 b = Gather[PrependTo[a, StringReplace[x, "/" –> "\\"]],

V.Z. Aladjev, V.A. Vaganov

 414

 DirQ[#1] === DirQ[#2] &];
 d = {Sort[Map[StringJoin[#, "\\"] &, b[[1]]],
 StringCount[#1, "\\"] >= StringCount[#2, "\\"] &],
 Quiet[Check[b[[2]], {}]]}; a = Map[ToLowerCase, Flatten[d]];
 For[k = 1, k <= Length[d[[1]]], k++, t = ToLowerCase[d[[1]][[k]]];
 AppendTo[h, g = Select[a, SuffPref[#, t, 1] &&
 StringFreeQ[StrDelEnds[#, t, 1], "\\"] &]];
 a = MinusList[a, g]]; a = {};
 For[k = 1, k <= Length[h], k++, b = h[[k]];
 AppendTo[a, {b[[1]], Map[StrDelEnds[#, b[[1]], 1] &, b[[2 ;; –1]]]}]];
 Map[Flatten[#] &, a]]

In[2556]:= FilesDistrDirs["C:\\GrGU_Books"]
Out[2556]= {{"c:\\grgu_books\\avz_package\\", "avz_package.m",
 "avz_package.mx", "avz_package.nb", "avz_package.cdf"},
 {"c:\\grgu_books\\", "birthday.doc", "cinema.txt",
 "general_statistics.pdf", "general_statistics_cover.pdf",
 "iton14_5.pdf", "school.pdf"}}

The rather simple PathToFileQ function is useful at working with files and
directories, whose call PathToFileQ[x] returns True if x defines a potentially
admissible full path to a directory or datafile, and False otherwise. The next
fragment represents source code of the function with an example of its use.

In[2555]:= PathToFileQ[x_ /; StringQ[x]] := If[StringLength[x] >= 3,
 If[MemberQ[Join[CharacterRange["a", "z"], CharacterRange["A", "Z"]],
 StringTake[x, 1]] && StringTake[x, {2, 2}] == ":" &&
 And[Map3[StringFreeQ, x, {"/", "\\"}]] != {True, True}, True, False], False]

In[2556]:= Map[PathToFileQ, {"C:", "C:/", "G:/AVZ_Package", "H:\\agn",
 "C:/Temp", "C:/Temp\\Mathematica", "C:/GrSU_Books"}]
Out[2556]= {False, True, True, True, True, True, True}

Considering the circumstance, that the ideology of the file organization of
the computer quite allows in a number of cases of work with tools of access
to identify datafiles and directories, this function is represented as an useful
enough tool for both types of elements of file system of the computer.

Extension of Mathematica system functionality

 415

In a number of cases arises a necessity of reading out of a datafile entirely,
excluding from its contents the symbols "\r\n" – carriage return and line
feed. The following ReadFullFile procedure quite successfully solves this
problem. The procedure call ReadFullFile[f] returns contents of a datafile f
with replacement of its symbols "\r\n" onto symbols ""; if the datafile f is
absent in file system of the computer, the procedure call returns the $Failed.
Whereas the call ReadFullFile[f, y] in addition through the second optional
argument y – an undefinite variable – returns a full name or a full path to the
datafile f; at that, if y is a string, then y replaces in the returned contents of
the datafile f all symbols "\r\n" onto the string y. The following fragment
represents source code of the procedure along with examples of its usage.

In[2554]:= ReadFullFile[f_ /; StringQ[f], y___] := Module[{a, b = $Art6Kr$},
 If[FileExistsQ[f], a = f, ClearAll[$Art6Kr$];
 If[! FileExistsQ1[f, $Art6Kr$], Return[$Failed],
 a = $Art6Kr$[[1]]]]; $Art6Kr$ = b;
 StringReplace[StringJoin[Map[
 FromCharacterCode, BinaryReadList[a]]],
 "\r\n" –> If[{y} != {}, If[StringQ[y], y,
 If[! HowAct[y], y = a; "", ""]], ""]]]

In[2555]:= ReadFullFile["Cinema.txt", t]
Out[2555]= "http://100trav.com/ochishhenie-sosudov.html?utm_source=
 directadvert&utm_medium=ochishhenie-sosudov.html&utm_campaign=
 directadvert.ru
 http://www.worldlento4ka.com/russkiye-serialy/
 http://www.worldlento4ka.com/7820-cherta-2014.html – 5
 http://www.worldlento4ka.com/7830-ment-v-zakone-9-2014.html"
In[2556]:= t
Out[2556]= "C:\\GrGU_Books\\Cinema.txt"
In[2557]:= ReadFullFile["AvZAgnVsvArtKr.doc"]
Out[2557]= $Failed
In[2558]:= ReadFullFile["DataFile.txt"]
Out[2558]= "AvzAgnVsvArtKrRansIan2015"
In[2559]:= ReadFullFile["DataFile.txt", " | "]
Out[2559]= "Avz | Agn | Vsv | Art | Kr | Rans | Ian | 2015 | "

V.Z. Aladjev, V.A. Vaganov

 416

Once again it is necessary to remind that all elements of file system of the
computer should be coded with the separators determined by the predefined
$PathnameSeparator variable, by default as a separator the double backslash
"\\" is used. Meanwhile, in the Mathematica system in general the double
backslash "\\" and the slash "/" are distinguished as separators, namely: if
the double backslash plays a part of standard separator of elements of file
system of the computer, then the slash can also quite carry out this function,
excepting a case when the slash is coded at the end of a chain of directories
or at its use in a call of the Run function as a whole. For elimination of the
first situation we created the simple DirQ function considered above.

In[2567]:= Map[DirectoryQ, {"C:\\Program Files (x86)/Maple 11/",
 "C:/Program Files (x86)/Maple 11\\", "C:/Program Files (x86)/Maple 11"}]
Out[2567]= {False, True, True}

In[2568]:= Map[DirQ, {"C:\\Program Files (x86)/Maple 11/",
 "C:/Program Files (x86)/Maple 11\\", "C:/Program Files (x86)/Maple 11"}]
Out[2568]= {True, True, True}

At that, the call SetPathSeparator[x] of a simple procedure makes setting of
a separator "\\" or "/" for paths to datafiles/directories for a period of the
current session with returning of a new separator in string format as the next
simple enough fragment rather visually illustrates.

In[2642]:= $PathnameSeparator
Out[2642]= "\\"

In[2643]:= SetPathSeparator[x_ /; MemberQ[{"/", "\\"}, x]] := Module[{},
 Unprotect[$PathnameSeparator]; $PathnameSeparator = x;
 SetAttributes[$PathnameSeparator, Protected]]

In[2644]:= {SetPathSeparator["/"]; $PathnameSeparator,
 SetPathSeparator["\\"]; $PathnameSeparator}
Out[2644]= {"/", "\\"}

In[2645]:= StandPath[x_ /; StringQ[x]] := Module[{a, b = "", c, k = 1},
 If[MemberQ[Flatten[Outer[StringJoin, CharacterRange["a", "z"],
 {":/", ":\\"}]], c = ToLowerCase[x]], StringReplace[c, "/" –> "\\"],
 If[PathToFileQ[x], a = FileNameSplit[

Extension of Mathematica system functionality

 417

 StringReplace[ToLowerCase[ToLowerCase[x]], "/" –> "\\"]];
 For[k, k <= Length[a], k++, c = a[[k]];
 If[! StringFreeQ[c, " "], b = b <> StrStr[c] <> "\\",
 b = b <> c <> "\\"]]; StringTake[b, {1, –2}], ToLowerCase[x]]]]

In[2646]:= StandPath["C:/Program Files\\Wolfram
 Research/Mathematica/10.1/"]
Out[2646]= "c:\\\"program files\"\\\"wolfram research\"\\
 mathematica\\10.1
In[2647]:= Map[StandPath, {"C:/", "C:\\", "E:/"}]
Out[2647]= {"c:\\", "c:\\", "e:\\"}
In[2648]:= StandPath["AvzAgnVsvArtKt.TXT"]
Out[2648]= "avzagnvsvartkt.txt"

So, for the Mathematica system in most cases similar to the Maple system
is also possible to use both types of separators of elements of a file system,
however the told concerns only to Windows system, for other platforms the
differences that in a number of cases are essential enough for programming
are possible. As it was noted above, using different formats for names of the
datafiles and full paths to them, we obtain an opportunity to open the same
physical datafile in different streams, that in certain cases provides at times

simplification of processing of datafiles. Meanwhile, in certain cases similar
opportunity complicates the algorithms linked with processing of datafiles,
for example, a datafile created on the basis of one format of name generally
won't be recognized by standard means on the basis of another format:

In[2652]:= Write["RANS_IAN.txt"]; Close["Rans_Ian.txt"]
 General::openx: Rans_Ian.txt is not open. >>
Out[2652]= Close["Rans_Ian.txt"]
In[2653]:= Close["RANS_IAN.txt"]
Out[2653]= "RANS_IAN.txt"

Thus, correct use of datafiles names and paths to them assumes, generally,
work with the same format, as it illustrates the above example. Therefore as
a quite simple reception allowing to unify names of datafiles/directories and
paths to them it is possible to offer the following standard – the symbols that
compose names of datafiles and paths to them are coded in the lower case whereas as
separators the double backslashes "\\" are used.

V.Z. Aladjev, V.A. Vaganov

 418

This problem is solved successfully by quite simple procedures StandPath
and FileDirStForm, the source code of the first procedure with examples of
application are represented in the previous fragment. So, the procedure call
StandPath[x] in the above standardized format returns a datafile, directory
or full paths to them. Moreover, the StandPath procedure for testing of an
admissibility of an argument x as a real path uses the PathToFileQ function
presenting independent interest and providing the correctness of processing
of the paths containing gap symbols. So, the usage by the DirFD procedure
of the StandPath procedure allows to obtain quite correctly contents of any
directory of file system of the computer which contains gap symbols and on
which the Dir command of DOS system doesn't yield result as very visually
the simple examples illustrate [30-33]. The StandPath procedure can be used
rather effectively at development of different means of access in file system
of the computer; moreover, the procedure is used by a number of means of
access to the datafiles that are considered in the present book along with the
means represented in the AVZ_Package package [48].

The Mathematica system has two standard functions RenameDirectory and
RenameFile for ensuring renaming of directories and datafiles of file system
of the computer respectively. Meanwhile, from the point of view of the file
concept these functions would be very expedient to be executed by uniform
means because in this concept directories and datafiles are in many respects
are identical and their processing can be carried out by the same means. At
the same time the mentioned standard functions and on restrictions are quite
identical, namely: for renaming of name x of an element of file system onto
a new name y the element with the name y has to be absent in the system,
otherwise $Failed with a diagnostic message are returned. Moreover, if as y
only a new name without full path to a new element y is coded, its copying
into the current directory is made; in case of a directory x it with all contents
is copied into the current directory under a new name y. Therefore, similar
organization is rather inconvenient in many respects, what stimulated us to
determine for renaming of directories and datafiles the uniform RenDirFile
procedure which provides renaming of an element x (directory or datafile) in
situ with preservation of its type and all its attributes; at that, as argument y
a new name of the element x is used. Therefore the successful procedure call
RenDirFile[x, y] returns the full path to a renamed element x. In the case of

Extension of Mathematica system functionality

 419

existence of an element y the message "Directory/datafile <y> already exists"
is returned. In other unsuccessful cases the procedure call returns the $Failed
or is returned unevaluated. The next fragment represents source code of the
RenDirFile procedure along with examples of its most typical usage.

In[2632]:= RenDirFile[x_ /; FileExistsQ[x] || DirectoryQ[x],
 y_ /; StringQ[y]] := Module[{b = StandPath[StringTrim[x, {"/", "\\"}]],
 a = If[FileExistsQ[x], RenameFile, RenameDirectory],
 c = StandPath[StringTrim[y, {"/", "\\"}]]},
 If[PathToFileQ[b] && PathToFileQ[c] &&
 FileNameSplit[b][[1 ;; –2]] == FileNameSplit[c][[1 ;; –2]],
 Quiet[Check[a[b, c], "Directory/datafile <" <> y <> "> already exists"]],
 If[PathToFileQ[b] && ! PathToFileQ[c],
 Quiet[Check[a[b, FileNameJoin[Append[FileNameSplit[b][[1 ;; –2]],
 StringReplace[c, {"/" –> "", "\\" –> ""}]]]],
 "Directory/datafile <" <> y <> "> already exists"]],
 If[! PathToFileQ[b] && ! PathToFileQ[c],
 Quiet[Check[a[b, StringReplace[c, {"/" –> "", "\\" –> ""}]],
 "Directory/datafile <" <> y <> "> already exists"]], $Failed]]]]

In[2633]:= RenDirFile["C:/Temp\\Books.doc", "Books_GrSU.doc"]
Out[2633]= "c:\\temp\\books_grsu.doc"
In[2634]:= RenDirFile["C:/Temp/Noosphere Academy", "Rans_Ian"]
Out[2634]= "c:\\temp\\rans_ran"
In[2635]:= RenDirFile["C:\\Temp/Kino Online.txt", "Cinema Online.txt"]
Out[2635]= "c:\\temp\\cinema online.txt"
In[2636]:= RenDirFile["RANS_IAN.txt", "ArtKr.txt"]
Out[2636]= "C:\\Users\\Aladjev\\Documents\\artkr.txt"
In[2637]:= RenDirFile["RANS_IAN.txt", "ArtKr.txt"]
Out[2637]= RenDirFile["RANS_IAN.txt", "ArtKr.txt"]
In[2638]:= RenDirFile["C:/Temp\\agn", "Agn"]
Out[2638]= "Directory/datafile <Agn> already exists"
In[2639]:= RenDirFile["C:/Temp\\Avz.doc", "Agn.doc"]
Out[2639]= "c:\\temp\\agn.doc"

The special tools of processing of files and directories are considered below.

V.Z. Aladjev, V.A. Vaganov

 420

7.5. Certain special means of processing of datafiles and
directories

In the given section some special tools of processing of directories and files
are represented; in certain cases they can be useful enough. So, removal of a
datafile in the current session is made by means of the standard DeleteFile
function whose call DeleteFile[{x, y, z,...}] returns Null, i.e. nothing in case of
successful removal of the given datafile or their list, and $Failed otherwise.
At that, in the list of datafiles only those are deleted that have no Protected–
attribute. Moreover, this operation doesn't save the deleted datafiles in the
system Recycle Bin directory, that in certain cases is extremely undesirable,
first of all, in the light of possibility of their subsequent restoration. The fact
that the system function DeleteFile is based on the Dos command Del that
according to specifics of this operating system immediately deletes a datafile
from file system of the computer without its preservation, that significantly
differs from similar operation of the Windows system that by default saves
the deleted datafile in the special Recycle Bin directory.

For elimination of similar shortcoming the DeleteFile1 procedure has been
offered, whose source code with examples of application are represented by
the fragment below. The successful procedure call DeleteFile1[x] returns 0,
deleting datafiles given by an argument x with saving them in the Recycle
Bin directory of the Windows system. Meanwhile, the datafiles removed by
means of procedure call DeleteFile1[x] are saved in Recycle Bin directory,
however they are invisible to viewing by the system means, for example, by
means of Ms Explorer, complicating cleaning of the given system directory.
Whereas the procedure call DeleteFile1[x, t] with the 2nd optional argument
t – an undefinite variable – thru it in addition returns the list of datafiles which
for one reason or another were not removed. At that, in the system Recycle
Bin directory a copy only of the last deleted datafile always turns out. This
procedure is oriented on Windows XP and Windows 7, however it can be
spread to other operational platforms. The fragment below represents source
code of the DeleteFile1 procedure along with some examples of its usage.

For restoration from the system directory Recycler Bin of the packages that
were removed by means of the DeleteFile1 procedure on the Windows XP

Extension of Mathematica system functionality

 421

platform, the RestoreDelPackage procedure providing restoration from the
system directory Recycler Bin of such packages has been offered [30,48]. The
successful call RestoreDelPackage[F, "Context'"], where the first argument
F determines the name of a file of the format {"cdf", "m", "mx", "nb"} that is
subject to restoration whereas the second argument – the context associated
with a package returns the list of full paths to the restored files, at the same
time by deleting from the directory Recycler Bin the restored datafiles with
the necessary package. At that, this means is supported on the Windows XP
platform while on the Windows 7 platform the RestoreDelFile procedure is
of a certain interest, restoring datafiles from the directory Recycler Bin that
earlier were removed by means of the DeleteFile1 procedure.

The successful call RestoreDelFile[F, r], where the first argument F defines
the name of a datafile or their list that are subject to restoration whereas the
second argument determines the name of a target directory or full path to it
for the restored datafiles returns the list of paths to the restored datafiles; at
the same time, the deleting of the restored files from the directory Recycler
Bin isn't done. In the absence of the requested files in the directory Recycler
Bin the procedure call returns the empty list, i.e. {}. It should be noted that
only nonempty datafiles are restored. If the second argument r determines a

directory name in string format, but not the full path to it, a target directory
r is created in the active directory of the current session. The next fragment
represents source code of the procedure along with examples of its usage.

On the other hand, for removal from the Recycle Bin directory of datafiles
saved by means of the DeleteFile1 procedure on the Windows XP platform,
the procedure is used whose call ClearRecycler[] returns 0, deleting files of
the specified type from the system Recycle Bin directory with saving in it of
the datafiles removed by means of Windows XP or its appendices. At last,
the Dick Cleanup command in Windows XP in some cases completely does
not clear the system Recycler directory from files what successfully does the
procedure call ClearRecycler["ALL"], returning 0 and providing removal
of all datafiles from the system Recycler directory. In [30,48] it is possible to
familiarize with source code of the ClearRecycler procedure and examples
of its usage. On the Windows 7 platform the ClearRecyclerBin procedure
provides removal from the system Recycler directory of all directories and
datafiles or only of those that are caused by the DeleteFile1 procedure. The

V.Z. Aladjev, V.A. Vaganov

 422

successful procedure call ClearRecyclerBin[] returns Null, i.e. nothing, and
provides removal from the system Recycle Bin directory of directories and
datafiles that are caused by the DeleteFile1 procedure. While the procedure
call ClearRecyclerBin[x], where x – a some expression – also returns Null, i.e.
nothing, and provides removal from the system Recycle Bin directory of all
directories and datafiles whatever the cause of their appearance in the given
directory. At that, the procedure call on the empty Recycler directory returns
$Failed. The fragment below represents source code of the procedure along
with typical examples of its usage.

In[2552]:= DeleteFile1[x_ /; StringQ[x] || ListQ[x], y___] := Module[{d, p, t,
 a = Map[ToString, Flatten[{x}]], b, c = $ArtKr$},
 b = If[! StringFreeQ[Ver[], " XP "],
 FilesDistrDirs[BootDrive[][[1]] <> ":\\Recycler"][[1]],
 p = 90; ClearAll[$ArtKr$];
 If[FileExistsQ1["$recycle.bin", $ArtKr$], d = $ArtKr$[[1]],
 Return[$Failed]];
 b = SortBy[Select[Flatten[FilesDistrDirs[d]], DirectoryQ[#] &],
 Length[#] &][[2]]]; $ArtKr$ = c;
 c = Map[StandPath, Map[If[StringFreeQ[#, ":"],
 Directory[] <> "\\" <> #, #] &, a]];
 t = Map[Run["Copy /Y " <> # <> " " <>
 If[p == 90, b <> FileNameSplit[#][[–1]], b[[1]]]] &, c];
 t = Position[t, 1]; c = If[t != {}, MinusList[c, b = Extract[c, t]], Null];
 If[t != {} && {y} != {} && ! HowAct[y], Quiet[y = b], Quiet[y = {}]];
 Map[{Attrib[#, {}], Quiet[DeleteFile[#]]} &, c]; 0]

In[2553]:= DeleteFile1[{"Buthday1.doc", "c:/Mathematica\\desktop1.ini",
 "C:/Temp/Agn/cinema.txt", "Help.txt", "Cinema.txt", "copy.txt"}, t67]
Out[2553]= 0
In[2554]:= t67
Out[2554]= {"c:\\temp\\agn\\cinema.txt",
 "c:\\users\\aladjev\\documents\\help.txt",
 "c:\\users\\aladjev\\documents\\cinema.txt",
 "c:\\users\\aladjev\\documents\\copy.txt"}

Extension of Mathematica system functionality

 423

In[2555]:= DeleteFile1[{"AvzKr.m", "AgnArt.nb"}]
Out[2555]= 0
In[2556]:= DeleteFile1["C:/Documents and Settings/Cinema Online.txt"]
Out[2556]= 0

In[2642]:= RestoreDelFile[f_ /; StringQ[f] || ListQ[f], r_ /; StringQ[r]] :=
 Module[{b = ToString[Unique["ag"]], c, p = $ArtKr$,
 t = Map[StandPath, Flatten[{f}]], h},
 ClearAll[$ArtKr$]; If[FileExistsQ1["$recycle.bin", $ArtKr$],
 d = $ArtKr$[[1]]; $ArtKr$= p, Return[$Failed]];
 Run["Dir " <> d <> "/B/S/L > " <> b];
 If[EmptyFileQ[b], $Failed, Quiet[CreateDirectory[r]];
 c = ReadList[b, String]]; DeleteFile[b];
 h[x_, y_] := If[FileExistsQ[x] && SuffPref[x, "\\" <> y, 2],
 CopyFileToDir[x, StandPath[r]], "Null"];
 c = Select[Flatten[Outer[h, c, t]], ! SameQ[#, "Null"] &]]

In[2643]:= RestoreDelFile[{"Books.txt", "History.doc"}, "restore"]
Out[2643]= {}
In[2644]:= RestoreDelFile[{"Cinema.txt", "Buthday.doc"}, "restore"]
Out[2644]= {"restore\\buthday.doc", "restore\\cinema.txt"}
In[2645]:= RestoreDelFile["Cinema.txt", "c:/Temp/restore"]
Out[2645]= {"c:\\temp\\restore\\cinema.txt"}
In[2646]:= RestoreDelFile[{"Cinema.txt", "Buthday.doc", "Grodno1.doc",
 "Copy.txt"}, "C:/restore"]
Out[2646]= {"C:\\restore\\buthday.doc", "C:\\restore\\cinema.txt",
 "C:\\restore\\copy.txt"}

In[2660]:= ClearRecyclerBin[x___] := Module[{a, c = $ArtKr$, d, p,
 b = ToString[Unique["ag"]]}, ClearAll[$ArtKr$];
 If[! FileExistsQ1["$recycle.bin", $ArtKr$], $Failed,
 d = StandPath[$ArtKr$[[1]]]; $ArtKr$ = c;
 Run["Dir " <> d <> "/B/S/L > " <> b]; p = ReadList[b, String];
 DeleteFile[b]; If[p == {}, Return[$Failed],
 Map[If[{x} == {}, If[SuffPref[a = FileNameSplit[#][[–1]], "$", 1] ||

V.Z. Aladjev, V.A. Vaganov

 424

 a === "desktop.ini", Null, Attrib[#, {}];
 If[FileExistsQ[#], Quiet[Check[DeleteFile[#],
 DeleteDirectory[#, DeleteContents –> True]]],
 Quiet[Check[DeleteDirectory[#, DeleteContents –> True],
 DeleteFile[#]]]]],
 If[FileNameSplit[#][[–1]] == "desktop.ini", Null, Attrib[#, {}];
 If[DirQ[#], Run["RD /S/Q " <> #], Run["Del /F/Q " <> #]]]] &, p];]]]

In[2661]:= ClearRecyclerBin[]
In[2662]:= ClearRecyclerBin[500]
In[2663]:= ClearRecyclerBin[]
Out[2663]= $Failed

The given tools rather essentially expand the functions of the Mathematica
software of restoration of datafiles of any type and directories, removed by
means of Windows, its applications, our procedure DeleteFile1 along with
effective enough cleansing of the system Recycle Bin directory.

Meanwhile, a number of tools of processing of datafiles and directories was
based on the BootDrive procedure which is correct for Windows 2000|2003|
NT|XP while since Windows 7, it is necessary to use the BootDrive1 function
whose source code with an example is given below. The call BootDrive1[]
returns the 3–element list, whose first element – homedrive, the second – the
system catalog, the third element – type of the current operating system.

In[4842]:= BootDrive1[] := Mapp[Part, GetEnvironment[{"SystemDrive",
 "SystemRoot", "OS"}], 2]

In[4843]:= BootDrive1[]
Out[4843]= {"C:", "C:\\Windows", "Windows_NT"}

Furthermore, this function can be used for an operation system, supported
by the Mathematica. At that the type of an operating system in some cases
by the call GetEnvironment[] is returned incorrectly; the presented example
concerns Windows 7, but Windows_NT has been received.

Values of the global variables $System, $SystemID and $OperatingSystem
define the strings describing the current operational platform. Meanwhile,
in a number of cases the specification of the current operational platform

Extension of Mathematica system functionality

 425

represented by them can be insufficient, in that case it is possible to use the
PCOS procedure, whose call PCOS[] returns the 2–element list, whose first
element determines the name of the computer owner, whereas the second
element – the type of an operating platform. The fragment below represents
source code of the PCOS procedure along with an example of its usage.

In[2593]:= {$System, $SystemID, $OperatingSystem}
Out[2593]= {"Microsoft Windows (64-bit)", "Windows-x86-64", "Windows"}

In[2594]:= PCOS[] := Module[{a = ToString[Unique["agn"]], b},
 Run["SYSTEMINFO > " <> a];
 b = Map[StringSplit[#] &, ReadList[a, String][[1 ;; 2]]];
 DeleteFile[a]; b = Map[#[[3 ;; –1]] &, b];
 {b[[1]][[1]], StringReplace[ListToString[b[[2]], " "], "\"" –> ""]}]

In[2595]:= PCOS[]
Out[2595]= {"ALADJEV–PC", "Microsoft Windows 7 Professional"}

The next useful procedure bears the general character at operating with the
devices of direct access and are useful enough in a number of applications,
first of all, of the system character. The next procedure to a great extent is an
analog of Maple–procedure Vol_Free_Space which returns a volume of free
memory on devices of direct access. The call FreeSpaceVol[x] depending on
type of an actual argument x which should define the logical name in string
format of a device, returns simple or the nested list; elements of its sublists
determine a device name, a volume of free memory on the volume of direct
access, and the unit of its measurement respectively. In the case of absence
or inactivity of the device x the procedure call returns the message "Device
is not ready". The next fragment represents source code of the FreeSpaceVol
procedure along with typical examples of its usage.

In[2590]:= FreeSpaceVol[x_ /; MemberQ3[Join[CharacterRange["a", "z"],
 CharacterRange["A", "Z"]], Flatten[{x}]]] :=
 Module[{a = ToString[Unique["ag"]], b, c = {}, d = Flatten[{x}], k = 1, t},
 For[k, k <= Length[d], k++, t = d[[k]];
 b = Run["Dir /S " <> t <> ":\\" <> " > " <> a];
 If[b != 0, AppendTo[c, {t, "Drive is not ready"}],
 b = ReadList[a, String][[–1]]; b = StringSplit[b][[–3 ;; –1]];

V.Z. Aladjev, V.A. Vaganov

 426

 AppendTo[c, {t, ToExpression[StringJoin[Select[Characters[b[[1]]],
 IntegerQ[ToExpression[#]] &]]], b[[2]]}]]];
 DeleteFile[a]; If[Length[c] == 1, c[[1]], c]]

In[2591]:= FreeSpaceVol["c"]
Out[2591]= {"c", 442106667008, "bytes"}

In[2592]:= FreeSpaceVol[{"c", "d", "e", "a"}]
Out[2592]= {{"c", 442106667008, "bytes"}, {"d", 0, "bytes"},
 {"e", 9890848768, "bytes"}, {"a", "Drive is not ready"}}

The following procedure facilitates the solution of the problem of use of the
external Mathematica programs or operational platform. The procedure call
ExtProgExe[x, y, h] provides search in file system of the computer of a {exe|
com} file with the program with its subsequent execution on parameters y
of the command string. Both arguments x and y should be encoded in string
format. Successful performance of the given procedure returns the full path
to "$TempFile$" datafile of ASCII–format containing result of execution of a
program x, and this datafile can be processed by means of standard means
on the basis of its structure. At that, in case of absence of the datafile with
the demanded program x the procedure call returns $Failed while at using
of the third optional argument h – an arbitrary expression – the datafile with
the program x uploaded into the current directory determined by the call
Directory[], is removed from this directory; also the datafile "$TempFile$"
is removed if it is empty or implementation of the program x was terminated
abnormally. The fragment below represents source code of the ExtProgExe
procedure along with typical examples of its usage.

In[2558]:= ExtProgExe[x_ /; StringQ[x], y_ /; StringQ[y], h___] :=
 Module[{a = "$TempFile$", b = Directory[] <> "\\" <> x, c},
 Empty::datafile =
 "Datafile $TempFile$ is empty; the datafile had been deleted.";
 If[FileExistsQ[b], c = Run[x, " ", y, " > ", a], c = LoadExtProg[x];
 If[c === $Failed, Return[$Failed]]; c = Run[x, " ", y, " > ", a];
 If[{h} != {}, DeleteFile[b]]]; If[c != 0, DeleteFile[a]; $Failed,
 If[EmptyFileQ[a], DeleteFile[a]; Message[Empty::datafile],
 Directory[] <> "\\" <> a]]]

Extension of Mathematica system functionality

 427

In[2559]:= ExtProgExe["HostName.exe", "", 1]
Out[2559]= "C:\\Users\\Aladjev\\Documents\\$TempFile$"
In[2560]:= ExtProgExe["Rans_Ian.exe", "", 1]
Out[2560]= $Failed
In[2561]:= ExtProgExe["tasklist.exe", " /svc ", 1]
Out[2561]= "C:\\Users\\Aladjev\\Documents\\$TempFile$"
In[2562]:= ExtProgExe["systeminfo.exe", "", 1]
Out[2562]= "C:\\Users\\Aladjev\\Documents\\$TempFile$"
In[2563]:= Select[Map[StringTake[#, {3, –1}] &, ReadList[Directory[] <>
 "\\" <> "$TempFile$", String]], # != "" &]
Out[2563]= {"ALADJEV–PC", "Microsoft Windows 7 Professional",
 "Microsoft Corporation", "Multiprocessor Free", "Aladjev", "Microsoft",
 "00371-OEM-8992671-00524", "9.08.2014, 21:45:35", "6.03.2015, 14:03:18",
 "Dell Inc.", "OptiPlex 3020", "x64-based PC", "Dell Inc. A03, 14.04.2014",
 "C:\\Windows", "C:\\Windows\\system32", "en-us; English (US)",
 "\\Device\\HarddiskVolume2", "et; Estonian",
 "(UTC+02:00) Helsinki, Kyiv, Riga, Sofia, Tallinn, Vilnius",
 "C:\\pagefile.sys", "WORKGROUP", "\\ALADJEV–PC"}

In[2564]:= ExtProgExe["qprocess.exe", "*"]
Out[2564]= "C:\\Users\\Aladjev\\Documents\\$TempFile$"

In[2565]:= k = 1; h = ""; While[! SameQ[h, EndOfFile],
 h = Read["$TempFile$", String];
 Print[h]; k++]; Close["$TempFile$"];
>aladjev console 1 1772 taskhost.exe
>aladjev console 1 1864 dwm.exe
>aladjev console 1 1900 explorer.exe
>aladjev console 1 2252 rtkngui64.exe
>aladjev console 1 2272 ravbg64.exe
>aladjev console 1 2308 igfxtray.exe
>aladjev console 1 2316 hkcmd.exe
>aladjev console 1 2344 igfxpers.exe
>aladjev console 1 2352 igfxsrvc.exe
>aladjev console 1 2408 fahwindow.exe
>aladjev console 1 2424 avg-secure-s...
>aladjev console 1 2816 skype.exe

V.Z. Aladjev, V.A. Vaganov

 428

>aladjev console 1 2956 iusb3mon.exe
>aladjev console 1 2972 avgui.exe
>aladjev console 1 3020 ishelper.exe
>aladjev console 1 3104 ctfmon.exe
>aladjev console 1 3948 firefox.exe
>aladjev console 1 2416 plugin-conta...
>aladjev console 1 4704 flashplayerp...
>aladjev console 1 4768 flashplayerp...
>aladjev console 1 1832 vprot.exe
>aladjev console 1 2644 mathematica.exe
>aladjev console 1 2304 mathkernel.exe
>aladjev console 1 4436 mathkernel.exe
>aladjev console 1 2032 totalcmd64.exe
>aladjev console 1 4276 winword.exe
>aladjev console 1 4208 splwow64.exe
>aladjev console 1 3372 notepad.exe
>aladjev console 1 3716 notepad.exe
>aladjev console 1 4956 cmd.exe
>aladjev console 1 4344 conhost.exe
>aladjev console 1 4440 qprocess.exe
EndOfFile

At last, the next procedure provides search in the given directory of chains
of subdirectories and datafiles containing a string x as own components. The
call DirFilePaths[x, y] returns the 2–element list whose first element is a list
of full paths to subdirectories of a directory y which contain components x
whereas the second element is the list of full paths to datafiles whose names
coincide with a string x.

In[3642]:= DirFilePaths[x_ /; StringQ[x], y_: BootDrive1[][[1]] <> "*.*"] :=
 Module[{c = {}, h, d = {}, b = ToString[Unique["avz"]],
 a = StringTrim[StandStrForm[x], "\\"]},
 Run["DIR /A/B/S " <> StandPath[y] <> " > " <> b];
 h = ReadList[b, String]; DeleteFile[b];
 Map[If[! StringFreeQ[StandPath[#], {"\\" <> a <> "\\", "\\" <> a}],
 If[DirectoryQ[#], AppendTo[c, #], AppendTo[d, #]], Null] &, h]; {c, d}]

Extension of Mathematica system functionality

 429

In[3643]:= DirFilePaths["cinema.txt", "c:\\Temp/"]
Out[3643]= {{}, {"c:\\temp\\Cinema.txt"}}
In[3644]:= DirFilePaths["CuteWriter.exe", "C:/Users/Aladjev/"]
Out[3644]= {{}, {"c:\\users\\aladjev\\Downloads\\CuteWriter.exe"}}
In[3645]:= DirFilePaths["CuteWriter.exe"]
Out[3645]= {{}, {"C:\\Users\\Aladjev\\Downloads\\CuteWriter.exe"}}

In the absence of the second optional argument y the procedure call instead
of it supposes BootDrive1[][[1]] <> "*.*". The previous fragment presents
source code of the procedure with some examples of its use. In certain cases
of access to file system the given procedure is an useful enough means.

In a number of problems of processing of file system of the computer along
with work with datafiles the following VolDir procedure can present quite
certain interest. The procedure call VolDir[x] returns the nested 2–element
list, whose first element determines the volume occupied by a directory x in
bytes whereas the second element determines the size of free space on a hard
disk with the given directory. Whereas procedure call DirsFiles[x] returns
the nested 2–element list, whose first element defines the list of directories
contained in a directory x, including x, and the second element defines the
list of all datafiles contained in the given directory. The following fragment
represents source codes of the above procedures with examples of their use.

In[3625]:= VolDir[x_ /; DirectoryQ[x] ||
 MemberQ[Map[# <> ":" &, Adrive[]], ToUpperCase[x]]] :=
 Module[{a = ToString[Unique["agn"]], b, c, d = StandPath[x]},
 b = Run["DIR /S " <> d <> " > " <> a];
 If[b != 0, $Failed, c = Map[StringTrim, ReadList[a, String][[–2 ;; –1]]]];
 DeleteFile[a]; c = Map[StringTrim, Mapp[StringReplace, c,
 {"ÿ" –> "", "bytes" –> "" , "free" –> ""}]];
 ToExpression[Map[StringSplit[#][[–1]] &, c]]]

In[3628]:= Map[VolDir, {"c:/users/aladjev/downloads", "e:/avz_package"}]
Out[3628]= {{2129356859, 442634944512}, {5944994, 9888374784}}

In[3655]:= DirsFiles[x_ /; DirectoryQ[x] ||
 MemberQ[Map[# <> ":" &, Adrive[]], ToUpperCase[x]]] :=
 Module[{a = ToString[Unique["ag"]], b = {x}, c = {}, d = StandPath[x], f},

V.Z. Aladjev, V.A. Vaganov

 430

 If[Run["DIR /A/B/S " <> d <> " > " <> a] != 0, $Failed,
 f = ReadList[a, String]; DeleteFile[a];
 Map[If[DirectoryQ[#], AppendTo[b, #],
 If[FileExistsQ[#], AppendTo[c, #], Null]] &, f]; {b, c}]]

In[3656]:= DirsFiles["C:\\users\\Aladjev\\downloads"]
Out[3656]= {{"c:\\users\\Aladjev\\downloads"}, …,
 "c:\\users\\aladjev\\downloads\\Mathematica_10.1.0_WIN.zip"}}

By the by, it should be noted that at processing of the list structures of rather
large size the unpredictable situations are quite possible [30-33].

So, the means presented in the given chapter sometimes rather significantly
simplify programming of the tasks dealing with file system of the computer.
Along with that these means extend functional means of access, illustrating
a number of useful enough methods of programming of problems of similar
type. These means in a number of cases very significantly supplement the
standard access means supported by system, facilitating programming of a
number of very important appendices dealing with the datafiles of various
format. Our experience of programming of the access means that extend the
similar means of the systems Maple and Mathematica allows to notice that
basic access means of the Mathematica system in combination with its global
variables allow to program more simply and effectively the user`s original
access means. Moreover, the created access means possess sometimes by the
significantly bigger performance in relation to the similar means developed
in the environment of the Maple software. So, in the environment of the
Mathematica system it is possible to solve the problems linked with rather
complex algorithms of processing of datafiles while in the environment of
the Maple system, first of all, in case of large enough datafiles the efficiency
of such algorithms leaves much to be desired. In a number of appendices
the means, presented in the present chapter along with other similar means
from our package [48] are represented as rather useful, by allowing at times
to essentially simplify programming. Meanwhile, it must be kept in mind, a
whole series of the means that are based on the Run function and the DOS
commands generally can be nonportable onto other versions of the system
and an operational platform, demanding the corresponding adaptation onto
appropriate new conditions.

Extension of Mathematica system functionality

 431

Chapter 8. The manipulations organization with the user
packages in the Mathematica software

Similarly to the well-developed software the Mathematica is the extendable
system, i.e. in addition to the built–in means that quite cover requirements
of quite wide range of the users, the system allows to program those means
that absent for the specific user in environment of the built-in language, and
also to extend and correct standard means. Moreover, the user can find the
missing means which are not built-in, in the numerous packages both in the
packages delivered with the Mathematica, and separately existing packages
for various applied fields. The question consists only in finding of a package
necessary for a concrete case containing definitions of the functions, modules
and other objects demanded for an application programmed in the system.
A package has the standard organization and contains definitions of various
objects, somehow the functions, procedures, variables, etc., that solve well–
defined problems. In return the Mathematica system provides a standard
set of packages whose composition is defined by the concrete version of the
system. For receiving of composition of the packages that are delivered with
the current release of the Mathematica it is possible to use the procedure,
whose the call MathPackages[] returns the list of names of packages, whose
names with a certain confidence speak about their basic purpose. Whereas
the call MathPackages[x] with optional argument x – an undefinite variable –
provides through it in addition return of the three–element list whose first
element defines the current release of the Mathematica system, the second
element – type of the license and the third element – a deadline of action of
the license. The following fragment represents source code of the procedure
along with examples of its most typical usage.

In[2590]:= MathPackages[h___] := Module[{c = $InstallationDirectory, b,
 a = "$Kr18Art26$", d},
 d = Run["Dir " <> StandPath[c] <> "/A/B/O/S > $Kr18Art26$"];
 If[d != 0, $Failed, d = ReadList[a, String]; DeleteFile[a];
 b = Map[If[! DirectoryQ[#] && FileExtension[#] == "m",
 FileBaseName[#], "Null"] &, d]; b = Select[b, # != "Null" &];
 b = MinusList[DeleteDuplicates[b], {"init", "PacletInfo"}];

V.Z. Aladjev, V.A. Vaganov

 432

 If[{h} != {} && ! HowAct[h], h = {$Version, $LicenseType,
 StringJoin[StringSplit[StringReplace[DateString[
 $LicenseExpirationDate], " " –> "* "], "*"][[1 ;; –2]]]}]]; Sort[b]]

In[2591]:= MathPackages[]
Out[2591]= {"AbelianGroup", "AbortProtect", "Abs", "AbsoluteDashing",
 "AbsoluteOptions", "AbsolutePointSize", "AbsoluteThickness",
 "AbsoluteTime", "accessodbc", "AccountData", …………………,
 ………………………………………………………………….……..
 "WriteDemo", "WriteString", "Wronskian", "WSDL", "XBox",
 "XGRID", "XML", "XMLElement", "XMLObject", "XMLSchema",
 "Xnor", "Xor", "ZapfDingbats", "ZernikeR", "ZeroTest", "Zeta",
 "ZetaZero", "Zip", "ZipfDistribution", "ZTest", "ZTransform"}
In[2592]:= Length[%]
Out[2592]= 2563
In[2593]:= MathPackages[Sv]; Sv
Out[2593]= {"10.1.0 for Microsoft Windows (64-bit) (March 24, 2015)",
 "Professional", "Wed 21 Oct"}

From the given fragment follows that the Mathematica system of version
10.1 contains 2563 packages oriented on various appendices, including the
packages of strictly system purpose. Before use of means that are contained
in a certain applied package, this package should be previously uploaded
into the current session by means of the function call Get[Package].

8.1. Concept of the context, and its use in the software of
the Mathematica system

The context concept has been entered into the program environment of the
system for organization of operation with symbols which represent various
objects (modules, functions, packages, variables and so on), in particular, in order
to avoid the possible conflicts with the symbols of the same name. The main
idea consists in that that the full name of an arbitrary symbol consists of two
parts, namely: a context and a short name, i.e. the full name of some object
has the next format: "context'short name" where the symbol <'> (backquote)
carries out the role of some marker identifying a context in the software of

Extension of Mathematica system functionality

 433

the system. For example, Avzagn'Vsv represents a symbol with the context
Avzagn and with short name Vsv. At that, with such symbols it is possible
to execute various operations as with usual names; furthermore, the system
considers aaa'xyz and bbb'xyz as various symbols. The most widespread use
of context consists in its assignment to functionally identical or semantically
connected symbols. For example,

AladjevProcedures`StandPath, AladjevProcedures`MathPackages

the procedures StandPath and MathPackages belong to the same group of
the means associated with "AladjevProcedures'" context that is ascribed to
our AVZ_Package package [48]. The current context is defined any moment
of the system session, the context is in the global variable $Context:

In[2562]:= $Context
Out[2562]= "Global`"

In the current Mathematica session the current context by default is defined
as "Global'". While the global variable $ContextPath determines the list of
contexts after the variable $Context for search of a symbol entered into the
current session. It is possible to reffer to symbols from the current context
simply by their short names; at that, if this symbol is crossed with a symbol
from the list determined by the $ContextPath variable, the second symbol
will be used instead of a symbol from the current context, for example:

In[2563]:= $ContextPath

Out[2563]= {"AladjevProcedures`", "TemplatingLoader`", "PacletManager`",
 "System`", "Global`"}

Whereas the calls Context[x] and Contexts[] return the context ascribed to a
symbol x and the list of all contexts of the current session respectively:

In[2564]:= Context[ActUcontexts]
Out[2564]= "AladjevProcedures`"

In[2565]:= Contexts[]
Out[2565]= {"AladjevProcedures`", "AladjevProcedures`ActBFMuserQ`",
"AladjevProcedures`ActRemObj`", "AladjevProcedures`ActUcontexts`", …,
===
"WSMLink`", "XML`", "XML`MathML`", "XML`MathML`Symbols`",
 "XML`NotebookML`", "XML`Parser`", "XML`RSS`", "XML`SVG`"}

V.Z. Aladjev, V.A. Vaganov

 434

At that, by analogy with file system of the computer, contexts quite can be
compared with directories. It is possible to determine the path to a datafile,
specifying a directory containing it and a name of the datafile. At the same
time, the current context can be quite associated with the current directory
to datafiles of which can be referenced simply by their names. Furthermore,
like file system the contexts can have hierarchical structure, in particular:

"Visualization`VectorFields`VectorFieldsDump`".
So, the path of search of a context of symbols in the Mathematica system is
similar to a path of search of program files. At the beginning of the session
the current context by default is "Global'", and all symbols entered into the
session will be associated with this context, except for the built–in symbols,
for example, Do, which are associated with context "System'". The path of
search of contexts by default includes contexts for system–defined symbols.
Whereas for the symbols removed by means of the Remove function, the
context can't be defined, for example:
In[2565]:= Avz := 500; Context["Avz"]
Out[2565]= "Global`"
In[2566]:= Remove["Avz"]; Context["Avz"]
 Context::notfound: Symbol Avz not found. >>
Out[2566]= Context["Avz"]

At using of the contexts there is no guarantee that two symbols of the same
name are available in various contexts. Therefore the Mathematica defines
as a maximum priority the priority of choice of that symbol with this name,
whose context is the first in the list which is defined by the global variable
$ContextPath. Therefore, for the placement of such context in the beginning
of the specified list it is possible to use the following simple construction:
In[2568]:= $ContextPath
Out[2568]= {"AladjevProcedures`", "TemplatingLoader`", "PacletManager`",
 "System`", "Global`"}
In[2569]:= PrependTo[$ContextPath, "RansIanAvz`"]
Out[2569]= {"RansIanAvz`", "AladjevProcedures`", "TemplatingLoader`",
 "PacletManager`", "System`", "Global`"}
In[2570]:= $ContextPath
Out[2570]= {"RansIanAvz`", "AladjevProcedures`", "TemplatingLoader`",
 "PacletManager`", "System`", "Global`"}

Extension of Mathematica system functionality

 435

The next rather useful procedure provides assignment of the given context
to a definite or undefinite symbol. The procedure call ContextToSymbol1[x,
y, z] returns Null, i.e. nothing, providing assignment of a certain y context to
a symbol x; at that, the third optional argument z – the string, defining for x
the usage; at its absence for an undefinite symbol x the usage – empty string,
i.e. "", while for a definite symbol x the usage has view "Help on x". The next
fragment presents source code of the ContextToSymbol1 procedure along
with the most typical examples of its usage.

In[2725]:= ContextToSymbol1[x_ /; AladjevProcedures`SymbolQ[x],
 y_ /; AladjevProcedures`ContextQ[y], z___] :=
 Module[{a, b = ToString[x]}, Off[General::shdw];
 a = StringReplace["BeginPackage[\"AvzAgnVsvArtKr`\"]\n
 90::usage=73\nBegin[\"`90`\"]\n500\nEnd[]\nEndPackage[]",
 {"AvzAgnVsvArtKr`" -> y,
 "73" –> If[AladjevProcedures`PureDefinition[x] === $Failed, "\"\"",
 If[{z} != {} && StringQ[z], AladjevProcedures`ToString1[z],
 AladjevProcedures`ToString1["Help on " <> b]]], "90" –> b,
 "500" –> If[AladjevProcedures`PureDefinition[x] === $Failed, b,
 AladjevProcedures`PureDefinition[x]]}];
 Remove[x]; ToExpression[a]; On[General::shdw]]

In[2726]:= Sv[x_] := Module[{a = 90, b = 500}, (a + b)*x^2]
In[2727]:= Context[Sv]
Out[2727]= "Global`"

In[2728]:= ContextToSymbol1[Sv, "Agn`"]
In[2729]:= Sv[73]
Out[2729]= 3 144 110
In[2730]:= ?Sv
 Help on Sv
In[2731]:= Vsv[x_] := Module[{a = 500}, a*x]
In[2732]:= ContextToSymbol1[Vsv, "Tampere`", "Help on module Vsv."]
In[2733]:= Context[Vsv]
Out[2733]= "Tampere`"

In[2734]:= ArtKr[x_] := Module[{a = 90, b = 500}, (a + b)*x]

V.Z. Aladjev, V.A. Vaganov

 436

In[2734]:= ContextToSymbol1[ArtKr, "AladjevProcedures`", "Help on
 module ArtKr."]
In[2735]:= DumpSave["C:/Users/Aladjev\\Mathematica\\Tampere.mx",
 "AladjevProcedures`"]
Out[2735]= {"AladjevProcedures`"}

A new current session with the Mathematica system

In[3354]:= Get["C:\\Users\\Aladjev\\Mathematica\\Tampere.mx"]
In[3355]:= ?? ArtKr
 Help on module ArtKr.
 Art[x_]:=Module[{a=90,b=500},(a+b) x]
In[3356]:= PureDefinition[Rans]
Out[3356]= $Failed
In[3357]:= ContextToSymbol1[Rans, "AgnVsv`"]
In[3358]:= Context[Rans]
Out[3358]= "AgnVsv`"
In[3359]:= $Packages
Out[3359]= {"AgnVsv`", "HTTPClient`", "HTTPClient`OAuth`", …,
 "AladjevProcedures`", "Tampere`", "Agn`", …}
In[3360]:= $ContextPath
Out[3360]= {"AgnVsv`", "AladjevProcedures`", "Tampere`", "Agn`", …}

At that along with possibility of assignment of the given context to symbols
the ContextToSymbol1 procedure is an useful enough means for extension
by new means of the user package contained in a mx-file. The technology of
similar updating is as follows. On the first step a file x of mx-format with the
user's package having y context is uploaded into the current session by the
function call Get[x]. Then, in the same session the definition of a new means
f with its usage u which describes the given means is evaluated. At last, by
the procedure call ContextToSymbol1[f,y,u] the assignment of a y context to
the symbol f along with its usage u is provided. Moreover, the usage u can
be directly coded in the procedure call, or be determined by a certain string
u. At last, by the function call DumpSave[x, y] the saving in the mx–file x of
all objects having y context is provided. Similar approach provides a rather
effective mechanism of updating in the context of both definitions and usages
of the means entering the user's package which is located in a mx–file. Yet,
the approach is limited by packages located in datafiles of mx–format.

Extension of Mathematica system functionality

 437

As a result the symbols with the same short name whose contexts are located
in the list defined by the $ContextPath variable further from the beginning,
are inaccessible for access to them by means of their short names. Therefore
for access to them it is necessary to use full names of the following format
"Context'Name"; furthermore, at entering into the current session of the new
symbols overlapping the symbols of the same name of the list $ContextPath
the corresponding message is output. Interesting enough questions in this
context are considered enough in details in our books [30-33].

8.1.1. Interconnection of contexts and packages in the software of
the Mathematica system

The packages are one of the main mechanisms of the Mathematica extension
which contain definitions of the new symbols intended for use both outside
of a package and in it. These symbols can correspond, in particular, to the
new functions or objects determined in a package that extend the functional
Mathematica possibilities. At that, according to the adopted agreement all
new symbols entered in some package are placed in a context whose name
is connected with the name of the package. At uploading of a package into
the current session, the given context is added into the beginning of the list
determined by the global variable $ContextPath. As a rule, for ensuring of
association of a package with a context the construction BeginPackage["x'"]
coded at its beginning is used. At uploading of a package into the current
session the context "x'" will update the current values of the global variables
$Context and $ContextPath. Thus, our AVZ_Package package [48] contains
BeginPackage["AladjevProcedures'"] and at its uploading, the values of the
specified variables accept the following view, namely:

In[2571]:= $ContextPath
Out[2571]= {"AladjevProcedures`", "TemplatingLoader`", "PacletManager`",
 "System`", "Global`"}
In[2572]:= MemberQ[Contexts["*"], "AladjevProcedures`"]
Out[2572]= True
In[2573]:= $Packages
Out[2573]= {"HTTPClient`","HTTPClient`OAuth`",
 "HTTPClient`CURLInfo`", "HTTPClient`CURLLink`", "JLink`",

V.Z. Aladjev, V.A. Vaganov

 438

 "DocumentationSearch`", "AladjevProcedures`", "GetFEKernelInit`",
 "TemplatingLoader`", "ResourceLocator`", "PacletManager`", "System`",
 "Global`"}

In[2574]:= CNames[x_ /; ContextQ[x], y___] := Module[{b,
 a = Names[StringJoin[x, "*"]]},
 b = Select[a, Quiet[ToString[Definition[ToString[#1]]]] != "Null" &];
 If[{y} != {} && PureDefinition[y] === $Failed,
 y = Sort[DeleteDuplicates[Select[a, PureDefinition[#] === $Failed &]]]];
 Select[b, Attributes[#] != {Temporary} &&
 ToString[Definition[#]] != "Null" &]]

In[2575]:= CNames["AladjevProcedures`"]
Out[2575]= {"AcNb", "ActBFMuserQ", "ActCsProcFunc", "ActRemObj",
 "ActUcontexts", "AddMxFile", "Adrive", "Adrive1", "Affiliate",
 "Aobj", "Aobj1", "Args", "Args1", "ArgsBFM", "ArgsTypes", …
 ………………………………………………………………………..
 "WhatType", "WhatValue", "WhichN", "XOR1", "$CallProc",
 "$InBlockMod", "$Line1", "$Load$Files$", "$ProcName",
 "$ProcType", "$TestArgsTypes", "$TypeProc", "$UserContexts"}

In[2576]:= Length[%]
Out[2576]= 683

In[2577]:= CNames["AladjevProcedures`", h]; h
Out[2577]= {"a", "b", "c", "d", "h", "k", "p", "S", "x", "y", "z"}

In[2578]:= CNames["System`"]
Out[2578]= {"AASTriangle", "AbelianGroup", "AbortKernels",
 "AbortProtect", "Abs", …, "$Urgent", "$UserBaseDirectory",
 "$UserName", "$Version", "$VersionNumber"}

At that, in the above fragment instead of return of the complete list defined
by the call Contexts["*"] to save space only testing of existence in it of the
specified context is done. From the full list defined by the call Contexts["*"]
can be easily noticed that in it along with this context exist elements of a type
"AladjevProcedures'Name'" that determine full names of all objects whose
definitions are located in the AVZ_Package package [48]. While the CNames
procedure presented in the previous fragment allows to differentially obtain

Extension of Mathematica system functionality

 439

the lists of all short names in a package with the given context of both the
definitions existing in it, and undefinite from the standpoint of the current
session. So, the call CNames[x] returns the list of all short names in package
with a context x, that have definitions in it; whereas the call CNames[x, y] in
addition through argument y – an undefinite variable – returns the list of all
undefinite short names in the package with a context x. Along with that, the
analysis of the list, returned thru optional argument y provides additional
possibility of check of contents of the package relative to definiteness of all
objects contained in it. The CNames procedure provides an easy way of the
differentiated analysis of contents of the packages formalized in the form of
the Mathematica documents of the formats {"nb", "cdf"}. The mechanism of
contexts has a number of rather essential features that need to be taken into
account during the work in the environment of the system, first of all, at use
of the procedural paradigm. These features are considered rather in details
in [33]. In particular, after uploading of a package into the current session
all its objects will be associated with a context ascribed to the package while
the objects of the same name, whose definitions are evaluated in the current
Mathematica session are associated with the context "Global'".

For definition of contexts of symbols the ContextDef procedure can be used,
whose call ContextDef[x] returns the list of the contexts associated with an
arbitrary symbol x. If symbol x isn't associated with any context, the empty
list is returned, i.e. {}. The following fragment represents source code of the
ContextDef procedure along with typical examples of its usage.

In[3325]:= Get["GSV.mx"]
In[3326]:= BeginPackage["RansIan`"]
 GSV::usage = "help on GSV."
 Begin["`GSV`"]
 GSV[x_, y_, z_] := Module[{a = 6}, x*y*z + a]
 End[]
 EndPackage[]
Out[3326]= "RansIan`"
Out[3327]= "help on GSV."
Out[3328]= "RansIan`GSV`"

In[3332]:= GSV[x_Integer, z_Integer] := Module[{a = 90}, (x + z)*a]

V.Z. Aladjev, V.A. Vaganov

 440

In[3333]:= ContextDef[x_ /; SymbolQ[x]] := Module[{a = $ContextPath,
 b = ToString[x], c, d, k, j = 1},
 While[j <= 2, c = {}; k = 1; Quiet[While[k <= Length[a], d = a[[k]] <> b;
 If[! SameQ[ToString[ToExpression["Definition[" <> d <> "]"]], "Null"],
 AppendTo[c, d]]; k++]]; j++]; c]

In[3334]:= ContextDef[GSV]
Out[3334]= {"RansIan`GSV", "avzransian500`GSV", "Global`GSV"}
In[3335]:= ProcQ[x_, y_] := x*y
In[3336]:= ContextDef[ProcQ]
Out[3336]= {"RansIan`ProcQ", "AladjevProcedures`ProcQ"}
In[3337]:= Definition[avzransian500`ProcQ]
Out[3337]= ProcQ[x_, y_] := x*y
In[3338]:= Definition["Global`GSV"]
Out[3338]= Global`GSV[x_Integer, z_Integer] := Module[{a = 90}, (x + z)*a]
In[3339]:= Definition["RansIan`GSV"]
Out[3339]= RansIan`GSV[RansIan`GSV`x_, RansIan`GSV`y_,
 RansIan`GSV`z_] := Module[{RansIan`GSV`a = 6},
 RansIan`GSV`x*RansIan`GSV`y*RansIan`GSV`z + RansIan`GSV`a]
In[3340]:= $ContextPath
Out[3340]= {"avzransian500`", "RansIan`", "AladjevProcedures`",
 "TemplatingLoader`", "PacletManager`", "System`", "Global`"}

Thus, at using of the objects of the same name, generally speaking, to avoid
misunderstandings it is necessary to associate them with the contexts which
have been ascribed to them.

8.2. Definition of the user packages, and their usage in
the Mathematica software

The global variable $Packages defines the list of the contexts corresponding
to all packages uploaded into the current session, for example:

In[2569]:= $Packages
Out[2569]= {"AladjevProcedures`", "GetFEKernelInit`", …, "Global`"}
In[2570]:= Get["C:\\Avz_Package\\Aladjev.m"]; $Packages
Out[2570]= {"Aladjev`", "AladjevProceduresAndFunctions`", …, "Global`"}

Extension of Mathematica system functionality

 441

As it was already noted, each uploading of a new package into the current
session adds the context corresponding to it to the beginning of the list that
is determined by the global $Packages variable. Generally speaking, in the
presence of the loaded packages their means it is quite possible to consider
as means at the level of the built–in means of the Mathematica system. In
effect, quite essential number of functions of the Mathematica system was
realized in the form of packages. Meanwhile, in the majority of versions of
the system preliminary uploading of packages for receiving access to means,
contained in them is required. The majority of the Mathematica versions is
provided with a standard set of packages which contain definitions of very
large number of functions. For their use, as a rule, the appropriate packages
it is necessary to upload professedly into the current session. Mathematica
has the mechanism of both preliminary loading, and automatic loading of
packages as needed. Meanwhile here one very essential circumstance takes
place, namely: the help on such package means aren't reflected in the help
Mathematica system, and it can be received, for example, by the call ?Name.
Similar organization is completely inconvenient, in particular, significantly
conceding to the mechanism of organization of the help Maple system [27].

The main forms of preservation of definitions of the objects are a document
(notebook) and a package (package) that are located in datafiles of formats
{cdf, nb} and {m, mx} respectively. At the same time between them there is a
certain distinction. If uploading of the first into the current session allows to
work with it as the document (look over, execute, edit, save), then the package
is intended only for uploading into the current session. At that, documents
partially or completely can be considered as the packages. In particular, for
convenience of work with the AVZ_Package package it is presented in three
main platform–independent formats, namely {cdf, nb, m}. It should be noted
that binary datailes of the mx-format optimized for fast uploading into the
current session are nonportable both between versions of the Mathematica
system, and between operational platforms.

A package uploading into the current session. Generally, a typical package
is provided with two types of symbols determining as the exported symbols,
and symbols for internal usage. For distinction these symbols are associated
with different contexts. The standard reception consists in definition of the
exported symbols in a context with the name Name' which corresponds to

V.Z. Aladjev, V.A. Vaganov

 442

the package name. Then, at uploading of a package it supplements the list
defined by the global $ContextPath variable for providing of the call of the
symbols which are in this context by their short names. While the definitions
of all symbols intended for internal use are located in a context with a name
Package'Private' that isn't added to the list $ContextPath, without allowing
to get access to the symbols of such context by their short names. As a rule,
for setting of contexts of a package and global variables $ContextPath and
$Context the standard sequence of functions in the package is used:

BeginPackage["Package`"] – the setting for a package of the current context
 "Package'";
F1::usage = "Help" – the help on the exported F1 symbol; further allows to receive
 the help by means of calls ?F1 and Information[F1];
F2::usage = "Help" – the help on the exported F2 symbol; further allows to receive
 the help by means of calls ?F2 and Information[F2];
===
Begin["`Private`"] – the setting of the context "'Private'" for local symbols;
F1[args] := Definition1; … – definitions of local and global symbols of package;
F2[args] := Definition2; … – definitions of local and global symbols of package;
===
End[]
EndPackage[] – the closing bracket of the package; simultaneously adding the
 context "Package'" to the beginning of the list of $ContextPath
 at package uploading into the current session.

The previous fragment at the same time represents the typical scheme of a
package. The package given below serves as an illustration of filling of this
scheme, namely:

In[2565]:= BeginPackage["Tallinn`"]
 G::usage = "Function G[x, y] := 73*x^2 + 67*y + 47 + S[x, y]."

 Begin["`Private`"]
 S[x_, y_] := x^3 + y^3
 G[x_ /; IntegerQ[x], y_Integer] := 73*x^2 + 67*y + 47 + S[x, y]
 End[]
 EndPackage[]

Out[2565]= "Tallinn`"

Extension of Mathematica system functionality

 443

Out[2566]= "Function G[x, y] := 73*x^2 + 67*y + 47 + S[x, y]."

Out[2567]= "Tallinn`Private`"

Out[2570]= "Tallinn`Private`"

In[2572]:= {S[90, 500], G[90, 500]}
Out[2572]= {S[90, 500], 126353847}

In[2573]:= $ContextPath

Out[2573]= {"Tallinn`", "AladjevProcedures`", "TemplatingLoader`",
 "PacletManager`", "System`", "Global`"}

In[2574]:= $Context
Out[2574]= "Tallinn`"
In[2575]:= Information[S]
Out[2575]= Tallinn`S

In[2576]:= Information[G]
Out[2576]= Function G[x, y] := 73*x^2 + 67*y + 47 + S[x, y].
 G[Tallinn`Private`x_/; IntegerQ[Tallinn`Private`x],
 Tallinn`Private`y_Integer] := 73 Tallinn`Private`x^2 +
 67 Tallinn`Private`y + 47 +
 Tallinn`Private`S[Tallinn`Private`x, Tallinn`Private`y]

In[2577]:= Tallinn`Private`S[90, 500]
Out[2577]= 125 729 000

In[2578]:= $Packages

Out[2578]= {"Tallinn`", "AladjevProcedures`", "HTTPClient`OAuth`",
 "HTTPClient`CURLInfo`", "HTTPClient`CURLLink`",
 "HTTPClient`", "GetFEKernelInit`", "TemplatingLoader`",
 "ResourceLocator`", "PacletManager`", "System`", "Global`"}

We will note that the definition of help (usage) for the means exported by a
package serves as a certain kind of indicator what exactly these means are
exported by a package whereas definitions of means without usages define
local symbols which outside of the package are invisible, however they can
be used by both local, and global symbols of the package. Such organization
is simpler and in some cases is a little more preferable. So the organizational
scheme of a package can be simplified, having assumed rather simple view,
represented by the following fragment. The fragment visually illustrates the
principle of formation of a package taking into account the made remarks.

V.Z. Aladjev, V.A. Vaganov

 444

BeginPackage["Package`"] – the setting for a package of the current context

 "Package'";
F::usage = "Help" – the help on the exported F symbols; further allows to receive
 the help by means of calls ?F and Information[F];
Begin["`F`"] – the setting of a context "'F'" for a global symbol;
F[Formal args] = Definition F; … – definitions of global package symbols;
V[Formal args] = Definition V; … – definitions of local package symbols;
===
End[]
EndPackage[] – the closing bracket of the package; simultaneously adding the
 context "Package'" to the beginning of the list of $ContextPath
 at package uploading into the current session.

Thus, programming of a package can be simplified by means of definition
of local variables without usages corresponding to them while all exports of
the package are defined by the usages corresponding to them as illustrates
the following simple enough fragment, namely:

In[2590]:= BeginPackage["Tallinn73`"]
 G6::usage = "Function G73[x, y] := 72*x^2 + 67*y + 47 + S6[x, y]."
 Begin["`G6`"]
 S6[x_, y_] := x^4 + y^4
 G6[x_ /; IntegerQ[x], y_Integer] := 72*x^2 + 67*y + 47 + S6[x, y]
 End[]
 EndPackage[]

Out[2590]= "Tallinn`"
Out[2591]= "Function G6[x, y] := 72*x^2 + 67*y + 47 + S6[x, y]."
Out[2592]= "Tallinn`G6`"
Out[2593]= "Tallinn`G6`"
In[2595]:= {S6[90, 500], G6[90, 500]}
Out[2595]= {S6[78, 460], 62566226747}
In[2596]:= $ContextPath
Out[2596]= {"Tallinn73`", "Tallinn`", "AladjevProcedures`",
 "TemplatingLoader`", "PacletManager`", "System`", "Global`"}
In[2597]:= $Packages
Out[2597]= {"Tallinn73`", "Tallinn`", "AladjevProcedures`",

Extension of Mathematica system functionality

 445

 "HTTPClient`OAuth`", "HTTPClient`CURLInfo`",
 "HTTPClient`CURLLink`", "HTTPClient`", "GetFEKernelInit`",
 "TemplatingLoader`", "ResourceLocator`", "PacletManager`",
 "System`", "Global`"}
In[2598]:= Information[S6]
 Global`S6
In[2598]:= Information[G6]
 Function G6[x, y] := 72*x^2 + 67*y + 47 + S6[x, y].
 G6[Tallinn73`G6`x_/; IntegerQ[Tallinn73`G6`x],
 Tallinn73`G6`y_Integer] := 72 Tallinn73`G6`x^2 +
 67 Tallinn73`G6`y + 47 + Tallinn73`G6`S6[Tallinn73`G6`x,
 Tallinn73`G6`y]

So, the call Context[x] of the standard function returns a context associated
with a symbol x. Meanwhile, rather interesting question is determination of
the m–file with a package containing the given context. The procedure call
FindFileContext[x] returns the list of full paths to m–files with the packages
containing the given context x; in the absence of such datafiles the procedure
call returns the empty list, i.e. {}. At that, the call FindFileContext[x, y, z, …]
with optional arguments {y, z, …} – the names in string format of devices of
external memory of direct access – provides search of required files on the
specified devices instead of search in all file system of the computer in case
of a procedure call with one actual argument. The search of the required m-
files is done also in the Recycle Bin directory of the Windows system as that
very visually illustrates an example of the next fragment. It must be kept in
mind that search within all file system of the computer can demand enough
essential temporal expenditure.The next fragment represents source code of
the FindFileContext procedure along with typical examples of its usage.

In[2600]:= FindFileContext[x_ /; ContextQ[x], y___] := Module[{b = {}, c = "",
 d = StringJoin["BeginPackage[", StrStr[x], "]"], s = {}, k = 1,
 j = 1, a = If[{y} == {}, Adrive[], {y}], f = "$Kr18_Art26$.txt"},
 While[k <= Length[a], Run["Dir ", StringJoin[a[[k]], ":*.*"],
 StringJoin[" /A/B/O/S > ", f]];
 While[! c === EndOfFile, c = Read[f, String];
 If[! DirQ[c] && FileExtension[c] == "m", AppendTo[b, c]]; j++];

V.Z. Aladjev, V.A. Vaganov

 446

 c = ""; j = 1; k++]; k = 1;
 While[k <= Length[b], c = ToString[ReadFullFile[b[[k]]]];
 If[! StringFreeQ[c, d], AppendTo[s, b[[k]]]]; k++]; DeleteFile[Close[f]]; s]

In[2601]:= FindFileContext["Tallinn`"]
Out[2601]= {"C:\\AVZ_Package\\Tallinn.m"}
In[2602]:= FindFileContext["AladjevProcedures`"]
Out[2602]= {"C:\\GrGU_Books\\AVZ_Package\\AVZ_Package.m",
 "C:\\Users\\Aladjev\\Mathematica\\AVZ_Package.m"}
In[2603]:= FindFileContext["AvzAgnSvetArtKr`", "F"]
Out[2603]= {}
In[2604]:= FindFileContext["AladjevProcedures`"]
Out[2604]= {"C:\\$RECYCLE.BIN\\S-1-5-21-2596736632-989557747-
 1273926778-1000\\AVZ_Package.m",
 "C:\\GrGU_Books\\AVZ_Package\\AVZ_Package.m",
 "C:\\Users\\Aladjev\\Mathematica\\AVZ_Package.m"}

For definition of the status of existence of a context (absent context, a current
context without file, a current context with a m–file, inactive context with a m–file)
the following FindFileContext1 procedure can be used, whose source code
with typical examples of usage represents the following fragment, namely:

In[2608]:= FindFileContext1[x_ /; ContextQ[x]] :=
 Module[{a = FindFileContext[x],
 b = If[MemberQ[$Packages, x], "Current", {}]},
 If[a != {} && ! SameQ[b, {}], {b, a}, If[a != {} && SameQ[b, {}], a,
 If[a == {} && ! SameQ[b, {}], b, {}]]]]

In[2609]:= FindFileContext1["Tallinn`"]
Out[2609]= "Current"
In[2610]:= FindFileContext1["AladjevProcedures`"]
Out[2610]= {"Current", {"C:\\$RECYCLE.BIN\\S-1-5-21-2596736632-
 989557747-1273926778-1000\\AVZ_Package.m",
 "C:\\GrGU_Books\\AVZ_Package\\AVZ_Package.m",
 "C:\\Users\\Aladjev\\Mathematica\\AVZ_Package.m"}}
In[2611]:= FindFileContext1["Aladjev`"]
Out[2611]= {"f:\\avz_package\\aladjev.m"}

Extension of Mathematica system functionality

 447

In[2612]:= FindFileContext1["RansIanRacRea`"]
Out[2612]= {}
In[2613]:= FindFileContext1["PacletManager`"]
Out[2613]= {"Current", {"C:\\Program Files\\Wolfram Research\\
 Mathematica\\10.1\\SystemFiles\\Autoload\\
 PacletManager\\PacletManager.m"}}

Depending on the status of a context x the call FindFileContext1[x] returns
the following result, namely:

– {"Current", {m–files}} – the current context x located in the indicated m–files;
– "Current" – the current context x, not associated with m–files;
– {m–files} – the context x is located in m–files, but not in the $Packages list;
– {} – the context x is formally correct, but not actual.

As an essential enough addition to the above procedures FindFileContext
and FindFileContext1 is the ContextInFile procedure providing search of
datafiles of the types {cdf, m, mx, nb, tr} containing definitions of packages
with the given context. The procedure call ContextInFile[x, y] returns the
list of full paths to datafiles of the indicated types containing definitions of
packages with a context x. At that, search is executed in a directory, defined
by the second optional argument y; in its absence the search of datafiles is
executed in the "C:\\" directory. Return of the empty list, i.e. {}, determines
absence of the sought-for datafiles in the given path of search. The fragment
below represents source code of the procedure with examples of its usage.

In[2578]:= ContextInFile[x_ /; ContextQ[x], y___] := Module[{b, d, h, Tav,
 c = "$Art26Kr18$"},
 If[{y} != {} && DirectoryQ[y],
 Run["DIR " <> StandPath[y] <> "/A/B/O/S > $Art26Kr18$"],
 Run["DIR C:\\ /A/B/O/S > $Art26Kr18$"]];
 d = ReadList[c, String]; DeleteFile[c];
 Tav[t_ /; ListQ[t]] := Module[{m, v = {}, k, z,
 a = "BeginPackage[" <> ToString1[x] <> "]"},
 Map[If[FileExistsQ[#] && MemberQ[{"cdf", "nb", "m", "mx", "tr"},
 FileExtension[#]], If[MemberQ[{"tr", "m"}, FileExtension[#]] &&
 ! StringFreeQ[ReadFullFile[#], a], AppendTo[v, #],

V.Z. Aladjev, V.A. Vaganov

 448

 If[MemberQ[{"cdf", "nb"}, FileExtension[#]], {m, h, k} = {0, "", 1};
 For[k, k < Infinity, k++, h = Read[#, String];
 If[h === EndOfFile, Close[#]; Break[],
 If[! StringFreeQ[h, "BeginPackage"] && ! StringFreeQ[h, x],
 m = 90; Close[#]; Break[], Continue[]]]];
 If[m == 90, AppendTo[v, #], Null],
 If[FileExtension[#] == "mx",
 z = StringPosition[ReadFullFile[#], {"CONT", "ENDCONT"}];
 If[! StringFreeQ[StringTake[ReadFullFile[#],
 {z[[1]][[1]], z[[2]][[1]]}], " " <> x <> " "];
 AppendTo[v, #], Null]]]], Null] &, t]; v]; Tav[d]]

In[2579]:= ContextInFile["AladjevProcedures`",
 "C:\\Users\\Aladjev\\Mathematica"]

Out[2579]= {"c:\\users\\aladjev\\mathematica\\AVZ_Package.cdf",
 "c:\\users\\aladjev\\mathematica\\AVZ_Package.m",
 "c:\\users\\aladjev\\mathematica\\AVZ_Package.mx",
 "c:\\users\\aladjev\\mathematica\\AVZ_Package.nb"}

In[2580]:= ContextInFile["ArtKrSvetGal`"]
Out[2580]= {}

In[2581]:= ContextInFile["AladjevProcedures`", "E:\\"]

Out[2581]= {"e:\\users\\aladjev\\mathematica\\AVZ_Package.cdf",
 "e:\\users\\aladjev\\mathematica\\AVZ_Package.m",
 "e:\\users\\aladjev\\mathematica\\AVZ_Package.mx",
 "e:\\users\\aladjev\\mathematica\\AVZ_Package.nb"}

In[2582]:= ContextInFile["PacletManager`", "C:\\Program Files\\
 Wolfram Research\\Mathematica\\10.1\\SystemFiles\\Autoload"]
Out[2582]= {"c:\\program files\\wolfram research\\mathematica\\10.1
 \\systemfiles\\autoload\\PacletManager\\PacletManager.m"}

The procedures FindFileContext, FindFileContext1 and ContextInFile are
rather useful during the operating with packages. Meanwhile, realization of
search of files with the given context within all file system of the computer,
as a rule, can demand enough essential time costs. Below, some other useful
procedures for work with packages and their contexts will be represented.

Extension of Mathematica system functionality

 449

In a sense the procedures ContextMfile and ContextNBfile are inverse to
the procedures FindFileContext, FindFileContext1, ContextInFile, their
successful calls ContextMfile[x] and ContextNBfile[x] return the context
associated with the package which is located in a datafile of formats m and
{nb, cdf} accordingly; the datafile is given by means of name or full path to
it. The next fragment presents source codes of the procedures ContextMfile
and ContextNBfile along with the most typical examples of their usage.

In[2570]:= ContextMfile[x_ /; FileExistsQ[x] && FileExtension[x] == "m"] :=
 Module[{b, a = ReadFullFile[x], c},
 b = SubsString[a, {"BeginPackage[\"", "\"]"}];
 c = If[b != {}, StringTake[b, {14, –2}]];
 If[b === {}, $Failed, c = Flatten[StringSplit[c, ","]];
 c = Select[Quiet[ToExpression[c]], ContextQ[#] &];
 If[Length[c] > 1, c, c[[1]]]]]

In[2571]:= ContextMfile["c:\\users\\aladjev\\mathematica\\
 AVZ_Package.m"]
Out[2571]= "AladjevProcedures`"
In[2572]:= ContextMfile["D:\\AVZ_Package\\RansIan.m"]
Out[2572]= $Failed
In[2573]:= ContextMfile["C:/AVZ_Package/AVZ_Package_1.m"]
Out[2573]= "AladjevProcedures`"
In[2574]:= ContextMfile["C:/temp\\A A A\\Aladjev.m"]
Out[2574]= "Aladjev`"
In[2575]:= ContextMfile[$InstallationDirectory <>
 "\\SystemFiles\\Kernel\\Packages\\GraphEdit.m"]
Out[2575]= "GraphEdit`"

In[2580]:= ContextNBfile[x_ /; FileExistsQ[x] && MemberQ[{"cdf", "nb"},
 FileExtension[x]]] := Module[{a = ""},
 While[! SameQ[a, EndOfFile], a = Read[x, String];
 If[! StringFreeQ[a, "BeginPackage"],
 a = Quiet[ToExpression[ToExpression[StringSplit[a, ","][[3]]]]];
 Break[]]; Continue[]]; Close[x];
 If[! ContextQ[a] || SameQ[a, EndOfFile], $Failed, a]]

V.Z. Aladjev, V.A. Vaganov

 450

In[2581]:= ContextNBfile["D:\\AVZ_PACKAGE\\AVZ_Package.nb"]
Out[2581]= "AladjevProcedures`"
In[2582]:= ContextNBfile["D:\\AVZ_PACKAGE\\Book_3.nb"]
Out[2582]= $Failed
In[2583]:= ContextNBfile["D:\\AVZ_PACKAGE\\AVZ_Package.cdf"]
Out[2583]= "AladjevProcedures`"
In[2584]:= ContextNBfile["C:/AVZ_Package/AVZ_Package_1.nb"]
Out[2584]= "AladjevProcedures`"
In[2585]:= ContextNBfile["C:/Temp/A A A\\AVZ_Package.nb"]
Out[2585]= "AladjevProcedures`"

Thus, the ContextNBfile procedure similar to the ContextMfile procedure
completes the previous fragment, but it is oriented onto the user's packages
located in datafiles of the format {"cdf", "nb"} whose internal organization
differs from the organization of m–files with packages. The procedure call
ContextNBfile[x] returns the context associated with the package which is
located in a datafile x of the format {"cdf", "nb"} that is given by means of a
name or full path to it. If datafile x doesn't contain a context, the procedure
call ContextNBfile[x] returns $Failed. Both procedures have a number of
important enough appendices at work with datafiles containing packages.

On the basis of the ContextMfile procedure for testing of system packages
(m–files) that are located in the directory defined by $InstallationDirectory
variable the SystemPackages procedure has been created whose procedure
call SystemPackages[] returns the list in which 2–element sublists have the
format {Package, its context} while the call SystemPackages[x] thru optional
argument x – an undefinite variable – in addition returns the list of the system
packages which aren't possessing contexts, i.e. are used for internal needs
of the Mathematica system. The next fragment represents source code of the
SystemPackages procedure along with typical examples of its usage.

In[2678]:= SystemPackages[y___] := Module[{a, b},
 a = FileNames["*.m", $InstallationDirectory, Infinity];
 b = Quiet[DeleteDuplicates[Map[{FileBaseName[#],
 ContextMfile[#]} &, a]]];
 b = Select[b, # != {} &];
 If[{y} != {} && ! HowAct[y], y = Select[Map[If[SameQ[#[[2]],

Extension of Mathematica system functionality

 451

 $Failed], #[[1]]] &, b],
 ! SameQ[#, Null] &]]; Select[b, ! SameQ[#[[2]], $Failed] &]]

In[2679]:= SystemPackages[]
Out[2679]= {{"Common", {"AuthorTools`Common`",
 "AuthorTools`MakeProject`"}},
 {"DiffReport", {"AuthorTools`DiffReport`",
 "AuthorTools`Common`"}},
 {"Experimental", "AuthorTools`Experimental`"},
 {"ExportNotebook", {"AuthorTools`ExportNotebook`",
 "AuthorTools`Common`"}}, …,
 ==
 {"WebpTools", "WebpTools`"}, {"WebServices", "WebServices`"},
 {"DateString", "XMLSchema`DateString`"},
 {"XMLSchema", "XMLSchema`"}}

In[2680]:= Length[%]
Out[2680]= 282

In[2681]:= SystemPackages[Sv]; Sv
Out[2681]= {"AstronomyConvenienceFunctionsLoader",
 "AstronomyConvenienceFunctions", "PacletInfo", "Default",
 "init", "DataDropClientLoader", "DataDropClient", …,
 ==
 "DLL", "InstallNET", "JLinkCommon", "MakeNETObject",
 "MathKernel", "NETBlock", "NET", "TerraService",
 "WebServicesNavigator", "Implementation", "WSDL"}
In[2682]:= Length[%]
Out[2682]= 2318

In[2683]:= t = TimeUsed[]; SystemPackages[Kr]; Kr; TimeUsed[] – t
Out[2683]= 18.315

In[2684]:= Length[FileNames["*.*", $InstallationDirectory, Infinity]]
Out[2684]= 24 793

In[2768]:= t = TimeUsed[]; a = FileNames["*.*", "C:\\", Infinity];
 TimeUsed[] – t
General::dirdep: Cannot get deeper in directory tree: C:\\Documents …>>
General::cdir: Cannot set current directory to PerfLogs. >>

V.Z. Aladjev, V.A. Vaganov

 452

General::cdir: Cannot set current directory to cache. >>
General::dirdep: Cannot get deeper in directory tree: C:\\ProgramData…>>
General::stop: Further output of General::dirdep will be suppressed during
this calculation. >>
General::cdir: Cannot set current directory to Favorites. >>
General::stop: Further output of General::cdir will be suppressed during
this calculation. >>
Out[2768]= 2.371

In[2769]:= t = TimeUsed[]; Run["DIR C:\\ /A/B/O/S > $Art26Kr18$"];
 TimeUsed[] – t
Out[2769]= 0.015
In[2770]:= Length[a]
Out[2770]= 165 672

In[2771]:= t = ""; For[k = 1, k < Infinity, k++, If[t === EndOfFile, Break[],
 t = Read["$Art26Kr18$", String]; Continue[]]]; k
Out[2771]= 191 242

Inasmuch as, in particular, the directory containing the system Mathematica
10 contains 24793 datafiles of different types, their testing demands certain
time needs as illustrates an example of the previous fragment. At the same
time it must be kept in mind that in a view of the told, the access to internal
packages of the Mathematica system by means of the mechanism of contexts
is impossible. Here quite appropriate to make one rather essential remark.

Meanwhile, the ContextMfile procedure provides search only of the first
context in a m–file with a package whereas generally multiple contexts can
be associated with a package. The next ContextMfile1 procedure provides
the solution of this question in case of multiple contexts. The procedure call
ContextMfile1[x] returns the list of the contexts or single context associated
with a datafile x of formats {"m", "tr"}, in case of lack of contexts the empty
list, i.e. {} is returned. Furthermore, the additional tr–format allows to carry
out search of contexts in the system datafiles containing contexts. Moreover,
in case FileExistsQ[x] = False the search of a datafile x is done in file system
of the computer as a whole. Whereas the ActUcontexts procedure provides
obtaining of the list of contexts of the current session that are associated with
the user packages.

Extension of Mathematica system functionality

 453

The procedure call ActUcontexts[] for obtaining of the list uses an algorithm
that is based on the analysis of system datafiles of formats {"m", "tr"}, while
the call ActUcontexts[x] where optional argument x is arbitrary expression,
is based on the search of system datafiles of the view "StringTake[Context,
{1, –2}]<>{"m", "tr"}". If the first algorithm is more universal, whereas the
second significantly more high–speed. The ReadFullFile1 function used by
the ContextMfile1 procedure, is an useful modification of the ReadFullFile
procedure. Whereas the procedure call SysContexts[] returns the list of all
system contexts, and the function call SystemSymbols[] returns all system
symbols. The fragment below represents source codes of the above means
along with examples of their typical usage.

In[2600]:= ContextMfile1[x_ /; MemberQ[{"m", "tr"}, FileExtension[x]]] :=
 Module[{b = "BeginPackage[", c, d,
 a = ReadFullFile1[If[FileExistsQ[x], x, Flatten[{FindFile1[x]}][[1]]]]},
 If[a === {}, {}, c = StringPosition[a, b]; If[c == {}, {},
 d = SubStrToSymb[StringTake[a, {Flatten[c][[2]], –1}], 1, "]", 1];
 d = StringReplace[StringTake[d, {2, –2}], {"{" –> "", "}" –> ""}];
 d = Map[ToExpression, StrToList[d]]; If[Length[d] == 1, d[[1]], d]]]]

In[2601]:= ContextMfile1["DocumentationSearch.m"]
Out[2601]= {"DocumentationSearch`", "ResourceLocator`"}
In[2602]:= ContextMfile1["IanRans.m"]
Out[2602]= {}
In[2603]:= ContextMfile1["AVZ_Package.m"]
Out[2603]= "AladjevProcedures`"

In[2620]:= SubStrToSymb[x_ /; StringQ[x], n_ /; IntegerQ[n],
 y_ /; StringQ[y] && y != "", p_ /; MemberQ[{0, 1}, p]] :=
 Module[{a, b = StringLength[x], c, d, k},
 If[n <= 0 || n >= b || StringFreeQ[x, y], $Failed,
 c = StringTake[x, {n}];
 For[If[p == 0, k = n – 1, k = n + 1], If[p == 0, k >= 1, k <= b],
 If[p == 0, k––, k++], If[Set[d, StringTake[x, {k}]] != y,
 If[p == 0, c = d <> c, c = c <> d], Break[]]];
 If[k < 1 || k > b, $Failed, If[p == 0, c = y <> c, c = c <> y]]]]

V.Z. Aladjev, V.A. Vaganov

 454

In[2620]:= SubStrToSymb["85123456786", 7, "8", 0]
Out[2620]= "8512345"
In[2740]:= SubStrToSymb["85123456786", 7, "2", 1]
Out[2740]= $Failed
In[2620]:= SubStrToSymb["85123456786", 1, "6", 1]
Out[2620]= "85123456"

In[2649]:= ActUcontexts[x___] := Module[{c, d = {}, k, j,
 a = MinusList[$Packages, {"System`", "Global`"}],
 b = FileNames[{"*.m", "*.tr"}, $InstallationDirectory, Infinity]},
 c = DeleteDuplicates[Map[StringTake[#,
 {1, Flatten[StringPosition[#, "`"]][[1]]}] &, a]];
 If[{x} == {}, For[k = 1, k <= Length[c], k++, For[j = 1, j <= Length[b], j++,
 If[FileBaseName[b[[j]]] <> "`" == c[[k]] ||
 MemberQ[ContextMfile1[b[[j]]], c[[k]]], AppendTo[d, c[[k]]];
 Break[]]]]; MinusList[c, d],
 c = Map[StringTake[#, {1, –2}] &, c];
 For[k = 1, k <= Length[c], k++, For[j = 1, j <= Length[b], j++,
 If[FileBaseName[b[[j]]] == c[[k]],
 AppendTo[d, c[[k]]]; Break[]]]]; MinusList[c, d]]]

In[2650]:= ActUcontexts[590]
Out[2650]= {"Tallinn`", "Grodno`", "AladjevProcedures`"}

In[2656]:= ReadFullFile1[x_ /; FileExistsQ[x]] :=
 StringReplace[Quiet[Check[ReadString[x], ""]], "\r\n" –> ""]

In[2657]:= ReadFullFile1["C:\\Temp\\Cinema.txt"]
Out[2657]= http://www.worldlento4ka.com/russkiye-serialy/

In[2670]:= SysContexts[]:= Module[{a = Contexts[], b = ActUcontexts[590]},
 Select[a, ! SuffPref[#, b, 1] &]]

In[2671]:= SysContexts[]
Out[2671]= {"Algebra`", "Algebraics`Private`", "Algebra`Polynomial`", …..,
 "XML`", "XML`MathML`", "XML`MathML`Symbols`",
 "XML`NotebookML`", "XML`Parser`", "XML`RSS`", "XML`SVG`"}

Extension of Mathematica system functionality

 455

In[2672]:= Length[%]
Out[2672]= 753

In[2694]:= SystemSymbols[] := Module[{a = Names["*"],
 b = Join[Map[FromCharacterCode, Range[63488; 63596]],
 CNames["Global`"]], c = ActUcontexts[590]},
 MinusList[a, Join[b, Flatten[Map[CNames[#] &, c]]]]]

In[2695]:= h = SystemSymbols[]; Length[h]
Out[2695]= 6016

It should be noted that the above ContextMfile1 procedure for the purpose
of increase of performance significantly uses the SubStrToSymb procedure
which belongs to means of processing of string expressions. The procedure
call SubStrToSymb[x, n, y, p] returns a substring of a string x bounded on
the left (p = 1) by a position n and the first occurrence of a symbol y, and on
the right (p = 0) by a position n and the first occurrence of a symbol y, i.e, at
p = 0 and p = 1 the search of the symbol y is done right to left and left to right
accordingly. Moreover, in a case of absence at search of a required symbol y
the procedure call SubStrToSymb[x, n, y, p] returns $Failed, while in other
especial cases the procedure call is returned unevaluated. At that, the given
procedure along with the above–mentioned application has enough much
of other interesting appendices at processing of various string expressions.

The Mathematica system posesses the FileNames function which allows to
obtain the list of datafiles of the given type in the specified directories of file
system of the computer. In particular, our SystemPackages procedure uses
this function for obtaining of m–files with system packages. Meanwhile, in
the means considered earlier for operating with datafiles and directories the
constructions of type "Run[DIR …..]" were generally used and that is why.
First, in the case of large number of the tested files the considerable volume
of RAM is required while on the basis of the specified construction the list of
datafiles is output into a HD datafile. Secondly – the specified construction
demands smaller time expenses concerning the FileNames function; at last,
the function call on the main system directory causes erroneous situations,
not allowing to receive the complete list of the datafiles contained in it. The
last examples of the previous fragment illustrate the given reasons.

V.Z. Aladjev, V.A. Vaganov

 456

For receiving access to package tools it is necessary that package containing
them was uploaded into the current session, and the list determined by the
$ContextPath variable has to include the context corresponding to the given
package. A package can be loaded in any place of the current document by
the function call Get["context'"] or by the function call Needs["context'"] to
determine uploading of a package if the context associated with the package
is absent in the list defined by the $Packages variable. In the case if package
begins with BeginPackage["Package'"], at its loading into the lists defined
by the variables $ContextPath and $Packages only the context "Package'" is
placed, providing access to exports of the package and system tools. If the
package uses means of other packages, the given package should begin with
BeginPackage["Package'", {"Package1'", …, "Package2'"}] with indication
of the list of the contexts associated with such packages. It allows to include
in addition in lists of $ContextPath and $Packages the demanded contexts.
With features of uploading of packages the reader can familiarize in [33].

A package similarly to the procedures allows a nesting; at that, in the system
all subpackages composing it are distinguished and registered. Moreover,
the objects determined both in the main package, and in its subpackages are
fully accessible in the current session after uploading of the nested package
as quite visually illustrates the following very simple fragment. Meanwhile,
for performance of the aforesaid it is necessary to redefine the $ContextPath
variable after uploading of the nested package, having added all contexts of
subpackages of the main package to the list determined by the variable:

In[2567]:= BeginPackage["Kiev`"]
 W::usage = "Help on W."
 Begin["`W`"]
 W[x_Integer, y_Integer] := x^2 + y^2
 End[]
 BeginPackage["Kiev1`", {"Kiev`"}]
 W1::usage = "Help on W1."
 Begin["`W1`"]
 W1[x_Integer, y_Integer] := x*y + W[x, y]
 End[]
 EndPackage[]
 EndPackage[]

Extension of Mathematica system functionality

 457

Out[2567]= "Kiev`"
Out[2568]= "Help on W."
Out[2569]= "Kiev`W`"
Out[2571]= "Kiev`W`"
Out[2572]= "Kiev1`"
Out[2573]= "Help on W1."
Out[2574]= "Kiev1`W1`"
Out[2576]= "Kiev1`W1`"
In[2578]:= $ContextPath
Out[2578]= {"Kiev1`", "Kiev`", "System`"}
In[2579]:= $Packages
Out[2579]= {"Kiev1`", "Kiev`", "AladjevProcedures`", "GetFEKernelInit`",
 "TemplatingLoader`", "ResourceLocator`", "PacletManager`",
 "System`", "Global`"}
In[2580]:= CNames["Kiev`"]
Out[2580]= {"W"}
In[2581]:= CNames["Kiev1`"]
Out[2581]= {"W1"}
In[2582]:= {W[42, 73], W1[42, 73]}
Out[2582]= {7093, 10159}
In[2583]:= Definition[W]
Out[2583]= W[Kiev`W`x_Integer, Kiev`W`y_Integer] := Kiev`W`x^2 +
 Kiev`W`y^2
In[2584]:= Definition[W1]
Out[2584]= W1[Kiev`W1`x_Integer, Kiev`W1`y_Integer] :=
 Kiev`W1`x Kiev`W1`y + W[Kiev`W1`x, Kiev`W1`y]

After evaluation of definition of the user package of any nesting level it can
be saved in datafiles of the following three system formats, namely:

F.nb – a datafile with the standard document (notebook) of the Mathematica
system; moreover, there is a possibility of converting of such datafiles into
datafiles of 9 formats, including formats {"cdf", "m"};
F.m – a datafile with a package of source format of the Mathematica system;
F.mx – a datafile with a package in DumpSave format of the Mathematica
system; this datafile is optimized under the used operational platform (as a
rule, Windows, MacOSX, Linux).

V.Z. Aladjev, V.A. Vaganov

 458

As it was already noted above, the objects defined in the main package and
in its subpackages are fully accessible in the current session after uploading
of the main package into it, and also redefinition of $ContextPath variable
by means of addition into the list determined by it, of all contexts associated
with subpackages of the main package. In this context the ToContextPath
procedure automates the given task, whose call ToContextPath[x] provides
updating of contents of the current list determined by $ContextPath variable
by means of adding to its end of all contexts of a m–file x containing simple
or nested package. So, the following fragment represents source code of the
ToContextPath procedure along with a typical example of its usage.

In[5127]:= ToContextPath[x_ /; FileExistsQ[x] && FileExtension[x] == "m"]
 := Module[{c, a = ReadFullFile[x], b = "BeginPackage["},
 c = StrSymbParity[a, b, "[", "]"];
 Map[If[! StringFreeQ[#, {"`\"]", "`\"}]"}], StringTake[#, {14, –2}]] &, c];
 c = ToExpression[Flatten[Map[StringSplit[#, ","] &, c]]];
 c = DeleteDuplicates[Map[If[ListQ[#], #[[1]], #] &, c]];
 $ContextPath = DeleteDuplicates[Join[$ContextPath, c]]; $ContextPath]

In[5128]:= ToContextPath["C:\\AVZ_Package\\Kiev.m"]
Out[5128]= {"AladjevProcedures`", "TemplatingLoader`", "PacletManager`",
 "System`", "Global`", "Kiev`", "Kiev1`"}

The successful procedure call ToContextPath[x] returns the updated value
for $ContextPath variable. Taking into account the told, it is recommended
to make uploading of a nested package x (m–file) into the current session by
means of the next pair of calls, namely Get[x]; ToContextPath[x], providing
access to all means of the package x.

By the function call Get["Name'"] the Mathematica, first of all, does attempt
automatically to upload the version of the "Name.mx" file that is optimized
for the current platform if such file isn't found, the attempt is done to upload
the "Name.m" file which contains the code portable to other platforms. At
that, it is supposed that a m–file with some package should be in one of the
directories defined by the system Path variable. If a directory name is used,
attempt to read the "init.m" datafile intended for setting of packages of the
directory is done. For providing the mode of automatic loading of packages

Extension of Mathematica system functionality

 459

the system DeclarePackage function is used. At the same time for removal
of symbols of some context, more precisely, exports of a package with this
context, the call RemovePackage["Name'"] of our procedure is used.

As it was noted earlier, for each exported object of a certain package for it it
is necessary to determine an usage. As a result of uploading of such package
into the current session all its exports will be available while the local objects,
located in a section, in particular Private, will be inaccessible in the current
session. For testing of a package loaded into the current session or unloaded
package which is located in a m–file regarding existence in it of global and
local objects the following procedure DefInPackage can be used, whose call
DefInPackage[x], where x defines a datafile or full path to it, or the context
associated with the package returns the nested list, whose the first element
defines the package context, the second element – the list of local variables
while the third element – the list of global variables of the package x. If the
argument x doesn't define a package or a context, the call DefInPackage[x]
is returned unevaluated. In case of an unusable context x the procedure call
returns $Failed. The fragment represents source code of the DefInPackage
procedure along with the most typical examples of its usage.

In[2582]:= BeginPackage["Kherson`"]
 Gs::usage = "Help on Gs."
 Ga::usage = "Help on Ga."
 Vgs::usage = "Help on Vgs."
 Begin["`Private`"]
 W[x_, y_] := x + y
 Vt[y_] := y + Sin[y]
 Sv[x_] := x^2 + 23*x + 16
 End[]
 Begin["`Gs`"]
 Gs[x_Integer, y_Integer] := x^2 + y^2
 End[]
 Begin["`Ga`"]
 Ga[x_Integer, y_Integer] := x*y + Gs[x, y]
 End[]
 Begin["`Vgs`"]
 Vgs[x_Integer, y_Integer] := x*y

V.Z. Aladjev, V.A. Vaganov

 460

 End[]
 EndPackage[];
Out[2582]= "Kherson`"
Out[2583]= "Help on Gs."
Out[2584]= "Help on Ga."
Out[2585]= "Help on Vgs."
Out[2586]= "Kherson`Private`"
Out[2590]= "Kherson`Private`"
Out[2591]= "Kherson`Gs`"
Out[2593]= "Kherson`Gs`"
Out[2594]= "Kherson`Ga`"
Out[2595]= "Kherson`Ga`"
Out[2596]= "Kherson`Vgs`"
Out[2598]= "Kherson`Vgs`"
In[2599]:= Map[FunctionQ, {Ga, Gs, Vgs, W, Vt, Sv}]
Out[2599]= {True, True, True, False, False, False}
In[2600]:= BeginPackage["Kherson1`"]
 Gs1::usage = "Help on Gs1."
 Ga1::usage = "Help on Ga1."
 Begin["`Gs1`"]
 Gs1[x_Integer, y_Integer] := x^2 + y^2
 End[]
 Begin["`Ga1`"]
 Ga1[x_Integer, y_Integer] := x*y + Gs1[x, y]
 End[]
 EndPackage[];

In[2640]:= StringDependAllQ[s_String, a_ /; StringQ[a] || ListQ[a] &&
 ! MemberQ[Map[StringQ, a], False]] :=
 DeleteDuplicates[Map[StringFreeQ[s, #] &,
 If[StringQ[a], {a}, a]]] == {False}

In[2641]:= Map3[StringDependAllQ, "abcnq", {{"a","n","q"}, {"a","x","y"}}]
Out[2641]= {True, False}
In[2642]:= Map[! StringFreeQ["abcnq", #] &, {{"a","b","n","q"}, {"a","x","y"}}]
Out[2642]= {True, True}

Extension of Mathematica system functionality

 461

In[2778]:= StringDependQ1[x_ /; StringQ[x], y_ /; ListStringQ[y]] :=
 Module[{a = x, b, k = 1}, For[k, k <= Length[y], k++,
 b = Flatten[StringPosition[a, y[[k]]]];
 If[b != {}, a = StringTake[a, {b[[2]] + 1, –1}], Return[False]]]; True]

In[2779]:= Map3[StringDependQ1, "11abc222dcd3333xy44z6", {{"11", "222",
 "333"}, {"11", "22222", "333"}, {"333", "44", "6"}}]
Out[2779]= {True, False, True}

In[2858]:= MfilePackageQ[x_] := If[FileExistsQ[x] && FileExtension[x] ==
 "m", StringDependAllQ[ReadFullFile[x], {"(* ::Package:: *)",
 "(* ::Input:: *)", "::usage", "BeginPackage[\"", "EndPackage[]"}], False]

In[2859]:= MfilePackageQ["C:\\AVZ_Package\\AVZ_Package_1.m"]
Out[2859]= True
In[2860]:= Map[MfilePackageQ, {"C:\\AVZ_Package\\66.nb", "Av.agn"}]
Out[2860]= {False, False}

In[2915]:= DefInPackage[x_ /; MfilePackageQ[x] || ContextQ[x]] :=
 Module[{a, b = {"Begin[\"`", "`\"]"},
 c = "BeginPackage[\"", d, p, g, t, k = 1, f, n = x},
 Label[Avz];
 If[ContextQ[n] && Contexts[n] != {}, f = "$Kr18Art26$";
 Save[f, x]; g = FromCharacterCode[17]; t = n <> "Private`";
 a = ReadFullFile[f, g]; DeleteFile[f]; d = CNames[n];
 p = SubsString[a, {t, g}]; p = DeleteDuplicates[Map[StringCases[#,
 t ~~ Shortest[___] ~~ "[" <> t ~~ Shortest[___] ~~ " := "] &, p]];
 p = Map[StringTake[#, {StringLength[t] + 1,
 Flatten[StringPosition[#, "["]][[1]] – 1}] &, Flatten[p]];
 {n, DeleteDuplicates[p], d}, If[FileExistsQ[n], a = ReadFullFile[n];
 f = StringTake[SubsString[a, {c, "`\"]"}], {15, –3}][[1]];
 If[MemberQ[$Packages, f], n = f; Goto[Avz]]; b = StringSplit[a, "*)(*"];
 d = Select[b, ! StringFreeQ[StringReplace[#, " " –> ""], "::usage="] &];
 d = Map[StringTake[#, {1, Flatten[StringPosition[#, "::"]][[1]] – 1}] &, d];
 p = DeleteDuplicates[Select[b, StringDependAllQ[#,

V.Z. Aladjev, V.A. Vaganov

 462

 {"Begin[\"`", "`\"]"}] &]];
 p = MinusList[Map[StringTake[#, {9, –4}] &, p], {"Private"}];
 t = Flatten[StringSplit[SubsString[a,
 {"Begin[\"`Private`\"]", "End[]"}], "*)(*"]];
 If[t == {}, {f, MinusList[d, p], p},
 g = Map[StringReplace[#, " " –> ""] &, t[[2 ;; –1]]];
 g = Select[g, ! StringFreeQ[#, ":="] &];
 g = Map[StringTake[#,
 {1, Flatten[StringPosition[#, ":"]][[1]] – 1}] &, g];
 g = Map[Quiet[Check[StringTake[#,
 {1, Flatten[StringPosition[#, "["]][[1]] – 1}], #]] &, g];
 {f, g, d}], $Failed]]]

In[2916]:= DefInPackage["Kherson1`"]
Out[2916]= {"Kherson1`", {}, {"Ga1", "Gs1"}}}

In[2917]:= DefInPackage["C:\\AVZ_Package\\Kiev.m"]
Out[2917]= {"Kiev`", {}, {"W", "W1"}}

In[2918]:= DefInPackage["C:\\AVZ_Package\\Kherson1.m"]
Out[2918]= {"Kherson1`", {"W1", "Vt1", "Sv1"}, {"Gs1", "Ga1", "Vgs1"}}

In[2919]:= DefInPackage["C:\\AVZ_Package\\Kherson.m"]
Out[2919]= {"Kherson`", {"Vt", "Sv", "W"}, {"Ga", "Gs", "Vgs"}}

In[2920]:= DefInPackage["Kherson`"]
Out[2920]= {"Kherson`", {"Vt", "Sv", "W"}, {"Ga", "Gs", "Vgs"}}

For simplification of the DefInPackage procedure algorithm the expediency
of additional definition of 2 simple enough functions came to light, namely.
The StringDependAllQ function expands the construction ! StringFreeQ if
is required a testing of belonging to a string of all substrings from the given
list. The call StringDependAllQ[s, x] returns True only in the case if a string
x is substring of a string s, or each string from the list x belongs to a string s.

Whereas the procedure call StringDependQ1[x, y] returns True if a string x
contains an occurrence of a chain of the substrings determined by a list y of
strings and in the order defined by their order in the list y, otherwise False is
returned. The given procedure has a number of important applications.

Extension of Mathematica system functionality

 463

At last, the function call MfilePackageQ[x] returns True only in the case if
the string x defines a real datafile of m-format that is the standard package.
The previous fragment represents source codes of both functions along with
examples of their usage. It is supposed that local symbols of a package are
in its section Private, that is quite settled agreement. Meanwhile, qua of the
local objects of a package act as well those for which usages aren't defined.
So, the DefInPackage procedure successfully processes the packages with
other names of local sections or without such sections at all, i.e. definitions
of local symbols are located in a package arbitrarily. We leave the analysis
of algorithm of the procedure as an useful exercise for the interested reader.

In a number of cases there is a need of full removal from the current session
of the package uploaded into it. Partially the given problem is solved by the
standard functions Clear and Remove however they don't clear the lists that
are defined by variables $Packages, $ContextPath and by the call Contexts[]
off the package information. This problem is solved by the RemovePackage
procedure whose call RemovePackage[x] returns Null, i.e. nothing, at that,
completely removing from the current session a package determined by a
context x, including all exports of the package x and respectively updating
the specified system lists. The following fragment represents source code of
the RemovePackage procedure with the most typical examples of its usage.

In[2820]:= RemovePackage[x_ /; ContextQ[x]] := Module[{a = CNames[x],
 b = ClearAttributes[{$Packages, Contexts}, Protected]},
 Quiet[Map[Remove, a]];
 $Packages = Select[$Packages, StringFreeQ[#, x] &];
 Contexts[] = Select[Contexts[], StringFreeQ[#, x] &];
 SetAttributes[{$Packages, Contexts}, Protected];
 $ContextPath = Select[$ContextPath, StringFreeQ[#, x] &];]

In[2821]:= $ContextPath
Out[2821]= {"Kherson1`", "Kherson`", "AladjevProcedures`",
 "TemplatingLoader`", "PacletManager`", "System`", "Global`"}
In[2822]:= $Packages
Out[2822]= {"Kherson1`", "Kherson`", "AladjevProcedures`",
 "GetFEKernelInit`", "TemplatingLoader`", "ResourceLocator`",
 "PacletManager`", "System`", "Global`"}

V.Z. Aladjev, V.A. Vaganov

 464

In[2823]:= Contexts[]
Out[2823]= {"AladjevProcedures`", "AladjevProcedures`ActBFMuserQ`",
 "AladjevProcedures`ActRemObj`", "AladjevProcedures`ActUcontexts`",
 "AladjevProcedures`AddMxFile`", "AladjevProcedures`Adrive1`", …...}
In[2824]:= RemovePackage["Kherson1`"]
In[2825]:= $Packages
Out[2825]= {"Kherson`", "AladjevProcedures`", "GetFEKernelInit`",
 "TemplatingLoader`", "ResourceLocator`", "PacletManager`",
 "System`", "Global`"}
In[2826]:= Map[PureDefinition, {"Ga1", "Gs1"}]
Out[2826]= {$Failed, $Failed}

Meanwhile, it should be noted that the packages uploaded into the current
session can have the objects of the same name; about that the corresponding
messages are output. Qua of an active object acts the object whose context is
in the list $Packages earlier, that quite visually illustrates the next fragment
with the RemovePackage procedure usage. In this regard the procedure call
RemovePackage[x] deletes a package with the given context x.

In[2587]:= BeginPackage["Pac1`"]
 W::usage = "Help on W."
 Begin["`W`"]
 W[x_Integer, y_Integer] := x^2 + y^2
 End[]
 EndPackage[]

Out[2587]= "Pac1`"
Out[2588]= "Help on W."
Out[2589]= "Pac1`W`"
Out[2591]= "Pac1`W`"

In[2593]:= BeginPackage["Pac2`"]
 W::usage = "Help on W."
 Begin["`W`"]
 W[x_Integer, y_Integer] := x^3 + y^3
 End[]
 EndPackage[]

Extension of Mathematica system functionality

 465

Out[2593]= "Pac2`"
W::shdw: Symbol W appears in multiple contexts {Pac2`, Pac1`}; definitions ..
Out[2594]= "Help on W."
Out[2595]= "Pac2`W`"
Out[2597]= "Pac2`W`"

In[2599]:= $Packages
Out[2599]= {"Pac2`", "Pac1`", "HTTPClient`", "HTTPClient`OAuth`",
 "HTTPClient`CURLInfo`", "HTTPClient`CURLLink`", "JLink`",
 "DocumentationSearch`", "AladjevProcedures`",
 "GetFEKernelInit`", "TemplatingLoader`", "ResourceLocator`",
 "PacletManager`", "System`", "Global`"}

In[2600]:= W[90, 500]
Out[2600]= 125 729 000

In[2601]:= Definition[W]
Out[2601]= W[Pac2`W`x_Integer, Pac2`W`y_Integer] := Pac2`W`x^3 +
 Pac2`W`y^3
In[2602]:= RemovePackage["Pac1`"]
In[2603]:= W[90, 500]
Out[2603]= 125 729 000
In[2604]:= Definition[W]
Out[2604]= W[Pac2`W`x_Integer, Pac2`W`y_Integer] := Pac2`W`x^3 +
 Pac2`W`y^3
In[2605]:= RemovePackage["Pac2`"]
In[2606]:= Definition[W]
Out[2606]= Null
In[2607]:= $Packages
Out[2607]= {"HTTPClient`", "HTTPClient`OAuth`",
 "HTTPClient`CURLInfo`", "HTTPClient`CURLLink`", "JLink`",
 "DocumentationSearch`", "AladjevProcedures`",
 "GetFEKernelInit`", "TemplatingLoader`", "ResourceLocator`",
 "PacletManager`", "System`", "Global`"}

A convenient enough way of packages saving is represented by the system
DumpSave function, whose call DumpSave[F, x] returns the context x of a
package saved in a binary datafile F in format optimized for its subsequent
uploading into the Mathematica system. A package saved in the described

V.Z. Aladjev, V.A. Vaganov

 466

way is loaded into the current session by means of the function call Get[F]
with automatic activation of all definitions contained in it; at that, only those
datafiles are correctly uploaded which were saved on the same computing
platform by the DumpSave function of the Mathematica system.

Concerning the datafiles of mx-format with the user packages an interesting
and useful problem of definition of the context and objects, whose definitions
are in the datafile of the given type, without its uploading into the current
session arises. The ContMxFile procedure, whose source code with typical
examples of use are presented by the fragment below, solves this problem.

In[2664]:= DumpSave["AVZ_Package.mx", "AladjevProcedures`"]
Out[2664]= {"AladjevProcedures`"}

In[2665]:= DumpSave["Kherson1.mx", "Kherson1`"]
Out[2665]= {"Kherson1`"}

In[2666]:= DumpSave["Kiev.mx", "Kiev`"]
Out[2666]= {"Kiev`"}

In[2667]:= ContMxFile[x_ /; FileExistsQ[x] && FileExtension[x] == "mx",
 y___] := Module[{a = ReadFullFile[x], b = "CONT",
 c = "ENDCONT", d = "`", h, t},
 h = Flatten[StringPosition[a, {b, c}]][[1 ;; 4]];
 h = StringReplace[StringTake[a, {h[[2]] + 1, h[[3]] – 2}], "\.10" –> ""];
 h = StringJoin[Select[Characters[h], SymbolQ[#] &]] <> d;
 If[h == "", {}, If[MemberQ[$Packages, h] && {y} != {}, {h, CNames[h]},
 If[! MemberQ[$Packages, h] && {y} != {}, Quiet[Get[x]];
 {{h, CNames[h]}, RemovePackage[h]}[[1]],
 t = SubsString[a, {h, "`"}];
 t = Select[t, ! MemberQ[ToCharacterCode[#], 0] &];
 {h, Sort[DeleteDuplicates[
 Map[StringReplace[#, {h –> "", "`" –> ""}] &, t]]]}]]]]

In[2668]:= ContMxFile["Kiev1.mx"]
Out[2668]= {"Kiev1`", {"W", "W1", "W2", "W3"}}

In[2669]:= ContMxFile["Kiev1.mx", 90]
Out[2669]= {"Kiev1`", {"W", "W1"}}

Extension of Mathematica system functionality

 467

In[2670]:= ContMxFile["E:\\AVZ_Package\\AVZ_Package.mx"]
Out[2670]= {"AladjevProcedures`", {"ActBFMuserQ", "ActRemObj",
 "ActUcontexts", "AddMxFile", "Adrive1", "Affiliate", "Aobj",
 "Args", "ArgsBFM", "ArgsTypes", "Arity", "ArityBFM", …}}

In[2671]:= Length[%[[2]]]
Out[2671]= 425

In[2672]:= ContMxFile["Tallinn.mx"]
Out[2672]= {"Grodno`", {"Gs", "Gs1", "Vgs", "Vgs1"}}

The procedure call ContMxFile[x] returns the nested list whose first element
defines the context associated with the package contained in a mx–datafile x
while the second element determines the list of names in string format of all
objects of this package irrespectively from existence for them of usages, i.e.
of both local, and global objects. While the procedure call ContMxFile[x, y],
where argument y – an arbitrary expression – returns the nested list of similar
structure, but with that difference that its second element defines the list of
names of the objects of this package that are supplied with usages, i.e. only
of the global objects. Withal, it should be noted that ContMxFile procedure
presented in the previous fragment is intended for usage with the mx–files
created on platform Windows XP/7 Professional, its use for other platforms
can demand the appropriate adaptation. The reason of it consists in that the
algorithm of the ContMxFile procedure is based on an analysis of structure
of mx–files that depends on platform used at creation of such datafiles. The
following procedure ContMxFile1 is an useful enough modification of the
previous ContMxFile procedure which also uses an analysis of structure of
mx–files which depends on platform used at creation of such datafiles. The
procedure call ContMxFile1[x] returns the nested list whose first element
defines the context associated with the package contained in a mx–datafile x
while the second element determines the list of names in string format of all
objects of this package irrespectively from existence for them of usages, i.e.
local and global objects. Furthermore, similarly to the previous ContMxFile
procedure the returned names determine objects whose definition returned
by the call Definition contains the context. At that, is supposed that a file x
is recognized by the FileExistsQ function. The procedure algorithm enough
essentially uses the function whose call StrAllSymbNumQ[x] returns True
if a string x contains only symbols and/or integers, and False otherwise. The

V.Z. Aladjev, V.A. Vaganov

 468

fragment below represents source codes of both means along with examples
of its typical usage.

In[2769]:= ContMxFile1[x_ /; FileExistsQ[x] && FileExtension[x] == "mx"]:=
 Module[{a = ReadFullFile[x], b = "CONT", c = "ENDCONT", d, h, t},
 h = Flatten[StringPosition[a, {b, c}]][[1 ;; 4]];
 h = StringReplace[StringTake[a, {h[[2]] + 1, h[[3]] – 2}], "\.10" –> ""];
 h = StringJoin[Select[Characters[h], SymbolQ[#] &]] <> "`";
 If[h == "", {}, d = StringPosition[a, h][[2 ;; –1]];
 d = Map[StringTrim[#, "`"] &,
 Map[SubStrToSymb[a, #[[2]] + 1, "`", 1] &, d]];
 {h, Sort[Select[d, StrAllSymbNumQ[#] &]]}]]

In[2770]:= ContMxFile1["c:\\users\\mathematica\\avz_package.mx"]
Out[2770]= {"AladjevProcedures`", {"ActBFMuserQ", "ActCsProcFunc",
 "ActRemObj", "ActUcontexts", "AddMxFile", "Adrive1", …,
 "WhatType", "WhichN", "XOR1", "$ProcName", "$TypeProc"}}
In[2771]:= Length[%[[2]]]
Out[2771]= 427

In[2772]:= StrAllSymbNumQ[x_ /; StringQ[x]] :=
 ! MemberQ[Map[SymbolQ[#] || Quiet[IntegerQ[ToExpression[#]]] &,
 Characters[x]], False]

In[2773]:= Map[StrAllSymbNumQ, {"PosListTest1", "BitGet`"}]
Out[2773]= {True, False}

The procedures ContMxFile and ContMxFile1 adjoin the procedure, whose
call PackageMxCont[x] returns the context of a mx–file x; the procedure call
PackageMxCont[x, y] thru the 2nd optional argument – an undefinite variable
y – returns the nested list whose first element defines the list of local symbols
whereas the second element defines the list of global symbols of the package
that contained in the mx–file x [33,48]. On mx–files without context or local/
global symbols the procedure call PackageMxCont[x] returns $Failed or the
empty list accordingly, i.e. {}, for example:

In[2728]:= {PackageMxCont["E:\\Avz_package\\Avz_package.mx", s], s}
Out[2728]= {"AladjevProcedures`", {{}, {"AcNb", "ActBFMuserQ",

Extension of Mathematica system functionality

 469

 "ActCsProcFunc", "ActRemObj", "ActUcontexts", "AddMxFile",
 "Adrive", "Adrive1", "Affiliate", "Aobj", "Aobj1", "Args", …..}}}
In[2729]:= Length[%[[2]][[2]]]
Out[2729]= 684
In[2730]:= {PackageMxCont["PureDefinition.mx", s1], s1}
Out[2730]= {$Failed, s1}

The procedure also is oriented on the platform Windows XP Professional in
general, however on Windows 7 correctly returns the list of global symbols.
In particular, for the platform Windows 7 Professional the algorithm of the
previous ContMxFile procedure is modified in the corresponding manner,
taking into account the internal structure of the mx–datafiles created on the
specified platform. This algorithm is realized by the procedure ContMxW7,
whose call ContMxW7[x] returns the nested list whose first element defines
the context connected with the package contained in a mx-file x whereas the
second element defines the list of names in string format of all global objects
of the package whose definitions contains a context ascribed to the package.
Whereas on a mx–file without context the procedure call returns $Failed. At
that, is supposed that a file x is recognized by the FileExistsQ function. The
fragment below represents source code of the ContMxW7 procedure along
with typical examples of its usage.

In[2633]:= ContMxW7[x_ /; FileExistsQ[x] && FileExtension[x] == "mx"] :=
 Module[{a = FromCharacterCode[Select[BinaryReadList[x], # != 0 &]],
 b = "CONT", c = "ENDCONT", d = "`", h, t, g = {}, k, f, n},
 h = StringPosition[a, {b, c}][[1 ;; 2]];
 If[h[[1]] – h[[2]] == {–3, 0}, $Failed,
 t = StringTrim[StringTake[a, {h[[1]][[2]] + 2, h[[2]][[1]] – 2}]];
 a = StringTake[a, {h[[2]][[2]] + 1, –1}]; f = StringPosition[a, t];
 Map[{c = "", For[k = #[[2]] + 1, k <= StringLength[a], k++,
 n = StringTake[a, {k, k}]; If[n == d, Break[], c = c <> n]];
 If[StringFreeQ[c, StringTake[t, {1, –2}]], AppendTo[g, c], Null]} &, f];
 {t, Select[Sort[g], StrAllSymbNumQ[#] &]}]]

In[2634]:= ContMxW7["c:/users/aladjev/mathematica/AVZ_Package.mx"]
Out[2634]= {"AladjevProcedures`", {"ActBFMuserQ", "ActRemObj",

V.Z. Aladjev, V.A. Vaganov

 470

 "ActUcontexts", "AddMxFile", "Adrive1", "Affiliate", "Aobj",
 "Aobj1", "Args", "Args1", "ArgsBFM", "ArgsTypes", "Arity", …,
 "VizContentsNB", "VizContext", "WhatObj", "WhatType",
 "WhichN", "XOR1", "$ProcName", "$TypeProc"}}
In[2635]:= Length[%[[2]]]
Out[2635]= 427
In[2636]:= ContMxW7["C:\\users\\mathematica\\PureDefinition.mx"]
Out[2636]= $Failed

Unlike the above procedures ContMxFile and ContMxFile1, the following
ContMxFile2 procedure is based on another algorithm whose essence is as
follows. First of all the existence in a mx-file x of a package is checked; at its
absence $Failed is returned. Then upload in the current session of a package
containing in the mx-file x is checked. At positive result the required result
without unloading of a package x is returned, otherwise the required result
with unloading of a package is returned. In both cases a call ContMxFile2[x]
returns the 2–element list, whose first element determines a package context
whereas the second – the list of names in string format of means, contained
in the package. The procedure essentially uses the IsPackageQ procedure.

In[2878]:= ContMxFile2[x_ /; FileExistsQ[x] && FileExtension[x] == "mx"]:=
 Module[{a = $Packages, b = "AvzAgnVsvArtKr`", c, h, g,
 d = Unique["ag"]}, h = ToString[d]; g = IsPackageQ[x, d];
 If[g === $Failed, $Failed,
 If[g === True, {d, AladjevProcedures`CNames[d],
 ToExpression["Remove[" <> h <> "]"]},
 ToExpression["InputForm[BeginPackage[\"AvzAgnVsvArtKr`\"];
 EndPackage[]]"]; Off[General::shdw]; Get[x]; c = $Packages[[1]];
 b = {c, AladjevProcedures`CNames[c]};
 AladjevProcedures`RemovePackage[c]; On[General::shdw]; b]]]

In[2879]:= ContMxFile2["c:\\users\\ mathematica\\avz_package.mx"]
Out[2879]= {"AladjevProcedures`", {"AcNb", "ActBFM", "ActBFMuserQ",…,
 "$TestArgsTypes", "$TypeProc", "$UserContexts"}}
In[2880]:= Length[%[[2]]]
Out[2880]= 684

Extension of Mathematica system functionality

 471

In[2918]:= IsPackageQ[x_ /; FileExistsQ[x] && FileExtension[x] == "mx",
 y___] := Module[{a = ReadFullFile[x], b = "CONT",
 c = "ENDCONT", d, g = $Packages},
 If[! StringContainsQ[a, "CONT" ~~ __ ~~ "ENDCONT"], $Failed,
 d = StringPosition[a, {b, c}][[1 ;; 2]];
 d = StringTake[a, {d[[1]][[2]] + 1, d[[2]][[1]] – 1}];
 d = Select[Map[If[! StringFreeQ[d, #], #, Null] &, g], ! SameQ[#, Null] &];
 If[{y} != {} && ! HowAct[y], y = If[d == {}, {}, d[[1]]], Null];
 If[d != {}, True, False]]]

In[2919]:= {IsPackageQ["c:\\users/mathematica/avz_package.mx", y6], y6}
Out[2919]= {True, "AladjevProcedures`"}

In[2920]:= IsPackageQ["PureDefinition.mx"]
Out[2920]= $Failed

In[2921]:= IsPackageQ["c:\\users/aladjev\\mathematica\\Tallinn.mx"]
Out[2921]= False

The IsPackageQ procedure is intended for testing of any mx-file regarding
existence of the user's package in it along with upload of such package into
the current session. The call of the IsPackageQ[x] procedure returns $Failed
if the mx–file doesn't contain a package, True if the package which is in the
mx–file x is loaded into the current session, and False otherwise. Moreover,
the procedure call IsPackageQ[x, y] through the second optional argument
y – an undefinite variable – returns the context associated with the package
uploaded into the current session. In addition, is supposed that a datafile x
is recognized by the testing function FileExistsQ, otherwise the procedure
call is returned unevaluated. The previous fragment represents source codes
of both procedures ContMxFile2 and IsPackageQ along with more typical
examples of their usage.

Meanwhile, the DumpSave function has one rather essential shortcoming,
namely: it saves contexts which are only formally contexts, i.e. correspond
to them only by the format. In this connection the DumpSaveP function is
more preferable, whose call DumpSaveP[f, x] provides saving in a datafile f
of the package with a context x on condition that this package contains the
global symbols; otherwise the DumpSaveP function call returns $Failed. The

V.Z. Aladjev, V.A. Vaganov

 472

fragment represents source code of the function and examples of its usage.

In[3342]:= PackageQ[x_ /; ContextQ[x]] := If[CNames[x] != {}, True, False]

In[3343]:= DumpSaveP[f_/; StringQ[f], x_ /; ContextQ[x]] := If[PackageQ[x],
 DumpSave[f, x], $Failed]

In[3344]:= DumpSave["AVZ_Package.mx", "AladjevProcedures`"]
Out[3344]= {"AladjevProcedures`"}
In[3345]:= RemovePackage["AladjevProcedures`"]
In[3346]:= Map[Definition, {ProcQ, RemovePackage, Mapp, Map14, Map6,
 Definition2, StrStr, ContextQ, Cnames, ToString1}]
Out[3346]= {Null, Null, Null, Null, Null, Null, Null, Null, Null, Null}
In[3347]:= Get["AVZ_Package.mx"]
In[3348]:= Definition[StrStr]
Out[3348]= StrStr[x_] := If[StringQ[x], "\"" <> x <> "\"", ToString[x]]
In[3349]:= PackageQ["AvzAgnVsvArtKr`"]
Out[3349]= False
In[3350]:= DumpSave["AvzAgnVsvArtKr.mx", "AvzAgnVsvArtKr`"]
Out[3350]= {"AvzAgnVsvArtKr`"}
In[3351]:= DumpSaveP["AvzAgnVsvArtKr.mx", "AvzAgnVsvArtKr`"]
Out[3351]= $Failed

The DumpSaveP function qua of the test for an admissibility of the second
argument uses logical function whose call PackageQ[x] returns True if x – a
package containing global symbols, and False otherwise. Naturally, package
without global symbols of any interest doesn't represent. Really, according
to the system agreements the package has to define global symbols without
that the package can't be considered as such. In this connection the function
call DumpSaveP[f, x], where x isn't a package, returns $Failed, allowing to
process situations of this type very simply programmatically.

So, despite a formal correctness of definition of packages without the global
symbols or mx–files without context, a testing of actual packages which are
uploaded into the current session is necessary what a simple function does,
whose call Packages[] returns the list of contexts of the actual packages that
are loaded into the current session [33,48]. The next section considers some
additional means for operating with the user packages.

Extension of Mathematica system functionality

 473

8.3. Additional means of operating with the user
packages in the Mathematica software

Means of the Mathematica for operating with datafiles can be subdivided
into two groups conditionally: the means supporting the work with datafiles
which are automatically recognized at the address to them, and the means
supporting the work with any datafiles. This theme is quite extensive and is
in more detail considered in [30-33,52,60,64], here some additional means of
work with the datafiles containing the user's packages will be considered.

Since means of access to files of formats, even automatically recognized by
the Mathematica, don't solve a number of important enough problems, the
user is compelled to program own means on the basis of standard tools and
perhaps with use of own means. Qua of an useful example we will give the
DefFromPackage procedure whose call DefFromPackage[x] returns the 3–
element list, whose first element is definition in string format of a symbol x
whose context is different from {"Global'", "System'"}, the second element
defines its usage whereas the third element defines attributes of the symbol.
At that, on the symbols associated with 2 specified contexts, the procedure
call returns only the list of their attributes. The fragment below represents
source code of the DefFromPackage procedure with examples of its usage.

In[2742]:= DefFromPackage[x_ /; SymbolQ[x]] := Module[{a = Context[x],
 b = "", c = "", p, d = ToString[x], k = 1, h},
 If[MemberQ[{"Global`", "System`"}, a], Return[Attributes[x]],
 h = a <> d; ToExpression["Save[" <> ToString1[d] <> "," <>
 ToString1[h] <> "]"]];
 For[k, k < Infinity, k++, c = Read[d, String];
 If[c === " ", Break[], b = b <> c]];
 p = StringReplace[RedSymbStr[b, " ", " "], h <> "`" –> ""];
 {c, k, b} = {"", 1, ""}; For[k, k < Infinity, k++, c = Read[d, String];
 If[c === " " || c === EndOfFile, Break[],
 b = b <> If[StringTake[c, {–1, –1}] == "\\", StringTake[c, {1, –2}], c]]];
 DeleteFile[Close[d]];
 {p, StringReplace[b, " /: " <> d –> ""], Attributes[x]}]

V.Z. Aladjev, V.A. Vaganov

 474

In[2743]:= DefFromPackage[StrStr]
Out[2743]= {StrStr[x_] := If[StringQ[x], StringJoin["\"", x, "\""], ToString[x]],
 StrStr::usage = "The call StrStr[x] returns an expression x in
 string format if x is different from string; otherwise, the double
 string obtained from an expression x is returned.", {}}
In[2744]:= DefFromPackage[AvzAgn]
Out[2744]= {}
In[2745]:= SetAttributes[Ian, {Listable, Protected}]; DefFromPackage[Ian]
Out[2745]= {Listable, Protected}
In[2746]:= DefFromPackage[Cos]
Out[2746]= {Listable, NumericFunction, Protected}

The DefFromPackage procedure serves for obtaining of full information on
a symbol x whose definition is located in the user package uploaded into the
current session. Unlike the standard functions FilePrint and Definition this
procedure, first, doesn't print, but returns specified information completely
available for the subsequent processing, and, secondly, this information is
returned in an optimum format. At that, in a number of cases the output of
definition of a symbol that is located in an active package by the standard
means is accompanied with a context associated with the package that not
only complicates its viewing, but also the subsequent processing. Result of
the DefFromPackage call obviates this problem too. The algorithm realized
by this procedure is based on an analysis of structure of a datafile received
in result of saving of a context "y'x", where x – a symbol at the procedure
call DefFromPackage[x] and "y'" – a context, associated with the uploaded
package containing the definition of symbol x. In more detail the algorithm
realized by the DefFromPackage procedure is seen from its source code.

As the second example developing the algorithm of the previous procedure
in the light of application of functions of access it is possible to represent a
rather useful FullCalls procedure whose the call FullCalls[x] returns the list
whose first element is the context associated with a package uploaded into
the current session whereas its other elements – the symbols of this package
that are used by the user procedure or function x, or nested list of sublists of
this type at using by x of symbols (names of procedures/functions) from several
packages. The source code of the procedure along with typical examples of
its usage are represented in the following fragment.

Extension of Mathematica system functionality

 475

In[3435]:= FullCalls[x_ /; ProcQ[x] || FunctionQ[x]] := Module[{a = {}, b, d,
 c = "::usage = ", k = 1}, Save[b = ToString[x], x];
 For[k, k < Infinity, k++, d = Read[b, String];
 If[d === EndOfFile, Break[], If[StringFreeQ[d, c], Continue[],
 AppendTo[a, StringSplit[StringTake[d,
 {1, Flatten[StringPosition[d, c]][[1]] – 1}], " /: "][[1]]]]]];
 a = Select[a, SymbolQ[#] &]; DeleteFile[Close[b]];
 a = Map[{#, Context[#]} &, DeleteDuplicates[a]];
 a = If[Length[a] == 1, a, Map[DeleteDuplicates,
 Map[Flatten, Gather[a, #1[[2]] === #2[[2]] &]]]]; {d, k} = {{}, 1};
 While[k <= Length[a], b = Select[a[[k]], ContextQ[#] &];
 c = Select[a[[k]], ! ContextQ[#] &];
 AppendTo[d, Flatten[{b, Sort[c]}]]; k++];
 d = MinusList[If[Length[d] == 1, Flatten[d], d], {ToString[x]}];
 If[d == {Context[x]}, {}, d]]

In[3436]:= FullCalls[StrStr]
Out[3436]= {}
In[3437]:= G[x_] := StrStr[x] <> "RansIan50090"; FullCalls[G]
Out[3437]= {"AladjevProcedures`", "StrStr"}
In[3438]:= F[x_/; IntegerQ[x], y_/; IntegerQ[y]] := x^2 + y^2; FullCalls[F]
Out[3438]= {}

In[3439]:= FullCalls[ProcQ]
Out[3439]= {"AladjevProcedures`", "BlockFuncModQ", "ClearAllAttributes",
 "Contexts1", "Definition2", "HeadPF", "HowAct", "ListStrToStr",
 "Map3", "Mapp", "MinusList", "PureDefinition", "Sequences",
 "StrDelEnds", "SubsDel", "SuffPref", "SymbolQ", "SysFuncQ",
 "SystemQ", "ToString1", "UnevaluatedQ"}

In[3440]:= FullCalls[Attribs]
Out[3440]= {"AladjevProcedures`", "Adrive", "CopyDir", "CopyFileToDir",
 "DirQ", "FileExistsQ1", "HowAct", "LoadExtProg", "Map3",
 "PathToFileQ", "SearchFile", "StandPath", "StrDelEnds",
 "StrStr", "SuffPref", "SymbolQ", "ToString1"}

In[3441]:= GS[x_ /; RuleQ[x], y_ /; StringQ[y]] :=

V.Z. Aladjev, V.A. Vaganov

 476

 ArtKr[StringLength[StringReplace[y, x]], 500] +
 Vgs[StringLength[y], 90]; FullCalls[GS]
Out[3441]= {{"AladjevProcedures`", "RuleQ"}, {"Kherson`", "ArtKr", "Vgs"}}
In[3442]:= GS["Avz" –> "2015", "AgnAvzVsvArtKr"]
Out[3442]= 7604

Thus, the procedure call FullCalls[x] provides possibility of testing of the
user procedure or function, different from standard means, regarding use
by it of means whose definitions are in packages uploaded into the current
session. In development of this procedure the FullCalls1 procedure can be
offered whose source code along with rather typical examples of its usage
are represented by the following fragment.

In[2661]:= FullCalls1[x_ /; ProcQ[x] || FunctionQ[x]] := Module[{a = {}, b,
 c = "", d, k = 1, n, p}, Save[b = ToString[x], {x, c}];
 For[k, k < Infinity, k++, d = Read[b, String];
 If[d === EndOfFile, Break[],
 If[d != " ", c = c <> d,
 If[n = Flatten[StringPosition[c, " := "]]; n != {},
 If[Quiet[HeadingQ[p = StringTake[c, {1, n[[1]] – 1}]]],
 AppendTo[a, Quiet[HeadName[StringTake[c,
 {1, n[[1]] – 1}]]]]]]; c = ""]]]; DeleteFile[Close[b]]; {b = FullCalls[x],
 Select[MinusList[a, {ToString[x]}], ! MemberQ[Flatten[b], #] &]}]

In[2662]:= ArtKr[x_Integer, y_Integer] := Module[{}, N[Sqrt[x^2 + y^2]]];
 Vgs[x_Integer, y_Integer] := N[Sin[x] + Cos[y]];
 GS[x_ /; RuleQ[x], y_/; StringQ[y]] :=
 ArtKr[StringLength[StringReplace[y, x]], 90] + Vgs[StringLength[y], 500];
In[2663]:= FullCalls1[GS]
Out[2663]= {{"AladjevProcedures`", "RuleQ"}, {"ArtKr", "ArtKr", "Vgs"}
In[2664]:= FullCalls1[StrStr]
Out[2664]= {{}, {}}
In[2665]:= FullCalls1[ProcQ]
Out[2665]= {{"AladjevProcedures`", "BlockFuncModQ",
 "ClearAllAttributes", "Contexts1", "Definition2", "HeadPF",
 "HowAct", "ListStrToStr", "Map3", "Mapp", "MinusList",

Extension of Mathematica system functionality

 477

 "PureDefinition", "Sequences", "StrDelEnds", "SubsDel",
 "SuffPref", "SymbolQ", "SysFuncQ", "SystemQ", "ToString1",
 "UnevaluatedQ"}, {}}

The FullCalls1 procedure tests procedure/function x regarding use by it of
both package means, and the other means, other than the standard means.
In particular, the call FullCalls1[x] returns the nested list whose first element
corresponds to result of the call FullCalls[x] while the second element defines
the list of names of the means used by x, excluding the means belonging to
the uploaded user packages. Meanwhile, it must be kept in mind that both
procedures process only the means used by x which are determined by the
mechanism of the delayed calculations. Spreading of these procedures onto
the mechanism of immediate calculations of any special difficulties doesn't
cause, and such extension can present an useful enough exercitation to the
interested reader. We proceeded from the fact that the definition of both the
procedures, and the functions on a number of fairly significant reasons it is
advisable to determine by the mechanism of delayed calculations. At that,
both procedures FullCalls and FullCalls1 are quite useful at programming
a number of appendices. Right there quite pertinently to note that the Save

function used in realization of the procedures FullCalls and FullCalls1 can
be quite useful for the organization of libraries of the user tools. Indeed, the
call Save[f, {a, b, …}] saves in a datafile f of the text format all definitions not
only of objects with names {a, b, c, …}, but also all definitions of means with
which the specified objects are connected at all levels of their structural tree.
At the same time, the function call writes into datafile in the Append mode,
leaving the datafile closed. Moreover, the created datafile is easily edited by
simple text editors, allowing rather simply to create software for its editing
(deleting of objects, addition of objects, replacement of objects, etc.). For uploading
of similar library into the current session the function call Get[f] is enough,
having provided access to all means whose definitions were earlier saved in
the datafile f. The given question is considered rather in details in [30-33].

In a number of cases there is a need for uploading into the current session
of the Mathematica system not entirely of a package, but only the separate
means contained in it, for example, of a procedure/function, or their list. In
the following fragment the procedure is represented, whose procedure call
ExtrOfMfile[x, y] returns Null, i.e. nothing, uploading in the current session

V.Z. Aladjev, V.A. Vaganov

 478

the definitions only of those means that are determined by argument y and
are located in a datafile x of m–format. At that, in case of existence in the m–
file of several means of the same name, the last is uploaded into the current
session. While the call ExtrOfMfile[x, y, z] with the third optional argument
z – an undefinite variable – in addition through z returns the list of definitions
of means y which are located in the m–file x. In case of absence in a m–file x
of means y the procedure call returns $Failed. The next fragment represents
source code of the ExtrOfMfile procedure along with examples of its usage.

In[2572]:= ExtrOfMfile[f_ /; FileExistsQ[f] && FileExtension[f] == "m",
 s_ /; StringQ[s] || ListQ[s], z___] :=
 Module[{Vsv, p = {}, v, m}, m = ReadFullFile[f];
 If[StringFreeQ[m, Map["(*Begin[\"`" <> # <> "`\"]*)" &,
 Map[ToString, s]]], $Failed,
 Vsv[x_, y_] := Module[{a = m, b = FromCharacterCode[17],
 c = FromCharacterCode[24], d = "(*Begin[\"`" <> y <> "`\"]*)",
 h = "(*End[]*)", g = {}, t}, a = StringReplace[a, h –> c];
 If[StringFreeQ[a, d], $Failed, While[! StringFreeQ[a, d],
 a = StringReplace[a, d –> b, 1];
 t = StringTake[SubStrSymbolParity1[a, b, c][[1]], {4, –4}];
 t = StringReplace[t, {"(*" –> "", "*)" –> ""}];
 AppendTo[g, t]; a = StringReplace[a, b –> "", 1]; Continue[]];
 {g, ToExpression[g[[–1]]]}]];
 If[StringQ[s], v = Quiet[Check[Vsv[f, s][[1]], $Failed]],
 Map[{v = Quiet[Check[Vsv[f, #][[1]], $Failed]], AppendTo[p, v]} &,
 Map[ToString, s]]]; If[{z} != {} && ! HowAct[z], z = If[StringQ[s], v, p]];]]

In[2573]:= ExtrOfMfile["C:\\AVZ_Package\\Kiev.m", "W"]
In[2574]:= ExtrOfMfile["C:\\AVZ_Package\\Kiev.m", "W", w]
In[2575]:= {W[73, 68, 90], w}
Out[2575]= {18053, {"W[x_Integer, y_Integer] := x^2 + y^2",
 "W[x_Integer, y_Integer, z_Integer] := x^2 + y^2 + z^2",
 "W[x_Integer, y_Integer, z_Integer] := x^3 + y^3 + z^3"}}
In[2576]:= ExtrOfMfile["C:/AVZ_Package/Kiev.m", {"W", "W1", "GS"}, w2]
In[2576]:= w2

Extension of Mathematica system functionality

 479

Out[2576]= {{"W[x_Integer, y_Integer] := x^2 + y^2",
 "W[x_Integer, y_Integer, z_Integer] := x^2 + y^2 + z^2",
 "W[x_Integer, y_Integer, z_Integer] := x^3 + y^3 + z^3"},
 {"W1[x_Integer, y_Integer] := x*y + W[x, y]"}, $Failed}
In[2577]:= ExtrOfMfile["C:/Temp/Kiev.m", {"AgnVsvArtKr", "Avz"}]
Out[2577]= $Failed
In[2578]:= Remove[StrStr]
In[2578]:= Definition[StrStr]
Out[2578]= Null
In[2579]:= {ExtrOfMfile["c:/users/aladjev/mathematica/AVZ_Package.m",
 "StrStr", G], G}
Out[2579]= {Null, {"StrStr[x_] := If[StringQ[x], \"\\\"\"<>x<>\"\\\"\",
 ToString[x]]"}}
In[2580]:= Definition[StrStr]
Out[2580]= StrStr[x_] := If[StringQ[x], "\"" <> x <> "\"", ToString[x]]

It should be noted that this procedure can be quite useful in case of need of
recovery in the current session of the damaged means without uploading of
the user packages containing their definitions.

The DefFromM procedure directly adjoines to the ExtrOfMfile procedure,
whose call DefFromM[x, y] returns definition of an object with a name y that
is located in a datafile x of m–format with package while the procedure call
DefFromM[x, y, z], where z – an arbitrary expression, in addition evaluates
this definition in the current session, making the object y available. In order
to simplification of algorithm of the DefFromM procedure the SubListsMin
procedure is used, in general useful at operating with lists. The procedure
call SubListsMin[L, x, y, t] returns the sublists of a list L that are limited by
elements {x, y} and have the minimum length; at t = "r" selection is executed
from left to right, and at t = "l" from right to left. Whereas the procedure call
SubListsMin[L, x, y, t, z] with optional fifth argument z - arbitrary expression -
returns sublists without the limiting elements {x, y}. The following fragment
represents source codes of both procedures with examples of their usage.

In[2742]:= SubListsMin[L_/; ListQ[L], x_, y_, t_ /; MemberQ[{"r", "l"}, t],
 z___] := Module[{a, b, c, d = {}, k = 1, j},
 {a, b} = Map[Flatten, Map3[Position, L, {x, y}]];

V.Z. Aladjev, V.A. Vaganov

 480

 If[a == {} || b == {} || a == {} && b == {} || L == {}, {},
 b = Select[Map[If[If[t == "r", Greater, Less][#, a[[1]]], #] &, b],
 ! SameQ[#, Null] &];
 For[k, k <= Length[a], k++, j = 1; While[j <= Length[b],
 If[If[t == "r", Greater, Less][b[[j]], a[[k]]],
 AppendTo[d, If[t == "r", a[[k]] ;; b[[j]], b[[j]] ;; a[[k]]]]; Break[]]; j++]];
 d = Sort[d, Part[#1, 2] – Part[#1, 1] <= Part[#2, 2] – Part[#2, 1] &];
 d = Select[d, Part[#, 2] – Part[#, 1] == Part[d[[1]], 2] – Part[d[[1]], 1] &];
 d = Map[L[[#]] &, d]; d = If[{z} != {}, Map[#[[2 ;; –2]] &, d], d];
 If[Length[d] == 1, Flatten[d], d]]]

In[2743]:= SubListsMin[{a, b, a, c, d, q, v, d, w, j, k, d, h, f, d, h}, a, h, "r", 90]
Out[2743]= {c, d, q, v, d, w, j, k, d}
In[2744]:= SubListsMin[{h, g, a, b, h, a, c, d, a, q, h, v, w, a, j, k, d, h, f, d, h},
 a, h, "r"]
Out[2744]= {{a, b, h}, {a, q, h}}
In[2745]:= SubListsMin[{h, g, a, b, h, a, c, d, a, q, h, v, w, j, k, d, h, f, d, h},
 a, h, "r", 500]
Out[2745]= {{b}, {q}}
In[2746]:= SubListsMin[{h, g, a, b, h, a, c, d, a, q, h, v, w, j, k, d, h, f, d, h},
 a, h, "l"]
Out[2746]= {h, g, a}
In[2747]:= SubListsMin[{h, g, a, b, h, a, c, d, a, q, h, v, w, j, k, d, h, f, d, h},
 a, h, "l", 500]
Out[2747]= {g}

In[2749]:= DefFromM[x_ /; FileExistsQ[x] && FileExtension[x] == "m",
 y_ /; SymbolQ[y], z___] := Module[{a = ReadList[x, String], b, c, d},
 {b, c} = {"(*Begin[\"`" <> ToString[y] <> "`\"]*)", "(*End[]*)"};
 d = StringJoin[Map[StringTake[#, {3, –3}] &,
 Flatten[SubListsMin[a, b, c, "r", 90]]]];
 If[{z} != {}, ToExpression[d]; d, d]]

In[2750]:= DefFromM["AVZ_Package.m", StrStr]; Definition[StrStr]
Out[2750]= StrStr[x_] := If[StringQ[x], "\"" <> x <> "\"", ToString[x]]

Extension of Mathematica system functionality

 481

Being based on the approach, used in the previous ExtrOfMfile procedure,
and also on the mechanism of string patterns, we receive useful procedure
which provides receiving of the list of means, whose definitions are located
in the user package (m–file). The procedure call ContentOfMfile[f] returns
the list of names in string format of all means, whose definitions are located
in a package (m–file) determined by argument f. In absence in the m–file of
definitions of tools in the standard package format the procedure call returns
the empty list, i.e. {}. The following fragment represents source code of the
ContentOfMfile procedure along with typical examples of its usage.

In[2830]:= ContentOfMfile[f_ /; FileExistsQ[f] && FileExtension[f] ==
 "m"] := Module[{b, a = ReadFullFile[f]},
 b = StringSplit[a, {"(*", "*)"}];
 b = Select[b, ! StringFreeQ[#, {"Begin[\"`", "`\"]"}] &&
 StringFreeQ[#, "BeginPackage["] &];
 b = Flatten[Map[StringCases[#, "\"`" ~~ __ ~~ "`\""] &, b]];
 b = DeleteDuplicates[Map[StringTake[#, {3, –3}] &, b]];
 Sort[Select[b, StringFreeQ[#, {"=", ",", "`", "[", "]", "(", ")",
 "^", "^", ";", "{", "}", "\\", "/"}] &]]]

In[2841]:= ContentOfMfile["C:\\AVZ_Package\\Kiev.m"]
Out[2841]= {"W", "W1"}

In[2842]:= ContentOfMfile["AVZ_Package.m"]
Out[2842]= {"AcNb", "ActBFMuserQ", "ActCsProcFunc", "ActRemObj",
 "ActUcontexts", "AddMxFile", "Adrive", "Adrive1", "Affiliate",
 "Aobj", "Aobj1", "Args", "Args1", "ArgsBFM", "ArgsTypes", …..,
 "$InBlockMod", "$Line1", "$Load$Files$", "$ProcName",
 "$ProcType", "$TestArgsTypes", "$TypeProc", "$UserContexts"}

In[2843]:= Length[%]
Out[2843]= 683

The previous ContentOfMfile procedure can be simplified and reduced to
a function, using SubsString function providing the allocation of substrings
from a string on condition of satisfaction of the allocated substrings to the set
conditions. The procedure call SubsString[s, {a, b, c, d, …}] returns the list of
substrings of a string s that are limited by substrings {a, b, c, d, …} whereas

V.Z. Aladjev, V.A. Vaganov

 482

the procedure call SubsString [s, {a, b, c, d, e, …}, p] with the third optional
argument p – a pure function in short format – returns the list of substrings of
a string s that are limited by substrings {a, b, c, d, …}, meeting the condition
determined by a pure function p. While the procedure call SubsString[s, {a,
b, c, d, …}, p] with the 3rd optional argument p – an arbitrary expression which
different from pure function – returns a list of substrings limited by substrings
{a, b, c, d, …}, with removed prefixes and suffixes {a, b, c, d, …}[[1]] and {a, b,
c, d, …}[[-1]] accordingly. In absence in a string s of at least one of substrings
{a, b, c, d, …} the procedure call returns the empty list. Using the SubsString
procedure, it is rather simple to modify the ContentOfMfile procedure in
the form of ContentOfMfile1 function whose source code with source code
of SubsString procedure along with certain examples of their typical usage
the following fragment represents.

In[3215]:= SubsString[s_/; StringQ[s], y_/; ListQ[y], pf___] := Module[{b, c,
 a = "", k = 1}, If[Set[c, Length[y]] < 2, s, b = Map[ToString1, y];
 While[k <= c – 1, a = a <> b[[k]] <> "~~ Shortest[__] ~~ "; k++];
 a = a <> b[[–1]]; b = StringCases[s, ToExpression[a]];
 If[{pf} != {} && PureFuncQ[pf], Select[b, pf], If[{pf} != {},
 Map[StringTake[#, {StringLength[y[[1]]] + 1,
 –StringLength[y[[–1]]] – 1}] &, b],
 Select[b, StringQ[#] &]]]]]

In[3216]:= SubsString["adfghbffgxbavzgagngbArtggbKgrg", {"b","g"},
 StringFreeQ[#, "f"] &]
Out[3216]= {"bavzg", "bArtg", "bKg"}

In[3217]:= SubsString["adfghbffgxbavzgagngbArtgbKrg", {"b", "g"}]
Out[3217]= {"bffg", "bavzg", "bArtg", "bKrg"}

In[3218]:= SubsString["abcxxxxx42345abcyyyyy42345", {"ab", "42"}, 90]
Out[3218]= {"cxxxxx", "cyyyyy"}

In[3227]:= ContentOfMfile1[f_ /; FileExistsQ[f] && FileExtension[f] ==
 "m"] := Sort[DeleteDuplicates[Select[Map[StringTake[#, {9, –4}] &,
 SubsString[ReadFullFile[f], {"Begin[\"`", "`\"]"}]],
 StringFreeQ[#, {"=", ",", "`", "[", "]", "(", ")", "^", ";", "{", "}", "\\", "/"}] &]]]

Extension of Mathematica system functionality

 483

In[3228]:= ContentOfMfile1["C:\\Temp\\AVZ_Package\\Kherson.m"]
Out[3228]= {"W", "W1"}
In[3229]:= ContentOfMfile1["AVZ_Package.m"]
Out[3229]= {"AcNb", "ActBFMuserQ", "ActCsProcFunc", "ActRemObj",
 "ActUcontexts", "AddMxFile", "Adrive", "Adrive1", "Affiliate",
 "Aobj", "Aobj1", "Args", "Args1", "ArgsBFM", "ArgsTypes", …..,
 "$InBlockMod", "$Line1", "$Load$Files$", "$ProcName",
 "$ProcType", "$TestArgsTypes", "$TypeProc", "$UserContexts"}
In[3230]:= Length[%]
Out[3230]= 683

In general it should be noted that the Mathematica system posesses a rather
developed mechanism of string patterns which allows to program developed
means of processing of various string structures.

The two procedures below are quite useful at manipulations with a package
that is located in a mx–file. So, the procedure call ContextMXfile[x] returns
the context associated with the user's package which is located in a mx–file
x. Meanwhile, uploading of the mx–file into the current session isn't made.
The MxToTxt procedure allows 2 ÷ 4 actual arguments. The procedure call
MxToTxt[x, y] returns Null, i.e. nothing, saving in a datafile y of txt–format
and in the current session all definitions of a package which is located in a
mx–file. At that, all definitions of the file x are saved in an optimum format
(without the context associated with package). If the call MxToTxt[x, y, z], since
the third argument, contains optional argument "Del", the package x isn't
loaded into the current session, otherwise all its definitions are saved in the
current session in optimum format. If at the procedure call the arguments,
starting with the third, contain an undefinite variable, through it the list of
all objects whose definitions are located in a file x with the user package is
returned. The following fragment represents source codes of the mentioned
procedures together with them associated, and the examples of their usage.

In[2825]:= ContextMXfile[x_ /; FileExistsQ[x] && FileExtension[x] ==
 "mx"] := Module[{a, c,
 Flatten[Map7[Range, Sequences, {{48, 57}, {65, 90}, {96, 122}}]]},
 a = BinaryReadList[x]; a = a[[1 ;; If[Length[a] >= 500, 500, Length[a]]]];
 c = Flatten[Map3[PosSubList, a, {{67, 79, 78, 84}, {69, 78, 68, 67, 79, 78, 84}}]];

V.Z. Aladjev, V.A. Vaganov

 484

 If[Length[c] < 5, $Failed,
 FromCharacterCode[Select[a[[c[[2]] + 1 ;; c[[5]] – 1]], MemberQ[b, #1] &]]]]

In[2826]:= ContextMXfile["F:\\AVZ_Package\\AVZ_Package.mx"]
Out[2826]= "AladjevProcedures`"

In[2827]:= ContextFromFile[x_/; StringQ[x]] := If[Quiet[FileExistsQ[x]] &&
 MemberQ[{"m", "nb", "mx", "cdf"}, FileExtension[x]],
 Quiet[ToExpression[StringJoin["Context", ToUpperCase[
 If[FileExtension[x] == "cdf", "nb", FileExtension[x]]], "file[",
 ToString1[x], "]"]]], $Failed]

In[2828]:= Map[ContextFromFile, {"E:\\Temp/Kherson.m", "Package.nb",

 "C:\\Users\\Aladjev\\Mathematica\\AVZ_Package.mx"}]
Out[2828]= {"Kherson`", "AladjevProcedures`", "AladjevProcedures`"}

In[2829]:= MxToTxt[x_ /; FileExistsQ[x] && FileExtension[x] == "mx",
 y_ /; StringQ[y], z___] := Module[{b, c, a = ContextMXfile[x]},
 LoadMyPackage[x, a];
 b = CNames[a]; Map[{Write[y, Definition[#]], Write[y]} &, b];
 Close[y]; If[MemberQ[{z}, "Del"], RemovePackage[a]];
 c = Select[{z}, ! HowAct[#] && ! SameQ[#, "Del"] &];
 If[c != {}, ToExpression[ToString[c[[1]]] <> "=" <> ToString[b]]];]

BeginPackage["Kherson`"]
 Gs::usage = "Function Gs[x, y] := 73*x^2 + 68*y + 47 + S[x, y]."
 G::usage = "Function G[x, y] := N[Sin[x] + Cos[y]] + S[x, y]."
 V::usage = "Function S[x_, y_] := x^2 + y^2."
 Begin["`Private`"]
 V[x_, y_] := x^2 + y^2
 Gs[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := 73*x^2 + 68*y + 47 + V[x, y]
 G[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := N[Sin[x] + Cos[y]] + V[x, y]
End[]
EndPackage[]

In[2830]:= $Packages

Extension of Mathematica system functionality

 485

Out[2830]= {"AladjevProcedures`", "ResourceLocator`", "PacletManager`",
 "System`", "Global`"}
In[2831]:= ContextMXfile["Kherson.mx"]
Out[2831]= "Kherson`"
In[2832]:= MxToTxt["Kherson.mx", "Kherson.txt"]
In[2833]:= $Packages
Out[2833]= {"Kherson`", "AladjevProcedures`", "GetFEKernelInit`",
 "TemplatingLoader`", "ResourceLocator`", "PacletManager`",
 "System`", "Global`"}
In[2834]:= MxToTxt["Kherson.mx", "Kherson.txt", g]; g
Out[2834]= {G, Gs, V}
In[2835]:= $Packages
Out[2835]= {"Kherson`", "AladjevProcedures`", "GetFEKernelInit`",
 "TemplatingLoader`", "ResourceLocator`", "PacletManager`",
 "System`", "Global`"}
In[2836]:= MxToTxt["Kherson.mx", "Kherson.txt", "Del"]
In[2837]:= $Packages
Out[2837]= {"AladjevProcedures`", "GetFEKernelInit`",
 "TemplatingLoader`", "ResourceLocator`", "PacletManager`",
 "System`", "Global`"}
In[2838]:= MxToTxt["Kherson.mx", "Kherson.txt", t, "Del"]; t
Out[2838]= {G, Gs, V}
In[2839]:= $Packages
Out[2839]= {"AladjevProcedures`", "GetFEKernelInit`",
 "TemplatingLoader`", "ResourceLocator`", "PacletManager`",
 "System`", "Global`"}

The MxToTxt procedure has 2 rather useful modifications MxToTxt1 and
MxToTxt2 with which it is possible to familiarize in [30-33,48]. In particular,
on the basis of the procedures MxToTxt ÷ MxToTxt2 it is possible to create
quite effective and simple libraries of the user means with system of their
maintaining. The similar organization is rather habitual for the users having
experience in traditional programming systems.

The next equivalent procedures ContextFromMx and ContextFromMx1 use
different algorithms; their calls on a mx–file return a context ascribed to the
user package, at a context absence $Failed is returned. The fragment below

V.Z. Aladjev, V.A. Vaganov

 486

presents source codes of these procedures and an auxiliary function along
with typical examples of their usage. The function call StringFreeQ2[x, {a1,
a2, a3, …}] returns True if all substrings {a1, a2, a3, …} are absent in a string
x, and False otherwise.

In[2770]:= ContextFromMx[x_ /; FileExistsQ[x] && FileExtension[x] ==
 "mx"] := Module[{d = Map[FromCharacterCode, Range[2, 27]],
 a = StringJoin[Select[Characters[ReadString[x]],
 SymbolQ[#] || IntegerQ[#] || # == "`" &]], b},
 If[StringFreeQ2[a, {"CONT", "ENDCONT"}], $Failed,
 b = StringCases1[a, {"CONT", "ENDCONT"}, "___"];
 If[b == {}, $Failed, StringReplace[b, Flatten[{GenRules[d, ""],
 "ENDCONT" –> "", "CONT" –> ""}]][[1]]]]]

In[2771]:= ContextFromMx["c:\\users/aladjev/mathematica/Tallinn.mx"]
Out[2771]= "Grodno`"

In[2772]:= ContextFromMx1[x_ /; FileExistsQ[x] && FileExtension[x] ==
 "mx"] := Module[{d = Map[FromCharacterCode, Range[2, 27]],
 a = StringJoin[Select[Characters[ReadString[x]],
 SymbolQ[#] || IntegerQ[#] || # == "`" &]], b},
 If[StringFreeQ2[a, {"CONT", "ENDCONT"}] ||
 StringCases1[a, {"CONT", "ENDCONT"}, "___"] == {}, $Failed,
 b = StringPosition[a, {"CONT", "ENDCONT"}];
 If[b == {}, $Failed, StringReplace[StringTake[a, {b[[1]][[1]], b[[2]][[2]]}],
 Flatten[{GenRules[d, ""], "ENDCONT" –> "", "CONT" –> ""}]]]]]

In[2773]:= ContextFromMx1["c:/users/aladjev/mathematica/Tallinn.mx"]
Out[2773]= "Grodno`"

In[2774]:= StringFreeQ2[x_ /; StringQ[x], y_ /; StringQ[y] || ListQ[y] &&
 DeleteDuplicates[Map[StringQ[#] &, y]] == {True}] :=
 ! MemberQ[Map[StringFreeQ[x, #] &, Flatten[{y}]], False]

In[2775]:= StringFreeQ2["12tvArthsnm3p45k6r78hKr9", {"a", "b", "c", "d"}]
Out[2775]= True

Extension of Mathematica system functionality

 487

It should be noted that both procedures operates on platforms Windows XP
Professional and Windows 7 Professional. Moreover performance of procedures
is higher if they are applied to a mx–file created on the current platform.

In view of distinctions of the mx–files created on different platforms there is
a natural expediency of creation of the means testing any mx–file regarding
a platform in which it was created in virtue of the DumpSave function. The
following TypeWinMx procedure is one of such means. The procedure call
TypeWinMx[x] in string format returns the type of operating platform on
which a mx–file x was created; correct result is returned for case of Windows
platform, while on other platforms $Failed is returned. This is conditioned
by lack of a possibility to carry out debugging on other platforms. The next
fragment represent source code of the procedure with examples of its use.

In[2785]:= TypeWinMx[x_ /; FileExistsQ[x] && FileExtension[x] == "mx"]:=
 Module[{a, b, c, d}, If[StringFreeQ[$OperatingSystem, "Windows"],
 $Failed, a = StringJoin[Select[Characters[ReadString[x]],
 SymbolQ[#] || Quiet[IntegerQ[ToExpression[#]]] || # == "–" &]];
 d = Map[FromCharacterCode, Range[2, 27]];
 b = StringPosition[a, {"CONT", "ENDCONT"}];
 If[b[[1]][[2]] == b[[2]][[2]],
 c = StringCases1[a, {"Windows", "ENDCONT"}, "___"],
 b = StringPosition[a, {"Windows", "CONT"}];
 c = StringTake[a, {b[[1]][[1]], b[[2]][[2]]}]];
 c = StringReplace[c, Flatten[{GenRules[d, ""],
 "ENDCONT" –> "", "CONT" –> ""}]]; If[ListQ[c], c[[1]], c]]]

In[2786]:= TypeWinMx["ProcQ.mx"]
Out[2786]= "Windows-x86-64"
In[2787]:= TypeWinMx["AVZ_Package_1.mx"]
Out[2787]= "Windows"
In[2788]:= TypeWinMx["AVZ_Package.mx"]
Out[2788]= "Windows-x86-64"

The call DumpSave[x, y] returns the list of contexts y of objects or objects
with definitions that were ostensibly unloaded into a mx–file x irrespective
of existence of definitions for these objects or their contexts in the list defined

V.Z. Aladjev, V.A. Vaganov

 488

by $ContextPath variable, without allowing to make program processing of
results of DumpSave calls. At that, the result of the DumpSave call can't be
tested programmatically and elimination of this situation is promoted by a
procedure, whose successful call DumpSave1[x, y] returns the nested list
whose first element defines the path to a file x of mx–format (if necessary, the
"mx" extension is ascribed to the datafile) while the second element defines the
list of objects and/or contexts from the list defined by y whose definitions
are unloaded into the datafile x. In the absence of objects (the certain symbols
and/or contexts existing in the list defined by the $ContextPath variable) which
were defined by argument y, the DumpSave1 call returns $Failed. The next
fragment represents source codes of the procedure along with other means,
useful at processing of datafiles of mx–format, and contexts of symbols.

In[3120]:= DumpSave1[x_, y_] := Module[{a, b, c},
 If[StringQ[x], If[FileExtension[x] == "mx",
 c = x, c = x <> ".mx"]; a = Flatten[{y}];
 b = Select[a, (ContextQ[#] && MemberQ[$ContextPath, #]) ||
 ! MemberQ[{"", "Null"}, Quiet[ToString[Definition[#]]]] &];
 If[b != {}, {c, Flatten[DumpSave[c, b]]}, $Failed], $Failed]]

In[3121]:= DumpSave1["AVZ_Package42.mx", {"Art`", "Kr`", GS}]
Out[3121]= $Failed

In[3124]:= ReplaceSubLists[x_/; ListQ[x], y_ /; RuleQ[y] || ListRulesQ[y]]
 := Module[{a, f, d = FromCharacterCode[2015]}, f[z_/; ListQ[z]] :=
 StringJoin[Map[ToString1[#] <> d &, z]];
 a = Map[f[Flatten[{#[[1]]}]] –> f[Flatten[{#[[2]]}]] &, Flatten[{y}]];
 ToExpression[StringSplit[StringReplace[f[x], a], d]]]

In[3125]:= ReplaceSubLists[{a, b, c, "d", m, x, b, c}, {{b, c} –> {x, y},
 a –> {m, n}, "d" –> "90"}]
Out[3125]= {m, n, x, y, "90", m, x, x, y}

In[3128]:= SubsList[x_/; ListQ[x], y_, z_] := Module[{b, c,
 a = FromCharacterCode[2015]},
 b = StringJoin[Map[ToString1[#] <> a &, x]];
 c = Map[StringJoin[Map[ToString1[#] <> a &, Flatten[{#1}]]] &, {y, z}];

Extension of Mathematica system functionality

 489

 c = ToExpression[StringSplit[SubsString[b, {c[[1]], c[[2]]}], a]];
 If[Length[c] == 1, c[[1]], c]]

In[3129]:= SubsList[{a, b, c, d, x, y, x, b, c, n, a + b, x, y, z}, {b, c}, {x, y}]
Out[3129]= {{b, c, d, x, y}, {b, c, n, a + b, x, y}}

In[3146]:= ContextToSymbol[x_/; SymbolQ[x], y_ /; ContextQ[y],
 z_ /; StringQ[z]] := Module[{b = Flatten[{PureDefinition[x]}],
 a = If[FileExtension[z] == "mx", z, z <> ".mx"]},
 If[b === {$Failed}, $Failed, AppendTo[$ContextPath, y];
 Quiet[ToExpression[Map[y <> # &, b]]]; {a, DumpSave[a, y]}]]

In[3147]:= Art[x_] := Module[{a = 6}, x + a];
 ContextToSymbol[Art, "Veeroja`", "AgnAvz"]
Out[3147]= {"AgnAvz.mx", {"Veeroja`"}}

In[3150]:= ContextRepMx[x_ /; FileExistsQ[x] && FileExtension[x] == "mx",
 y_ /; ContextQ[y]] := Module[{a = ContextMXfile[x], b, c, d, h, n, m, f},
 a = If[SameQ[a, $Failed], "None", a]; b = ReadList[x, Byte];
 c = Map[ToCharacterCode, {"Windows", "ENDCONT"}];
 f = ToString[Unique[]] <> ".mx"; ContextToSymbol[d, y, f];
 h = ReadList[f, Byte]; n = SubsList[b, c[[1]], c[[2]]];
 m = SubsList[h, c[[1]], c[[2]]]; DeleteFile[f];
 h = ReplaceSubLists[b, n –> m]; f = FileNameSplit[x];
 f = FileNameJoin[AppendTo[f[[1 ;; –2]], "$" <> f[[–1]]]];
 BinaryWrite[f, h]; Close[f]; {f, a, y}]

In[3151]:= ContextRepMx["Kherson.mx", "Grodno`"]
Out[3151]= {"$Kherson.mx", "Kherson`", "Grodno`"}

In[3154]:= ContextSymbol[x_/; SymbolQ[x]] :=
 Select[Map[If[MemberQ[CNames[#], ToString[x]] ||
 MemberQ[CNames[#], # <> ToString[x]], #] &,
 DeleteDuplicates[$ContextPath]], ! SameQ[#1, Null] &]

In[3155]:= Map[ContextSymbol, {G, Gs, ProcQ, Sin}]
Out[3155]= {{"Kherson`"}, {"Grodno`"}, {"AladjevProcedures`"}, {"System`"}}

V.Z. Aladjev, V.A. Vaganov

 490

So, the previous fragment represents as the main, and supportive means of
processing of mx–files and contexts. The procedure call ReplaceSubLists[x,
y] returns the result of replacement of elements (including adjacent) of a list x
on the basis of a rule or list of rules y; moreover, lists can be as parts of rules.
Whereas the procedure call SubsList[x, y, z] returns the list of sublists of the
elements of a list x that are limited by elements {y, z}; qua of elements {y, z}
can be lists too. If any of elements {y, z} doesn't belong x, the procedure call
returns the empty list, i.e. {}. The presented procedures ReplaceSubLists and
SubsList along with processing of lists are of interest for assignment to mx–
files of a context in its absence.

Whereas the procedure call ContextToSymbol[x, y, z] returns the list of the
format {z, {y}}, ascribing to a certain symbol x a context y with saving of its
definition in a mx–file z. In particular, the given means is quite useful in the
case of necessity of saving of objects in mx–files with a context. On the basis
of three procedures ReplaceSubLists, SubsList and ContextToSymbol the
procedure which provides replacement of contexts in mx–files without their
uploading into the current session has been created. So, the procedure call
ContextRepMx[x, y] provides replacement of the context of a mx–file x by a
new context y, returning the list of the format {File, h, y} where File – the file
with result of such replacement, h – an old context or "None" – if it wasn't,
and y – a new context. Whereas the function call ContextSymbol[x] returns
the context associated with a symbol x.

At calculation of definition of a symbol x in the current session the symbol
will be associated with the "Global'" context that remains at its unloading
into mx-file by means of the DumpSave function. While in some cases there
is a need of saving of symbols in mx-files with other contexts. The procedure
DumpSave2 solves the given problem whose call DumpSave2[f,x,y] returns
nothing, unloading into a mx–file f the definition of a symbol or their list x
that have context "Global'" with y context. The fragment below represents
source code of the DumpSave2 procedure along with examples of its usage.

In[3222]:= DumpSave2[x_ /; FileExtension[x] == "mx", y_ /; SymbolQ[y] ||
 ListQ[y] && DeleteDuplicates[Map[SymbolQ[#] &, y]] == {True},
 z_ /; ContextQ[z]] := Module[{b, c,
 a = Flatten[Select[Map[PureDefinition[#] &, Flatten[{y}]],

Extension of Mathematica system functionality

 491

 ! SameQ[#, $Failed] &]]}, Map[ToExpression[z <> #] &, a];
 AppendTo[$ContextPath, z];
 c = Map[z <> ToString[#] &, Flatten[{y}]];
 AppendTo[c, $ContextPath]; DumpSave[x, c];]

In[3223]:= Agn[x_] := x; Agn[x_, y_] := x + y; Agn[x_Integer] := x + 500
In[3224]:= Avz[x_] := x^2; Avz[x_, y_] := 90*(x+y); Avz[x_Integer] := x+500
In[3225]:= Map[ContextSymbol, {Agn, Avz}]
Out[3225]= {{"Global`"}, {"Global`"}}
In[3226]:= DumpSave2["Tallinn.mx", {Agn, Avz}, "Rans`"]
In[3227]:= Clear[Avz, Agn]; Map[PureDefinition, {Agn, Avz}]
Out[3227]= {$Failed, $Failed}
In[3228]:= Get["Tallinn.mx"]; PureDefinition[Rans`Agn]
Out[3228]= {"Rans`Agn[x_Integer] := x + 500", "Rans`Agn[x_] := x",
 "Rans`Agn[x_, y_] := x + y"}
In[3229]:= Ian`Agn[x_, y_] := x + y; PrependTo[$ContextPath, "Ian`"]
Out[3229]= {"Ian`", "AladjevProcedures`", "TemplatingLoader`",
 "PacletManager`", "System`", "Global`", "Rans`"}
In[3230]:= ContextSymbol[Agn]
Out[3230]= {"Ian`", "Rans`"}
In[3231]:= DumpSave["Tampere.mx", "Ian`"];
In[3232]:= $ContextPath = MinusList[$ContextPath, {"Ian`"}];
 PureDefinition[Agn]
Out[3232]= $Failed
In[3233]:= Get["Tampere.mx"]; CNames["Ian`"]
Out[3233]= {"Agn"}
In[3234]:= ContextMXfile["Tampere.mx"]
Out[3234]= "Ian`"
In[3235]:= PureDefinition[Agn]
Out[3235]= "Agn[x_, y_] := x + y"

The previous fragment is completed by examples illustrating the principle
of saving of objects, whose definitions are evaluated in the current session,
in mx–files with the given context. This principle was used at programming
of the procedures endowing a symbol by a context.

As it was noted earlier, the objects of the same name have various headings

V.Z. Aladjev, V.A. Vaganov

 492

therefore in certain cases arises a question of their more exact identification.
The next procedure provides one of such approaches, trying to associate the
components composing such objects with the contexts ascribed to them. At
the heart of the procedure algorithm lies a principle of creation for separate
components of an object of the same name of packages in m–files with the
unique contexts ascribed to them. Then, having removed an object x of the
same name from the current session, by means of uploading of these m-files
into the current session we have opportunity of access to components of the
object x of the same name through a construction of the "Context'x" format.
The fragment below represents souce code of the DiffContexts procedure
along with typical examples of its usage.

In[2630]:= DiffContexts[x_ /; SymbolQ[x] && ! UnevaluatedQ[HeadPF, x],
 y___] := Module[{a = {"(*BeginPackage[\"\.12`\"]*)",
 "(*\.0f::usage=\"\"" <> "*)", "(*Begin[\"`\.06`\"]*)",
 "(*\.04*)", "(*End[]*)", "(*EndPackage[]*)"},
 b = Map[FromCharacterCode, {18, 15, 6, 4}],
 c = Definition2[x][[1 ;; –2]], d, h = ToString[x],
 k = 1, j, t = {}, p, f = {}, z},
 If[Length[c] < 2, Context[x], z = HeadPF[x]; Clear[x];
 For[k, k <= Length[c], k++, d = {}; For[j = 1, j <= Length[a], j++,
 AppendTo[d, StringReplace[a[[j]], {b[[1]] –> h <> ToString[k],
 b[[2]] –> h, b[[3]] –> h, b[[4]] –> c[[k]]}]]];
 AppendTo[t, p = h <> ToString[k] <> ".m"];
 AppendTo[f, {h <> ToString[k] <> "`", z[[k]]}];
 Map[{BinaryWrite[p, ToCharacterCode[#][[3 ;; –3]]],
 BinaryWrite[p, {32, 10}]} &, d]; Close[p]; Get[p]];
 If[{y} != {}, Map[DeleteFile, t], Null]; Reverse[f]]]

In[2631]:= T[x_] := x; T[x_, y_] := x*y; T[x_, y_, z_] := x*y*z
In[2632]:= DiffContexts[T]
Out[2632]= {{"T3`", "T[x_, y_, z_]"}, {"T2`", "T[x_, y_]"}, {"T1`", "T[x_]"}}
In[2633]:= Definition["T1`T"]
Out[2633]= T1`T[T1`T`x_] := T1`T`x
In[2634]:= Definition["T2`T"]

Extension of Mathematica system functionality

 493

Out[2634]= T2`T[T2`T`x_, T2`T`y_] := T2`T`x*T2`T`y
In[2635]:= Definition["T3`T"]
Out[2635]= T[T3`T`x_, T3`T`y_, T3`T`z_] := T3`T`x*T3`T`y*T3`T`z
In[2636]:= Definition[T]
Out[2636]= T[T3`T`x_, T3`T`y_, T3`T`z_] := T3`T`x*T3`T`y*T3`T`z
In[2637]:= $Packages
Out[2637]= {"T3`", "T2`", "T1`", "AladjevProcedures`", "GetFEKernelInit`",
 "TemplatingLoader`", "ResourceLocator`", "PacletManager`",
 "System`", "Global`"}
In[2638]:= DiffContexts[T, 500]
Out[2639]= {"T3`", "T2`", "T1`"}
In[2639]:= Definition["T1`T"]
Out[2639]= T1`T[T1`T`x_] := T1`T`x
In[2640]:= FileExistsQ["T1.m"]
Out[2640]= False
In[2641]:= T3`T[73, 68, 48]
Out[2641]= 238 272

The procedure call DiffContexts[x] returns the nested list of ListList–type
whose sublists by the first element define context while the second element
define heading of a certain component of an object of the same name x in the
format {{"xn'", "cn'"}, …, {"x2'", "c2'"}, {"x1'", "c1'"}} whose order is defined
by order of the contexts in the list defined by the $Packages variable, where
n – number of components of the object of the same name x. Moreover, the
datafiles "xj.m" with the packages with components definitions composing
the object of the same name x remain in the current directory of the session
(j=1..n). At the same time the procedure call DiffContexts[x, y] with the 2nd
argument y – an arbitrary expression – returns the above result, removing the
intermediate m-files. Whereas on x objects different from objects of the same
name the procedure call DiffContexts[x] returns the context of an object x.

A certain interest is represented by the NamesCS procedure whose the call
NamesCS[P, Pr, Pobj] returns Null, i.e. nothing while thru three arguments
P, Pr, Pobj – undefinite variables – are respectively returned the list of contexts
corresponding to the packages uploaded into the current session, the list of
the user procedures, whose definitions are activated in the Input-paragraph
of the current session, and the nested list, whose sublists in the main have

V.Z. Aladjev, V.A. Vaganov

 494

various length and are structurally formatted as follows:

– the first element of a sublist defines the context corresponding to a package which
was uploaded in the current session of the Mathematica system at the time of the
NamesCS procedure call;
– all subsequent elements of this sublist define objects of this package which in the
current session of the Mathematica system were made active.

The following fragment represent source code of the NamesCS procedure
along with a typical example of its usage.

In[2593]:= NamesCS[P_ /; ! HowAct[P], Pr_ /; ! HowAct[Pr],
 Pobj_ /; ! HowAct[Pobj]] :=
 Module[{b = Contexts[], c = $Packages, d, k = 1, p, n, m, h,
 a = Quiet[Select[Map[ToExpression, Names["`*"]], ProcQ[#] &]]},
 {P, Pr} = {c, a}; c = Map[List, c];
 For[k, k <= Length[b], k++, For[p = 1, p <= Length[c], p++,
 n = b[[k]]; m = c[[p]][[1]]; If[n === m, Null, If[SuffPref[n, m, 1],
 d = StringReplace[n, b –> ""]; If[d == "", Null, c[[p]] = Append[c[[p]],
 ToExpression[StringTake[StringReplace[n, b –> ""], {1, –2}]]]]],
 Continue[]]]]; c = Map[DeleteDuplicates, c];
 For[k = 1, k <= Length[c], k++, h = c[[k]];
 If[Length[h == 1], h = Null, h = Select[h, StringQ[#] ||
 ToString[Quiet[DefFunc[#]]] != "Null" &]]];
 Pobj := Select[c, Length[#] > 1 && ! # === Null &];
 Pobj = Mapp[Select, Pobj, If[! StringQ[#], True,
 If[StringTake[#, –1] == "`", True, False]] &];]

In[2594]:= NamesCS[P, Pr, Pobj]
In[2595]:= {P, Pr}
Out[2595]= {{"Grodno`", "Tallinn`", "Kiev1`", "Kiev`", "AladjevProcedures`",
 "GetFEKernelInit`", "TemplatingLoader`", "ResourceLocator`",
 "PacletManager`", "System`", "Global`"}, {}}
In[2596]:= Pobj
Out[2596]= {{"Kherson`", Ga, Gs, Private, Vgs},
 {"AladjevProcedures`", ActBFMuserQ, ActRemObj, …,
 {"ResourceLocator`", Private},

Extension of Mathematica system functionality

 495

 {"PacletManager`", Collection`Private, Private, …},
 {"QuantityUnits`", Private},
 {"WebServices`", Information},
 {"System`", BesselParamDerivativesDump, BinaryReadDump}}

Moreover, the list returned through Pobj–argument contains only sublists,
whose corresponding packages have objects that have been activated in the
current Mathematica session.

While the call Npackage[x] of very simple function returns the list of names
in string format of all objects whose definitions are located in a x package
activated in the current session. In case of inactivity in the current session of
the package x or in case of its absence the function call Npackage[x] returns
$Failed. So, the following fragment represents source code of the Npackage
function along with typical examples of its usage.

In[2684]:= Npackage[x_/; StringQ[x]] := If[MemberQ[Contexts1[], x],
 Sort[Select[Names[x <> "*"], StringTake[#, –1] != "$" &&
 ToString[Definition[#]] != "Null" &]], $Failed]

In[2685]:= Npackage["AladjevProcedures`"]
Out[2685]= {"AcNb", "ActBFMuserQ", "ActCsProcFunc", "ActRemObj",
 "AddMxFile", "Adrive", "Adrive1", "Affiliate", "Aobj", …,
 "$CallProc", "$InBlockMod", "$Line1", "$ProcName",
 "$ProcType", "$TestArgsTypes", "$TypeProc", "$UserContexts"}
In[2686]:= Npackage["Tallinn`"]
Out[2686]= $Failed

The ContOfContex procedure also is represented as a rather interesting tool
whose call ContOfContex[x] returns the nested two-element list whose first
element defines the sublist of all names in string format of means of the user
package with a context x whose definitions in the current session are returned
by the Definition function with the x context included in them whereas the
second element defines the sublist of all names in string format of means of
the package with the x context whose definitions in the current session are
returned by the Definition function without context x. The fragment below
represents source code of the ContOfContex procedure with an example of
its use concerning the context "AladjevProcedures’" that is associated with

V.Z. Aladjev, V.A. Vaganov

 496

the AVZ_Package package [48]. At the end of the fragment the length of both
sublists of the returned result is calculated along with random inspection by
means of the Definition function of definitions of means from both sublists.
From the received estimation follows, the length of the first sublist of means
of the above package whose definitions in the current session are returned by
the Definition function along with the context is significantly longer.

In[2705]:= ContOfContext[x_ /; ContextQ[x]] := Module[{b = {}, c = {}, h,
 a = Select[CNames[x], # != "a" &], k = 1},
 If[a == {}, $Failed, While[k <= Length[a], h = a[[k]];
 If[StringFreeQ[StringReplace[ToString[Definition4[h]],
 "\\n \\n" –> ""], x <> h <> "`"], AppendTo[c, h],
 AppendTo[b, h]]; k++]; {b, c}]]

In[2706]:= ContOfContext["AladjevProcedures`"]
Out[2706]= {{"ActBFMuserQ", "ActRemObj", "AddMxFile", "Adrive1",
 "Affiliate", "Aobj", "Aobj1", "Args", "Args1", "ArgsBFM", ……},
 {"AcNb", "ActCsProcFunc", "Adrive", "Attributes1", "Avg",
 "BlockQ", "BlockQ1", "CALL",…,"$Load$Files$", "$ProcName",
 "$ProcType","$TestArgsTypes","$TypeProc","$UserContexts"}}

In[2707]:= Map[Length, %]
Out[2707]= {425, 259}

In[2708]:= Definition["DirName"]
Out[2708]= DirName[AladjevProcedures`DirName`F_ /;
 StringQ[AladjevProcedures`DirName`F]] :=
 If[DirQ[AladjevProcedures`DirName`F], "None",
 If[! FileExistsQ1[AladjevProcedures`DirName`F], $Failed,
 Quiet[Check[FileNameJoin[
 FileNameSplit[AladjevProcedures`DirName`F][[1; –2]]], "None"]]]]

In[2709]:= Definition["StrStr"]
Out[2709]= StrStr[x_] := If[StringQ[x], StringJoin["\"", x, "\""], ToString[x]]

In[2710]:= ContOfContext["AladjevProceduresAndFunctions`"]
Out[2710]= $Failed

In[2716]:= LoadPackage[x_ /; FileExistsQ[x] && FileExtension[x] == "mx"] :=
 Module[{a}, Quiet[ToExpression["Off[shdw::Symbol]"]; Get[x];

Extension of Mathematica system functionality

 497

 a = ToExpression["Packages[][[1]]"];
 ToExpression["LoadMyPackage[" <> "\"" <>
 x <> "\"" <> "," <> "\"" <> a <> "\"" <> "]"];
 ToExpression["On[shdw::Symbol]"]]]

In[2717]:= LoadPackage["C:\\Users\\Mathematica\\AVZ_Package.mx"]
In[2718]:= Definition["DirName"]
Out[2718]= DirName[F_ /; StringQ[F]] := If[DirQ[F], "None",
 If[! FileExistsQ1[F], $Failed,
 Quiet[Check[FileNameJoin[FileNameSplit[F][[1; –2]]], "None"]]]]

On inactive contexts x the procedure calls ContOfContext[x] return $Failed
while in other cases the procedure call is returned unevaluated. Qua of one
of possible appendices of the given procedure it is possible to note problems
that deal with source codes of software of the user packages. For elimination
of similar distinction the LoadPackage procedure completing the previous
fragment can be used. The procedure call LoadPackage[x] returns Null, i.e.
nothing, loading the user package contained in a datafile x of the mx-format
into the current session of the Mathematica with activation of all definitions
which contain in it in a mode similar to the mode of the Input-paragraph of
the Mathematica system.

Qua of useful addition to the ContOfContex procedure, the NamesContext
procedure can be quite considered, whose call NamesContext[x] returns the
list of names in string format of program objects of the current session that
are associated with a context x. In case of absence of this context the empty
list, i.e. {} is returned. If the x value is different from a context the procedure
call is returned unevaluated. The following fragment represents source code
of the NamesContext procedure along with typical examples of its usage.

In[2840]:= NamesContext[x_ /; ContextQ[x]] := Module[{b, c = {}, k = 1, h,
 a = Names[x <> "*"]},
 While[k <= Length[a], b = a[[k]];
 h = ToString[ToExpression["Definition[" <> b <> "]"]];
 If[h != "Null" && h != "Attributes[" <> b <> "] = {Temporary}" &&
 ! SuffPref[b, "a$", 1], AppendTo[c, a[[k]]]]; k++]; c]

V.Z. Aladjev, V.A. Vaganov

 498

In[2841]:= NamesContext["AladjevProcedures`"]
Out[2841]= {"AcNb", "ActBFMuserQ", "ActCsProcFunc", "ActRemObj",
 "AddMxFile", "Adrive", "Adrive1", "Affiliate", "Aobj", …,
 "$CallProc", "$InBlockMod", "$Line1", "$ProcName",
 "$ProcType", "$TestArgsTypes", "$TypeProc", "$UserContexts"}
In[2842]:= Length[%]
Out[2842]= 684
In[2843]:= NamesContext["Global`"]
Out[2843]= {"Art", "G", "Gal", "Kr", "Global`LoadPackage", "NamesContext"}
In[2844]:= Length[%]
Out[2844]= 6
In[2845]:= NamesContext["System`"]
Out[2845]= {"\[FormalA]", "\[FormalB]", "\[FormalC]", "\[FormalD]",
 "\[FormalE]", "\[FormalF]", "\[FormalG]", "\[FormalH]", … ,
 "$UserName", "$Version", "$VersionNumber", "$WolframID",
 "$WolframUUID", "\[SystemsModelDelay]"}
In[2846]:= Length[%]
Out[2846]= 5167
In[2847]:= NamesContext["Tallinn`"]
Out[2847]= {}

The procedure call Contexts1[] that is a simple modification of the Contexts
function which provides testing of an arbitrary string for admissibility qua
of a syntactically correct context returns the list of contexts corresponding to
packages whose components have been activated in the current session. The
following fragment represents source code of the Contexts1 procedure with
a typical example of its usage.

In[2920]:= Contexts1[] := Module[{a = {}, b = Contexts[], c, k = 1},
 For[k, k <= Length[b], k++, c = b[[k]];
 If[Length[DeleteDuplicates[Flatten[StringPosition[c, "`"]]]] == 1 &&
 StringTake[c, {–1, –1}] == "`", AppendTo[a, c], Next[]]]; a]

In[2921]:= Contexts1[]
Out[2921]= {"AladjevProcedures`", "Algebra`", "AlphaIntegration`", ……}
In[2922]:= Length[%]
Out[2922]= 184

Extension of Mathematica system functionality

 499

In some cases exists the problem of definition of the m–files containing the
definition of some object active in the current session. The given problem is
successfully solved by the procedure whose call FindFileObject[x] returns
the list of datafiles containing definition of an object x, including the usage;
in the absence of such m–files the procedure call returns the empty list, i.e.
{}. The procedure call FindFileObject[x, y, z, …] with optional arguments {y,
z, …} qua of which the names in string format of devices of direct access are
defined, provides search of m-files on the specified devices instead of search
in all file system of the computer by the procedure call with one argument.
The next fragment represents source code of the FindFileObject procedure
along with some typical examples of its usage.

In[4363]:= FindFileObject[x_ /; ! SameQ[ToString[DefOpt[ToString[x]]],
 "Null"], y___] := Module[{b = {}, c = "", s = {}, d, k = 1,
 a = If[{y} == {}, Adrive[], {y}], f = "ArtKr",
 h = "(*Begin[\"`" <> ToString[x] <> "`\"]*)",
 p = "(*" <> ToString[x] <> "::usage=", t},
 While[k <= Length[a], Run["Dir ", a[[k]] <> ":\\", " /B/S/L > "<>f];
 While[! SameQ[c, "EndOfFile"], c = ToString[Read[f, String]];
 If[StringTake[c, {–2, –1}] == ".m", AppendTo[b, c]];
 Continue[]]; Quiet[Close[f]]; c = ""; k++]; k = 1;
 While[k <= Length[b], If[Select[ReadList[b[[k]], String],
 ! StringFreeQ[#, h] && StringFreeQ[#, p] &] != {},
 AppendTo[s, b[[k]]]]; k++]; {DeleteFile[f], s}[[2]]]

In[4364]:= FindFileObject[ProcQ, "D"]
Out[4364]= {"d:\\grgu_books\\avz_package\\avz_package.m",
 "d:\\temp\\aladjev\\documents\\avz_package.m",
 "d:\\temp\\aladjev\\mathematica\\avz_package.m"}

In[4365]:= Mapp[FindFileObject, {Mapp, AvzAgn}]
Out[4365]= {{"c:\\grgu_books\\avz_package\\avz_package.m",
 "c:\\users\\aladjev\\documents\\avz_package.m",
 "c:\\users\\aladjev\\mathematica\\avz_package.m",
 "e:\\avz_package\\avz_package.m"},
 FindFileObject[AvzAgn]}

V.Z. Aladjev, V.A. Vaganov

 500

So, for identification of means of the user package whose definitions in the
current session contain contextual references, the following procedure can
be used, whose call DefWithContext[x] returns the 2-element nested list: its
first element defines the list of names of means of the package loaded from
a m-file x whose definitions don't contain contextual references whereas the
second element – the list of names of means of the package whose definitions
contain the contextual references. The following fragment represents source
code of the procedure and examples of its usage prior to the procedure call
ReloadPackage1 and after it that is rather illustratively.

In[2982]:= DefWithContext[x_ /; FileExistsQ[x] && FileExtension[x] ==
 "m"] := Module[{a = ContextMfile[x], b, c = {}, d = {}}, b = CNames[a];
 Map[If[StringFreeQ[Definition4[#], a <> # <> "`"], AppendTo[c, #],
 AppendTo[d, #]] &, b]; {c, d}]

In[2983]:= DefWithContext["C:\\Mathematica\\AVZ_Package.m"]
Out[2983]= {{"AcNb", "ActCsProcFunc", "Adrive", "Attributes1", "Avg",
 "BlockQ", "BlockQ1", "CALL", "CDir", "ClearAllAttributes", …,
 "$CallProc", "$InBlockMod", "$Line1", "$Load$Files$",
 "$ProcType", "$TestArgsTypes", "$UserContexts"},
 {"ActBFMuserQ", "ActRemObj", "AddMxFile", "Adrive1",
 "Affiliate", "Aobj", "Aobj1", "Args", "Args1", "ArgsBFM", ….,
 "WhatType", "WhichN", "XOR1", "$ProcName", "$TypeProc"}}
In[2984]:= Map[Length, %]
Out[2984]= {258, 425}
In[2985]:= ReloadPackage1["C:\\Mathematica\\AVZ_Package.m"]
In[2986]:= d = DefWithContext["C:\\Mathematica\\AVZ_Package.m"];
In[2987]:= Map[Length, d]
Out[2987]= {683, 0}

From the given fragment follows that more than 62.2% of definitions of the
means of our AVZ_Package package uploaded into the current session, that
are received by means of the function call Definition[x] will contain context
references of the format "AladjevProcedures'x'".

At uploading of the user package into the current session its context will be
located in the list determined by the $Packages variable while at attempting
to receive definitions of its means by means of the Definition function some

Extension of Mathematica system functionality

 501

such definitions will contain the context associated with this package. First
of all, such definitions are much less readable, but not this most important.
For software that is based on optimum format and using similar definitions,
in the process of working with them the erroneous situations are possible as
it was already noted above. For the purpose of receiving definitions of tools
of the user package in optimal format the LoadMyPackage procedure can be
used. The procedure call LoadMyPackage[x, y] at the very beginning of the
current session of the Mathematica returns Null, i.e. nothing, loading the user
package x with y context ascribed to it, with the subsequent reevaluation of
definitions of its means, providing the optimal format of these definitions.

In[2593]:= LoadMyPackage[x_ /; FileExistsQ[x] && FileExtension[x] ==
 "mx", y_] := Module[{a, Cn, Ts, k = 1},
 Ts[g_] := Module[{p = "$Art26Kr18$.txt", b = "", c, d, v = 1},
 Write[p, g]; Close[p];
 While[v < Infinity, c = Read[p, String];
 If[SameQ[c, EndOfFile], Close[p]; DeleteFile[p];
 Return[b], b = b <> c]; Continue[]]];
 Cn[t_] := Module[{s = Names[StringJoin[t, "*"]], b},
 b = Select[s, Quiet[ToString[Definition[ToString[#1]]]] != "Null" &]];
 Quiet[Get[x]]; a = Cn[y]; While[k <= Length[a],
 Quiet[ToExpression[StringReplace[StringReplace[Ts[ToExpression[
 "Definition[" <> a[[k]] <> "]"]], y –> ""], a[[k]] <> "`" –> ""]]]; k++]]

In[2594]:= LoadMyPackage["AVZ_Package.mx", "AladjevProcedures`"]
In[2595]:= Definition["ContextQ"]
Out[2595]= ContextQ[x_] := StringQ[x] && StringLength[x] > 1 && Quiet[
 SymbolQ[Symbol[StringTake[x, {1, –2}]]]] && StringTake[x, {–1, –1}] == "`"

The previous fragment adduces source code of LoadMyPackage procedure
with an example of its application. Similar approach is recommended to be
used at uploading of the user package, saved in a datafile of mx–format, for
elimination of the specified undesirable moments and for simplification of
programming with use of its means, and also for extension of the system on
the basis of its means. Furthermore, the procedure call LoadMyPackage[x,y]
with the noted purposes can be executed and in the presence of the loaded

V.Z. Aladjev, V.A. Vaganov

 502

user package x with y context. So, saving of a package in the mx–file with its
subsequent uploading in each new session by the Get function, providing
access to all package means with receiving their definitions in an optimized
format (in the above–mentioned sense) is the most effective.

In the course of operating in the current session with means of an uploaded
package (from m–file) situations when certain of its activated means for one
reason or another are removed from the current session or are distorted are
quite real. For their restoration the ReloadPackage procedure can be used.

In[2992]:= ReloadPackage[x_ /; FileExistsQ[x] && FileExtension[x]=="m",
 y___List, t___] := Module[{a = NamesMPackage[x],
 b = ContextMfile[x], c = "$Art26Kr18$.txt", p, k = 1, d = If[{y} != {},
 ToExpression[Map14[StringJoin, Map[ToString, y], "[", 90]], {}]},
 Put[c]; While[k <= Length[a], p = a[[k]];
 PutAppend[StringReplace[ToString1[ToExpression["Definition[" <>
 p <> "]"]], b <> p <> "`" –> ""], c]; k++];
 If[d == {}, ToExpression["Clear[" <>
 StringTake[ToString[a], {2, –2}] <> "]"], Null];
 While[b != "EndOfFile", b = ToString[Read[c]];
 If[b === "EndOfFile", Break[]];
 If[d == {}, Quiet[ToExpression[b]]; Continue[],
 If[If[{t} == {}, MemberQ, ! MemberQ]
 [d, StringTake[b, {1, Quiet[StringPosition[b, "[", 1][[1]][[1]]]}]],
 Quiet[ToExpression[b]]; Break[], Continue[]]]];
 Close[c]; DeleteFile[c]]

In[2993]:= ReloadPackage["C:\\Mathematica\\AVZ_Package.m"]
In[2994]:= Definition[StrStr]
Out[2994]= StrStr[x_] := If[StringQ[x], "\"" <> x <> "\"", ToString[x]]

In[2995]:= Clear[StrSts]; Definition[StrStr]
Out[2995]= Null

In[2996]:= ReloadPackage["C:\\Mathematica\\AVZ_Package.m"]
In[2994]:= Definition[StrStr]
Out[2994]= StrStr[x_] := If[StringQ[x], "\"" <> x <> "\"", ToString[x]]

Extension of Mathematica system functionality

 503

The successful procedure call ReloadPackage[x] returns nothing, providing
in the current session the activation of all means of a package that is located
in a m–file x as though their definitions were calculated in an input stream.
If the call ReloadPackage[x,y] contains the second optional y-argument qua
of which the list of names is used, the reboot is made only for the package
means with the given names. At the same time the call ReloadPackage[x,y,t]
in addition with the 3rd optional argument where t – an arbitrary expression,
also returns nothing, providing reboot in the current session of all means of
the package x, excluding only means with the names given in the list y. The
previous fragment represents source code of the ReloadPackage procedure
with typical examples of its usage. In particular, it is illustrated that reboot
of a package provides more compact output of definitions of the means that
are contained in it, i.e. the output of definitions is made in a so-called optimal
format (without contexts). The following fragment represents source code of
the ReloadPackage1 procedure, functionally equivalent to ReloadPackage
procedure, along with typical examples of its usage.

In[4436]:= ReloadPackage1[x_ /; FileExistsQ[x] && FileExtension[x] == "m",
 y_: 0, t_: 0] := Module[{a = NamesMPackage[x],
 b = ReadFullFile[x], c, d = Map[ToString, Flatten[{y}]]},
 c = Flatten[Map[SubsString[b,
 {"*)(*Begin[\"`" <> # <> "`\"]*)(*", "*)(*End[]*)"}, 90] &, a]];
 c = Map[StringReplace[#, "*)(*" –> ""] &, c];
 Map[If[d == {"0"}, Quiet[ToExpression[#]],
 If[ListQ[y], If[{t} == {0}, If[MemberQ[d,
 StringTake[#, Flatten[StringPosition[#, {"[", " :=", "="}]][[1]] – 1]],
 ToExpression[#], If[! MemberQ[d, StringTake[#,
 Flatten[StringPosition[#, {"[", " :=", "="}]][[1]] – 1]],
 ToExpression[#]]]]]] &, c];]
In[4437]:= Map[Clear, {StrStr, Map2}]
Out[4437]= {Null, Null}
In[4438]:= Definition[StrStr]
Out[4438]= Null
In[4439]:= Definition[Map2]
Out[4439]= Null

V.Z. Aladjev, V.A. Vaganov

 504

In[4440]:= ReloadPackage1["C:\\Mathematica\\AVZ_Package.m",
 {StrStr, Map2}]
In[4441]:= Definition[StrStr]
Out[4441]= StrStr[x_] := If[StringQ[x], "\"" <> x <> "\"", ToString[x]]
In[4442]:= Definition[Map2]
Out[4442]= Map2[F_ /; SymbolQ[F], c_ /; ListQ[c], d_ /; ListQ[d]] :=
 (Symbol[ToString[F]][#1, Sequences[d]] &) /@ c

The successful procedure call ReloadPackage1[x] returns nothing, providing
in the current session the activation of all means of a package that is located
in a m–file x as though their definitions were calculated in an input stream.
If the call ReloadPackage1[x,y] contains the second optional y-argument qua
of which the list of names is used, the reboot is made only for the package
means with the given names. Furthermore, the call ReloadPackage1[x, y, t]
in addition with the 3rd optional argument where t – an arbitrary expression,
also returns nothing, providing reboot in the current session of all means of
the package x, excluding only means with the names given in the list y. At
that, similar to ReloadPackage procedure the ReloadPackage1 procedure,
in particular, also provides output of definitions in the optimal format in the
above sense. The given modification is of interest from the standpoint of the
approaches used in it. Such approach allows to get rid of contextual links in
definitions of the functions/procedures loaded into the current session from
the user package. At that, with methods of uploading of the user packages
into the current session it is possible to familiarize enough in details in [33].

As it was noted earlier, in the result of uploading into the current session of
the user package from a file of format {m, nb} with its subsequent activation
an essential part of definitions of its means received by the call of standard
Definition function will include contextual links of the "Context'x'" format,
where x – a name of means and "Context" – a context ascribed to the given
package. Means of identification of those objects of the user package whose
definitions have contextual references are presented above. However these
means suppose that the analyzed package is activated in the current session.
Whereas the next procedure provides the similar analysis of an unuploaded
package located in a datafile of mx–format. The fragment below represents
source code of the MxPackNames procedure with an example of its usage.
The procedure call MxPackNames[x] returns the list of names of objects in

Extension of Mathematica system functionality

 505

string format of a nb–file y that is analog of a mx–file x, whose definitions in
case of uploading of the datafile y into the current session with subsequent
activation the system Definition function will return with contextual links
of the above–mentioned format.

In[3235]:= MxPackNames[x_ /; FileExistsQ[x] && FileExtension[x] == "mx"]
 := Module[{b, c, d, g = {}, k, j,
 a = FromCharacterCode[Select[
 ToCharacterCode[ReadFullFile[x]], # > 31 &]]},
 b = StringPosition[a, {"CONT", "ENDCONT"}][[1 ;; 2]];
 b = StringTake[a, {b[[1]][[2]] + 2, b[[2]][[1]] – 1}];
 b = Map[#[[2]] + 1 &, StringPosition[a, b][[2 ;; –1]]];
 For[k = 1, k <= Length[b], k++, c = "";
 For[j = b[[k]], j < Infinity, j++, d = StringTake[a, {j, j}];
 If[d == "`", Break[], c = c <> d]]; AppendTo[g, c]]; Sort[g][[2 ;; –1]]]

In[3236]:= MxPackNames["C:\\Mathematica\\AVZ_Package.mx"]
Out[3236]= {"ActBFMuserQ", "ActRemObj", "AddMxFile", "Adrive1",
 "Affiliate", "Aobj", "Aobj1", "Args", "Args1", "ArgsBFM", … ,
===
 "VarExch1", "Ver", "VizContentsNB", "VizContext", "WhatObj",
 "WhatType", "WhichN", "XOR1", "$ProcName", "$TypeProc"}
In[3237]:= Length[%]
Out[3237]= 427
In[3238]:= N[427*100/Length[CNames["AladjevProcedures`"]], 3]
Out[3238]= 62.3

Examples of the previous fragment once again confirm that the quantity of
means of our AVZ_Package package, uploaded into the current session from
the nb–file, whose definitions received by the Definition function contain
contextual references, more than 62%.

The question of obtaining the list of names of objects whose definitions with
their usages are located in a package being in a datafile of format {m, nb} is
represented interesting enough. At that, it is supposed that uploading of a
package into the current session isn't obligatory. Such problem is solved by
quite useful procedure, whose call PackNames[x] returns the list of names

V.Z. Aladjev, V.A. Vaganov

 506

of the above objects in a package, being in a datafile x of format {m, nb}. The
next fragment represents source code of the PackNames procedure with an
example of its application to the AVZ_Package package which is located in
ASCII datafiles "AVZ_Package.m" and "AVZ_Package.nb" [48].

In[2872]:= PackNames[x_ /; FileExistsQ[x] &&
 MemberQ[{"m", "nb"}, FileExtension[x]]] :=
 Module[{a = ReadFullFile[x], b, c = {}, d = "", k = 1, j, h},
 If[FileExtension[x] == "m",
 a = Select[DeleteDuplicates[Map[StringTake[#, {5, –1}] &,
 SubsString1[a, {"*)(*", "::usage="}, StringFreeQ[#, " "] &, 0]]], # != "" &];
 Sort[Select[a, StringFreeQ[#, "(*"] &]],
 b = Quiet[SubsString1[a, {"RowBox[{ RowBox[{ RowBox[{", "\"::\"",
 "\"usage\"}]"}, StringQ[#] &, 0]];
 b = Map[StringTake[#, {2, –8}] &, b];
 Sort[Map[If[SymbolQ[#], #] &, b]]]]

In[2873]:= PackNames["C:\\Mathemstica\\AVZ_Package.m"]
Out[2873]= {"AcNb", "ActBFMuserQ", "ActCsProcFunc", "ActRemObj",
 "Adrive", "Adrive1", "Affiliate", "Aobj", "Aobj1", "Args",
 "ArgsBFM", "ArgsTypes", "Arity", "Arity1", "ArityBFM", …..}
In[2874]:= Length[%]
Out[2874]= 657

In[2875]:= PackNames["C:\\Mathematica\\AVZ_Package.nb"]
Out[2875]= {"AcNb", "ActBFMuserQ", "ActCsProcFunc", "ActRemObj",
 "Adrive", "Adrive1", "Affiliate", "Aobj", "Aobj1", "Args",
 "ArgsBFM", "ArgsTypes", "Arity", "Arity1", "ArityBFM", …..}
In[2876]:= Length[%]
Out[2876]= 677

It should be noted that the algorithm of PackNames procedure significantly
uses the SubsString1 procedure that is the SubsString procedure extension,
being of interest in programming of the tasks connected with processing of
strings. The procedure call SubsString1[s,y,f,t] returns the list of substrings
of a string s that are limited by substrings of a list y; at that, if a testing pure
function acts as argument f, the returned list will contain only the substrings

Extension of Mathematica system functionality

 507

satisfying this test. Moreover, at t = 1 the returned substrings are limited to
ultra substrings of the list y whereas at t = 0 substrings are returned without
the limiting ultra substrings of the list y. At last, in the presence of the fifth
optional argument r – an arbitrary expression – search of substrings in a string
s is done from right to left, that as a whole simplifies algorithms of search of
the required substrings. The following fragment represents source code of
the SubsString1 procedure along with some typical examples of its usage.

In[2770]:= SubsString1[s_/; StringQ[s], y_/; ListQ[y], pf_/; PureFuncQ[pf],
 t_ /; MemberQ[{0, 1}, t], r___] :=
 Module[{c, h, a = "", b = Map[ToString1, y], d = s, k = 1},
 If[Set[c, Length[y]] < 2, s,
 If[{r} != {}, b = Map[StringReverse, Reverse[b]];
 d = StringReverse[s]]];
 While[k <= c – 1, a = a <> b[[k]] <> "~~ Shortest[__] ~~ "; k++];
 a = a <> b[[–1]]; h = StringCases[d, ToExpression[a]];
 If[t == 0, h=Map[StringTake[#, {StringLength[b[[1]]] – 1,
 –StringLength[b[[–1]]]+1}] &, h]];
 If[PureFuncQ[pf], h = Select[h, pf]];
 If[{r} != {}, Reverse[Map[StringReverse, h]], h]]

In[2771]:= SubsString1["12345#xyzttmnptttabc::usage=45678",
 {"#", "::usage=4"}, 0, 0]
Out[2771]= {"xyzttmnptttabc"}
In[2772]:= SubsString1["2345#xaybz::usage=5612345#xm90nyz::usage=
 590#AvzAgn::usage=500", {"#", "::usage="}, 0, 0]
Out[2772]= {"xaybz", "xm90nyz", "AvzAgn"}
In[2773]:= SubsString1["12345#xyz::usage=45612345#x90yz::usage=500#
 Avz::usage=590", {"#", "::usage="}, 0, 1]
Out[2773]= {"#xyz::usage=", "#x90yz::usage=", "#Avz::usage="}
In[2774]:= SubsString1["12345#xyz::usage=45612345#x590yz::usage=500
 #Avz::usage=590", {"#", "::usage="}, LetterQ[#] &, 0]
Out[2774]= {"xyz", "Avz"}

Here, in connection with the aforesaid it is quite appropriate to raise a quite
important question concerning the global variables defined by a procedure.

V.Z. Aladjev, V.A. Vaganov

 508

According to agreements of procedural programming, a variable defined in
a procedure qua of global variable is visible outside of the procedure, i.e. can
change own value both in the procedure, and outside of it, more precisely,
field of its definition is the current session as a whole. In principle, the given
agreement is fair and for the current session of the Mathematica system, but
with very essential stipulations that are discussed in [30,33] with interesting
enough examples. If a certain procedure defining global variables has been
activated in the Input–stream, the above agreement is valid. Meanwhile, if
such procedure is located in a datafile of format {m|nb}, then the subsequent
uploading of such datafile into the current session makes active all means
contained in the datafile, making them available, however the mechanism
of global variables as a whole doesn't work. In our work [33] an approach
eliminating defects of the mechanism of global variables is represented.

For providing the mechanism of global variables (including), a rather useful
LoadNameFromM procedure was created whose call LoadNameFromM[f,

n] provides uploading and activation in the current session of a procedure n
or their list saved in a datafile f of the m–format with a package.

In[2588]:= LoadNameFromM[F_ /; FileExistsQ[F] && FileExtension[F] ==
 "m" && StringTake[ToString[ContextFromFile[F]], –1] == "`",
 p_ /; StringQ[p] || ListStringQ[p]] :=
 Module[{a = ReadFullFile[F], b = {}, c = "*)(*End[]*)", d, h = Flatten[{p}]},
 b = Map[SubsString[a, {"(*Begin[\"`" <> # <> "`\"]*)(*", c}, 90] &, h];
 b = If[Length[b] == 1, Flatten[b], Map[#[[1]] &, b]];
 Map[ToExpression, Map[StringReplace[#, "*)(*" –> " "] &, b]];]

In[2589]:= LoadNameFromM["C:\\Temp\\AVZ_Package.m", "StrStr"]
In[2590]:= Definition[StrStr]
Out[2590]= StrStr[x_] := If[StringQ[x], "\"" <> x <> "\"", ToString[x]]

The previous fragment represents source code of the given procedure with
an example of its usage. This procedure in a certain relation is adjoined also
the next ExtrPackName procedure. The algorithm of the procedure is based
on analysis of internal structure of a file of m–format with the user package.
The successful procedure call ExtrPackName[f, w] returns Null, i.e. nothing,
with simultaneous return of the evaluated definition of an object w which is

Extension of Mathematica system functionality

 509

contained in a m-file f with the user package, making the definition available
in the current session. If the format of a datafile f is other than m-format, the
procedure call returns $Failed, whereas in absence in a file f of the requested
object w the procedure call ExtrPackName[f, w] returns the corresponding
message. The fragment below represents source code of the ExtrPackName
procedure along with some typical examples of its usage.

In[2883]:= ExtrPackName[F_ /; StringQ[F], N_ /; StringQ[N]] := Module[{a,
 b, c, d, Art, Kr},
 If[FileExistsQ[F] && FileExtension[F] == "m" &&
 StringTake[ToString[ContextFromFile[F]], –1] == "`",
 a = OpenRead[F], Return[$Failed]];
 If[Read[a, String] != "(* ::Package:: *)", Close[a]; $Failed,
 {c, d} = {"", StringReplace["(*Begin[\"`Z`\"]*)", "Z" –> N]}];
 Label[Art]; b = Read[a, String]; If[b === EndOfFile, Close[a];
 Return["Definition of " <> N <> " is absent in file <" <> F <> ">"], Null];
 If[b != d, Goto[Art], Label[Kr]; b = StringTake[Read[a, String], {3, –3}];
 c = c <> b <> " "; If[b == "End[]", Close[a];
 Return[ToExpression[StringTake[c, {1, –8}]]], Goto[Kr]]]]

In[2884]:= ExtrPackName["F:\\Mathematica\\AVZ_Package.m", "Df"]
In[2885]:= ExtrPackName["F:\\Mathematica\\AVZ_Package.m", "Subs"]
In[2886]:= ExtrPackName["F:\\Mathematica\\AVZ_Package.m", "ArtKr"]
Out[2886]= "Definition of ArtKr is absent in file <F:\\Mathematica\\
 AVZ_Package.m>"
In[2887]:= ExtrPackName["C:\\Temp\\AVZ_Package_6.m", "ProcQ"]
Out[2887]= $Failed
In[2888]:= Df[(Sin[1/x^2] + Cos[1/x^2])/x^2, 1/x^2]
Out[2888]= x^2 (– (–1 + x^2) Cos[1/x^2] – (1 + x^2) Sin[1/x^2])
In[2889]:= Subs[(Sin[1/x^2] + Cos[1/x^2])/x^2, 1/x^2, h]
Out[2889]= (Cos[h] + Sin[h])/h
In[2890]:= ExtrPackName["C:\\Temp\\Tallinn.m", "Gs"]; Definition[Gs]
Out[2890]= Gs[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := x^2 + y^2

The given procedure provides activation in the current session of a concrete
function or procedure which is located in a m–file without uploading of the

V.Z. Aladjev, V.A. Vaganov

 510

datafile completely. By functionality the given procedure is crossed with the
LoadNameFromM procedure considered above, however possesses certain
additional useful opportunities.

As a rule, enough many of the user packages contain in own structure the
variables of several types which appear at their uploading into the current
session of the system. For definition of such variables the procedure can be
used, whose call UserPackTempVars[x] returns the three–element nested
list where the first sublist determines the undefinite variables associated with
the package defined by a context x, the second sublist defines the temporary
variables associated with the package and having names of format "Name$"
while the third sublist defines symbols of the format "Name$Integer" that in
the current session aren't distinguished as symbols. The following fragment
represents source code of the given procedure with an example of its usage.

In[2684]:= UserPackTempVars[x_ /; ContextQ[x]] := Module[{a = {}, p,
 b = {}, d = {}, c = Names[x <> "*"], h = {}},
 Quiet[Map[{p = Definition2[#], If[UnevaluatedQ[Definition2, #],
 AppendTo[d, #], If[p[[2]] == {} && p[[1]] == "Undefined",
 AppendTo[a, #], If[p[[2]] == {Temporary}, AppendTo[b, #], 6]]]} &, c]];
 Map[{p = Flatten[StringPosition[#, "$"]],
 If[p[[–1]] == StringLength[#], AppendTo[a, #],
 If[IntegerQ[ToExpression[StringTake[#, {p[[–1]] + 1,
 StringLength[#]}]]], AppendTo[h, #]]]} &, b]; {d, a, h}]

In[2685]:= UserPackTempVars["AladjevProcedures`"]
Out[2685]= {{"a", "b", "c", "h", "k", "p", "S", "x", "y"}, {"a$", "b$", "c$", "d$",
 "h$", "k$", "Op$", "p$", "S$", "x$", "y$"},
 {"a$30755", "b$30755", "c$30755", "d$30755", "p$30755"}}

In[2695]:= $UserContexts :=
 Select[Map[If[Flatten[UserPackTempVars[#][[2 ;; 3]]] != {}, #] &,
 Select[$Packages, ! MemberQ[{"Global`", "System`"}, #] &]],
 ! SameQ[#, Null] &]

In[2696]:= $UserContexts
Out[2696]= {"AladjevProcedures`"}

Extension of Mathematica system functionality

 511

Definition of the global variable $UserContexts defining a list of contexts of
the user packages uploaded into the current session completes the previous
fragment. At that, the variable determines only contexts of the packages that
generate in the current session the variables of two types represented above
according to the UserPackTempVars procedure. Depending on a state of the
current session the execution of the above–mentioned 2 means can demand
certain temporal expense.

Qua of an addition to the above means the NamesNbPackage procedure
can present a certain interest, whose call NamesNbPackage[W] returns the
list of names in string format of all means which are located in a datafile W
of nb–format with a package and that are supplied with "usages". The next
fragment represents source code of the NamesNbPackage procedure with
an example of its application to nb–file with AVZ_Package package. While
the procedure call NamesNbPackage1[W] (the procedure is an effective enough
modification of the previous procedure) returns the similar list of names in string
format of all means which are located in a datafile W of nb–format with a
package; it is supposed that all means are provided with "usages"; in the
absence of such means the empty list, i.e. {} is returned.

In[2628]:= NamesNbPackage[f_ /; IsFile[f] && FileExtension[f] == "nb" &&
 ! SameQ[ContextFromFile[f], $Failed]] := Module[{Res = {}, Tr},
 Tr[x_ /; StringQ[x]] :=Module[{c, d, h, g = "\"::\"", v = "\"=\"",
 p = "\"usage\"", a = OpenRead[x], s = " RowBox[{"},
 Label[c]; d = Read[a, String];
 If[d === EndOfFile, Close[a]; Return[Res], Null];
 If[DeleteDuplicates[Map3[StringFreeQ, d, {s, g, p, v}]] == {False} &&
 SuffPref[d, s, 1], h = Flatten[StringPosition[d, g]];
 AppendTo[Res, StringTake[d, {12, h[[1]] – 3}]]; Goto[c], Goto[c]]];
 Map[ToExpression, Sort[Tr[f]]]]

In[2629]:= NamesNbPackage["C:\\Mathematica\\AVZ_Package.nb"]
Out[2629]= {"AcNb", "ActBFMuserQ", "ActCsProcFunc", "ActRemObj",
 "AddMxFile", "Adrive", "Adrive1", "Affiliate", "Aobj", …..}

In[2630]:= NamesNbPackage1[f_ /; IsFile[f] && FileExtension[f] == "nb" &&
 ! SameQ[ContextFromFile[f], $Failed]] := Module[{c, d, g = "::",

V.Z. Aladjev, V.A. Vaganov

 512

 a = OpenRead[f], p = "usage", v = "=", Res = {}, s = " RowBox[{"},
 Label[c]; d = Read[a, String]; If[d === EndOfFile, Close[a];
 Return[Sort[Map[ToExpression, Res]]],
 If[DeleteDuplicates[Map3[StringFreeQ, d, {s, g, p, v}]] == {False} &&
 SuffPref[d, s, 1], AppendTo[Res,
 StringReplace[StringSplit[d, ","][[1]], s –> ""]]; Goto[c]]; Goto[c]]]

In[2631]= NamesNbPackage1["C:\\Mathematica\\AVZ_Package.nb"]
Out[2631]= {"AcNb", "ActBFMuserQ", "ActCsProcFunc", "ActRemObj",
 "AddMxFile", "Adrive", "Adrive1", "Affiliate", "Aobj", …..}
In[2632]:= Length[%]
Out[2632]= 677

The next NamesMPackage procedure represents an analog of two previous
procedures NamesNbPackage and NamesNbPackage1, oriented on a case
of the user packages located in datafiles of m–format. Successful procedure
call NamesMPackage1[x] returns the list of names in string format of means
which are located in a datafile x of m–format with a package; it is supposed
that all means are provided with "usages"; in the absence of such means the
empty list, i.e. {} is returned. The following fragment represents source code
of the NamesMPackage procedure with an example. This procedure well
supplements the procedures NamesNbPackage and NamesNbPackage1.

In[3342]:= NamesMPackage[f_ /; IsFile[f] && FileExtension[f] == "m" &&
 ! SameQ[ContextFromFile[f], $Failed]] :=
 Module[{c, d, Res = {}, s = "::usage=\"", a = OpenRead[f]},
 Label[c]; d = Read[a, String]; If[SuffPref[d, "(*Begin[\"`", 1] ||
 d === EndOfFile, Close[a];
 Return[Sort[DeleteDuplicates[Res]]],
 If[SuffPref[d, "(*", 1] && ! StringFreeQ[d, s],
 AppendTo[Res, StringTake[d, {3, Flatten[StringPosition[d, s]][[1]] – 1}]];
 Goto[c], Goto[c]]]]

In[3343]:= NamesMPackage["C:\\AVZ_Package\\AVZ_Package_1.m"]
Out[3343]= {"AcNb", "ActBFMuserQ", "ActCsProcFunc", "ActRemObj",
 "AddMxFile", "Adrive", "Adrive1", "Affiliate", "Aobj", ….. ,

Extension of Mathematica system functionality

 513

 "WhichN", "XOR1", "$AobjNobj", "$CallProc", "$InBlockMod",
 "$Line1", "$Load$Files$", "$ProcName", "$ProcType",
 "$TestArgsTypes", "$TypeProc", "$UserContexts"}
In[3344]:= Length[%]
Out[3344]= 682

The ContextFromFile function presented in the above fragment generalizes
3 procedures ContextMfile, ContextMXfile and ContextNBfile, returning
the context associated with the packages saved in datafiles of format {cdf, m,
mx, nb}, and $Failed otherwise.

The question of extraction of definitions of functions and procedures from
an unuploaded package which is located in a datafile of m–format is rather
actual. In this regard we will present a procedure which solves this problem
for the package, located in a datafile of format {"cdf", "nb"}. The principal
organization of a datafile of these formats with a package is represented at
the beginning of the next fragment that is used and as one of examples. This
package is previously saved in a datafile of format {"cdf", "nb"} by a chain of
the commands "File → Save As" of the GUI (Graphic User Interface).

BeginPackage["Grodno`"]
Gs::usage = "Help on Gs."
Ga::usage = "Help on Ga."
Vgs::usage = "Help on Vgs."
GSV::usage = "Help on GSV."
Begin["`Private`"]
Sv[x_] := x^2 + 26*x + 18
End[]
Begin["`Gs`"]
Gs[x_Integer, y_Integer] := x^2 + y^2
End[]
Begin["`Ga`"]
Ga[x_Integer, y_Integer] := x*y + Gs[x, y]
End[]
Begin["`Vgs`"]
Vgs[x_Integer, y_Integer] := x*y

V.Z. Aladjev, V.A. Vaganov

 514

End[]
Begin["`GSV`"]
GSV[x_Integer, y_Integer] := Module[{a = 90, b = 500, c = 2015},
 x*y + Gs[x, y]*(a+b+c)] + a*Sin[x]/(b+c)*Cos[y]
End[]
EndPackage[]
In[2669]:= ExtrFromNBfile[x_ /; FileExistsQ[x] && MemberQ[{"cdf","nb"},
 FileExtension[x]], n_/; StringQ[n]] :=
 Module[{a = ToString[InputForm[Get[x]]], b = "`" <> n <> "`",
 c = "RowBox[List[RowBox[List[", k},
 a = StringReplace[a, {"\"\\[IndentingNewLine]\"" –> "",
 "\"\\n\"" –> ""}];
 If[StringFreeQ[a, b], $Failed,
 a = StringTake[a, {Flatten[StringPosition[a, b]][[1]] + 1, –1}];
 a = StringTake[a, {Flatten[StringPosition[a, c]][[1]], –1}];
 c = StringTake[a, {1, Flatten[StringPosition[a,
 "RowBox[List[\"End\","]][[1]] – 1}];
 For[k = StringLength[c], k >= 1, k––, c = StringTake[c, {1, k}];
 If[! SameQ[Quiet[ToExpression[c]], $Failed], Break[]]];
 c = Quiet[ToString[InputForm[ToExpression[c]]]];
 c = StringReplace[c, {"\\(" –> "", "\\)" –> ""}];
 If[SuffPref[c, "RowBox[{", 1] && SuffPref[c, ", Null}]", 2],
 StringTake[c, {9, –9}]]; If[SuffPref[c, "RowBox[{", 1], $Failed,
 Quiet[Check[ToExpression[c], Return[$Failed]]]; c]]]

In[2670]:= ExtrFromNBfile["C:/Mathematica/AVZ_Package.nb", "StrStr"]
Out[2670]= "StrStr[x_] := If[StringQ[x], \"\\\"\" <> x <> \"\\\"\",
 ToString[x]]"
In[2671]:= ExtrFromNBfile["C:/Mathematica/AVZ_Package.cdf", "StrStr"]
Out[2671]= "StrStr[x_] := If[StringQ[x], \"\\\"\" <> x <> \"\\\"\",
 ToString[x]]
In[2672]:= ExtrFromNBfile["C:\\Mathematica\\Grodno.nb", "GSV"]
Out[2672]= "GSV[x_Integer, y_Integer] := Module[{a = 90, b = 500,
 c = 2015}, x*y + Gs[x, y]*(a + b + c)] + a*Sin[x]/(b + c)*Cos[y]"

Extension of Mathematica system functionality

 515

The successful procedure call ExtrFromNBfile[x, y] returns the definition of
an object in the string format with a name y given in string format from an
unuploaded datafile x of format {"cdf","nb"}, at the same time activating this
definition in the current session; otherwise, the call returns $Failed. Qua of
an useful property of this procedure is the circumstance that a datafile x not
require of uploading into the current Mathematica session.

The next ExtrFromMfile procedure is specific complement of the previous
ExtrFromNBfile procedure, providing extraction of definitions of functions
and procedures along with their usages from an unuploaded package that
is located in a datafile of m–format. The procedure call ExtrFromMfile[x, y]
returns the definition of an object in the string format with a name or list of
their names y given in string format from an unuploaded file x of m-format,
at the same time activating these definitions and usages corresponding to
them in the current session; otherwise, the call returns empty list, i.e. {}. The
following fragment represents source code of the ExtrFromMfile procedure
along with typical examples of its usage.

In[2608]:= ExtrFromMfile[x_ /; FileExistsQ[x] && FileExtension[x] == "m",
 y_ /; SymbolQ[y] || ListQ[y] &&
 DeleteDuplicates[Map[SymbolQ, y]] == {True}] :=
 Module[{a = ReadString[x], b, c, d, d1, n},
 b = StringSplit[a, {"(**)", "(* ::Input:: *)"}];
 b = Map[If[! StringFreeQ[#, {"::usage=", "BeginPackage[\"", "End[]"}], #,
 Null] &, b]; b = Select[b, ! SameQ[#, Null] &];
 c = Map[ToString, Flatten[{y}]]; d = Map["Begin[\"`" <> # <> "`\"]" &, c];
 d1 = Map["(*" <> # <> "::usage=" &, c];
 b = Select[b, ! StringFreeQ[#, Join[d, d1]] &];
 b = Map[StringTake[#, {3, –5}] &, b];
 c = Map[If[SuffPref[#, d1, 1], StringTake[#, {3, –1}],
 n = StringReplace[#, GenRules[d, ""]];
 n = StringReplace[n, "*)\r\n(*" –> ""];
 StringTake[n, {3, –6}]] &, b]; ToExpression[c]; c]

In[2609]:= ExtrFromMfile["C:/Temp/AVZ_Package.m", {StrStr, HowAct}]
Out[2609]= {"HowAct::usage=\"The call HowAct[Q] returns the value

V.Z. Aladjev, V.A. Vaganov

 516

 True if Q is an object active in the current session, and the False
 otherwise. In many cases the procedure HowAct is more suitable than
 standard function ValueQ, including local variables in procedures.",
 "StrStr::usage=\"The call StrStr[x] returns an expression x in string
 format if x is different from string; otherwise, the double string obtained
 from an expression x is returned.",
 "StrStr[x_]:=If[StringQ[x],\"\\\"\"<>x<>\"\\\"\",ToString[x]]",
 "HowAct[x_]:=If[Quiet[Check[ToString[Definition[x]],True]]===\"Null\",
 False,If[Quiet[ToString[Definition[P]]]===\"Attributes[\"<>ToString[x]
 <>\"] = {Temporary}\",False,True]]"}

In[2610]:= ExtrFromMfile["C:\\Temp\\AVZ_Package.m", StrStr]
Out[2610]= {"StrStr::usage=\"The call StrStr[x] returns an expression
 x in string format if x is different from string; otherwise, the double string
 obtained from an expression x is returned.",
 "StrStr[x_]:=If[StringQ[x],\"\\\"\"<>x<>\"\\\"\",ToString[x]]"}

The problem of editing of a package that is located in a m-file is interesting
enough; the following RedMfile procedure solves the given problem whose
source code with typical examples of use represents the following fragment.

In[2864]:= PosListTest[l_List, p_ /; PureFuncQ[p]] := Module[{a = {}, k = 1},
 While[k <= Length[l], If[Select[{l[[k]]}, p] != {}, AppendTo[a, k]]; k++]; a]

In[2865]:= PosListTest[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 26}, EvenQ[#] &]
Out[2865]= {2, 4, 6, 8, 10, 11, 12}

In[2866]:= RedMfile[x_ /; FileExistsQ[x] && FileExtension[x] == "m",
 p_ /; SymbolQ[p], r_ /; MemberQ[{"add", "delete", "replace"}, r]] :=
 Module[{a = ReadList[x, String], d = ToString[p], h, save,
 b = "(*Begin[\"`" <> ToString[p] <> "`\"]*)", c = "(*End[]*)"},
 If[MemberQ[! ContentOfMfile[x], ToString[p]] && r == "delete" ||
 MemberQ[{"add", "replace"}, r] && ! (ProcQ[p] || QFunction[p]), $Failed,
 save[q_] := Module[{f, k = 1}, f = DirectoryName[x] <>
 FileBaseName[x] <> "$.m";
 While[k <= Length[q], WriteString[f, q[[k]], "\n"]; k++]; Close[f]];
 If[! MemberQ[a, "(* ::Package:: *)"], $Failed,

Extension of Mathematica system functionality

 517

 If[r === "delete", h = Select[a, SuffPref[#, "(*" <>
 d <> "::usage", 1] &];
 If[h == {}, x, a = Select[a, ! SuffPref[#, "(*" <>
 d <> "::usage", 1] &];
 d = SubListsMin[a, b, c, "r"];
 d = MinusList[a, d]; save[d]],
 If[r === "add" && Select[a, SuffPref[#, "(*" <>
 d <> "::usage=", 1] &] == {}
 && Head[p::usage] == String && (ProcQ[p] || FunctionQ[p]),
 h = PosListTest[a, SuffPref[#, {"(*BeginPackage[",
 "(*EndPackage[]"}, 1] &];
 a = Insert[a, "(*" <> d <> "::usage= " <>
 ToString1[p::usage] <> "*)", h[[1]] + 1];
 a = Flatten[Insert[a, {"(*Begin[\"`" <> d <> "`\"]*)",
 "(*" <> PureDefinition[p] <> "*)", "(*End[]*)"}, h[[2]] + 1]]; save[a],
 If[r === "replace" && Head[p::usage] == String &&
 (ProcQ[p] || FunctionQ[p]),
 h = PosListTest[a, SuffPref[#, "(*Begin[\"`" <> d <> "`\"]*)", 1] &];
 If[h == {}, $Failed, a[[h[[1]] ;; h[[1]] + 2]] = {"(*Begin[\"`" <> d <> "`\"]*)",
 "(*" <> PureDefinition[p] <> "*)", "(*End[]*)"};
 h = PosListTest[a, SuffPref[#, "(*" <> d <> "::usage=", 1] &];
 a[[h[[1]]]] = "(*" <> d <> "::usage= " <>
 ToString1[p::usage] <> "*)"; save[Flatten[a]]]]], x]]]]

(* ::Package:: *) Contents of the initial m–file
(* ::Input:: *)
(*BeginPackage["Grodno`"]*)
(*Gs::usage = "Help on Gs."*)
(*Vgs::usage = "Help on Vgs."*)
(*Begin["`Gs`"]*)
(*Gs[x_Integer, y_Integer] := x^2 + y^2*)
(*End[]*)
(*Begin["`Vgs`"]*)
(*Vgs[x_Integer, y_Integer] := x*y*)

V.Z. Aladjev, V.A. Vaganov

 518

(*End[]*)
(*EndPackage[]*)

In[2867]:= Avz[x_] := Module[{}, x^2 + 90]; Vgs[x_, y_] := x^2 + y^2
In[2868]:= Avz::usage = "Help on Avz."; Vgs::usage = "Help on Vgs_1.";
In[2869]:= RedMfile["C:\\Mathematica\\Grodno.m", Vgs, "delete"]
Out[2869]= "C:\\Mathematica\\Grodno$.m"

(* ::Package:: *) Contents of m–file after the operation "delete"
(* ::Input:: *)
(*BeginPackage["Grodno`"]*)
(*Gs::usage = "Help on Gs."*)
(*Begin["`Gs`"]*)
(*Gs[x_Integer, y_Integer] := x^2 + y^2*)
(*EndPackage[]*)
In[2870]:= RedMfile["C:\\Mathematica\\Grodno.m", Avz, "add"]
Out[2870]= "C:\\Mathematica\\Grodno$.m"

(* ::Package:: *) Contents of m–file after the operation "add"
(* ::Input:: *)
(*BeginPackage["Grodno`"]*)
(*Avz::usage = "Help on Avz."*)
(*Gs::usage = "Help on Gs."*)
(*Vgs::usage = "Help on Vgs."*)
(*Begin["`Gs`"]*)
(*Gs[x_Integer, y_Integer] := x^2 + y^2*)
(*End[]*)
(*Begin["`Vgs`"]*)
(*Vgs[x_Integer, y_Integer] := x*y*)
(*End[]*)
(*Begin["`Avz`"]*)
(*Avz[x_] := Module[{}, x^2 + 90]*)
(*End[]*)
(*EndPackage[]*)

In[2871]:= RedMfile["C:\\Mathematica\\Grodno.m", Vgs, "replace"]
Out[2871]= "C:\\Mathematica\\Grodno$.m"
(* ::Package:: *) Contents of m–file after the operation "replace"
(* ::Input:: *)

Extension of Mathematica system functionality

 519

(*BeginPackage["Grodno`"]*)
(*Gs::usage = "Help on Gs."*)
(*Vgs::usage = "Help on Vgs_1."*)
(*Begin["`Gs`"]*)
(*Gs[x_Integer, y_Integer] := x^2 + y^2*)
(*End[]*)
(*Begin["`Vgs`"]*)
(*Vgs[x_, y_] := x^2 + y^2*)
(*End[]*)
(*EndPackage[]*)

In[2872]:= RedMfile["C:\\Mathematica\\Grodno.m", Gs, "add"]
Out[2872]= "C:\\Mathematica\\Grodno$.m"
In[2873]:= RedMfile["C:\\Mathematica\\Grodno.m", GsArtKr, "add"]
Out[2873]= $Failed

First of all, the previous fragment is preceded by a rather simple procedure,
whose call PosListTest[l, p] returns the list of positions of a list l that satisfy
the test defined by a pure function p. Further it is supposed that a datafile x
of m–format structurally corresponds to the standard file with a package; an
example of such datafile of m–format is given in the first shaded area of the
previous fragment. The procedure call RedMfile[x,n,y] returns the full path
to a m–file, whose FileBaseName has view FileBaseName[x] <> "$" which
is a result of application to an initial m–file of an operation y concerning its
object determined by a name n, namely:

"delete" – from a x datafile the usage and definition of object with a n name
are removed, the initial datafile doesn't change; if such object in the datafile
is absent, the full path to the initial datafile is returned;
"add" – usage and definition of object with a n name are added into a x file
whereas the initial datafile doesn't change; if such object in the file already
exists, the full path to the initial datafile x is returned;
"replace" – usage and definition of object with a n name are replaced in a x
file while the initial datafile doesn't change; if such object in a file is absent,
$Failed is returned.

If an initial datafile x has structure, different from specified, the procedure
call returns $Failed; at that, successful performance of the operations "add"

V.Z. Aladjev, V.A. Vaganov

 520

and "replace" requires preliminary evaluation in the current session of the
construction n::usage along with definition for object n as illustrate example
of the previous fragment. At that, if an object n is undefined the procedure
call returns $Failed. In general the procedure allows a number of interesting
extensions and modifications which we leave to the interested reader.

Absolutely other situation if necessary to update an object from a package
which is located in a datafile of mx–format. In this case the next scheme can
be used, namely: on the first step the function call Get[x] uploads into the
current session a datafile x of mx–format with a package what provides the
availability of all means contained in it. While on the second step the usage
and definition of an object (function or procedure) which should be subjected
to updating along with result of a concrete call of this object are checked. On
the following step from the current session by means of the Clear function
the demanded object is removed and for it a new usage is defined. Then, a
new definition for the object whose all parameters, including local variables
and formal arguments, will be linked with a package context is calculated,
accepting the following format, namely:

Context_from_File`Object_Name`Variable_of_New_Definition

Then by means of the function call DumpSave[y, "Context'"] definitions of
all objects of the current session that are supplied with a context "Context'",
together with their usages are saved in a new file y of mx–format. At last,
the final stage in a new current session tests the correctness of the received
datafile y of mx–format with the package – of a result of modification of an
initial datafile x of mx–format with a package. With rather obvious changes
the above algorithm quite successfully works and in case of modification of
datafiles of mx–format with a package on the basis of operations of addition
and removal. The represented algorithm is a rather simple, however has a
shortcoming if necessary to modify a datafile of mx–format with a package
by means of quite large source codes of objects; for similar case a reception
described in [30-33] can be used. Meanwhile, it must be kept in mind, the
represented algorithm of modification of mx–files with packages belongs to
a case when files of mx–format belong to the same operational platform, as
their planned modification.

The following RedMxFile procedure provides automation of a modification

Extension of Mathematica system functionality

 521

of datafiles of mx–format which is considered above. The call RedMxFile[x,
y, r, f] returns the full path to a mx–datafile, whose FileBaseName has view
FileBaseName[x] <> "$" that is a result of application to an initial mx–file of
an operation r concerning its object determined by a name y, namely:

"delete" – from a x datafile the usage and definition of object with a y name
are removed, the initial datafile doesn't change; if such object in the datafile
is absent, the full path to the initial datafile is returned;
"add" – usage and definition of object with a y name are added into a x file
whereas the initial datafile doesn't change; if such object in the file already
exists, the full path to the initial datafile x is returned; the fourth argument f
defines a mx–file containing a package with the usage and definition of the
supplemented object y;
"replace" – usage and definition of object with a y name are replaced in a x
file while the initial datafile doesn't change; if such object in a file is absent,
the full path to the initial datafile x is returned; the fourth argument f defines
a mx–file containing a package with the usage and definition of the added y
object. At that, if an object y is undefined the procedure call returns $Failed.

Thus, return of the path to an updated datafile "x$.mx" serves as an indicator
of success of the RedMxFile procedure call. At that, successful performance
of the operations "add" and "replace" requires preliminary evaluation in the
current session of a construction y::usage along with definition for an object
y; if an object y is undefined the procedure call returns $Failed. Source code
of the procedure RedMxFile along with some typical examples of its usage
the following fragment represents.

In[2632]:= RedMxFile[x_ /; FileExistsQ[x] && FileExtension[x] == "mx",
 y_ /; StringQ[y] && SymbolQ[y], r_ /; MemberQ[{"add",
 "delete", "replace"}, r], f___] :=
 Module[{a, c, c1 = ContextFromFile[x], c2, save, t},
 If[! (ProcQ[y] || QFunction[y]), $Failed, Get[x]; a = CNames[c1];
 save[z_] := Module[{p = DirectoryName[z] <> FileBaseName[z] <> "$.mx"},
 ToExpression["DumpSave[" <> ToString1[p] <> "," <>
 ToString1[c1] <> "]"]; p];
 If[r == "delete" && MemberQ[a, y], Unprotect[y]; ClearAll[y];
 c = save[x]; RemovePackage[c1]; c,

V.Z. Aladjev, V.A. Vaganov

 522

 If[r == "replace" && MemberQ[a, y] && {f} != {} &&
 FileExistsQ[f] && FileExtension[f] == "mx",
 c2 = ContextFromFile[f]; Get[f];
 c = ToString1[Definition[y]];
 Map[Clear, Mapp[StringJoin, $ContextPath, y]];
 Quiet[ToExpression[c1 <> StringReplace[c, c2 –> c1]]];
 ToExpression[c1 <> y <> "::usage = " <> ToString1[Help]];
 c = save[x]; Map[RemovePackage, {c1, c2}]; c,
 If[r == "add" && {f} != {} && FileExistsQ[f] &&
 FileExtension[f] == "mx" && ! MemberQ[a, y],
 c2 = ContextFromFile[f]; Get[f];
 c = ToString1[Definition[y]];
 Quiet[Map[Remove, Mapp[StringJoin, $ContextPath, y]]];
 Quiet[ToExpression[c1 <> StringReplace[c, c2 –> c1]]];
 ToExpression[c1 <> y <> "::usage = " <> ToString1[Help]];
 c = save[x]; Map[RemovePackage, {c1, c2}]; c, x]]]]

In[2633]:= RedMxFile["C:\\Mathematica\\Grodno.mx", "GSV", "delete"]
Out[2633]= "C:\\Mathematica\\Grodno$.mx"

In[2634]:= Get["C:\\Mathematica\\Grodno$.mx"]
In[2635]:= CNames[ContextFromFile["C:\\Mathematica\\Grodno$.mx"]]
Out[2635]= {"Ga", "Gs", "Vgs"}
In[2636]:= Help = "A new help on GSV."
Out[2636]= "A new help on GSV."

In[2637]:= RedMxFile["C:\\Mathematica\\Grodno.mx", "GSV", "replace",
 "C:\\Mathematica\\GSV.mx"]
Out[2637]= "C:\\Mathematica\\Grodno$.mx"

In[2638]:= Get["C:\\Mathematica\\Grodno$.mx"]
In[2639]:= ?GSV
 A new help on GSV.
In[2640]:= Definition["GSV"]
Out[2640]= GSV[x_Integer, y_, z_Integer] := Module[{a = 90}, (x*y)*a]

In[2641]:= Help = "Help on GSV1."
Out[2641]= "Help on GSV1."

Extension of Mathematica system functionality

 523

In[2642]:= RedMxFile["C:\\Mathematica\\Grodno.mx", "GSV1", "add",
 "C:\\Mathematica\\GSV1.mx"]
Out[2642]= "C:\\Mathematica\\Grodno$.mx"
In[2643]:= Get["C:\\Mathematica\\Grodno$.mx"]
In[2644]:= CNames[ContextFromFile["C:\\Mathematica\\Grodno$.mx"]]
Out[2644]= {"Ga", "Gs", "GSV", "GSV1", "Vgs"}
In[2645]:= ?GSV1
 Help on GSV1.
In[2646]:= DefFunc[GSV1]
Out[2646]= GSV1[x_Integer, y_] := Module[{a = 47}, x*y*a]

So, for providing of the operation "add" or "replace" a datafile of mx-format
with a package should be previously created that contains definition of an
object used for updating (replacement, addition) of a main mx-datafile with the
package. At the same time it must be kept in mind that both updating and
updated mx–files have to be created on the same operational platform. At
that, qua of the result of a procedure call both packages are removed from
the current session. In general, the RedMxFile procedure allows a number
of extensions which we leave to the interested reader. Meanwhile, it should
be noted, this procedure in a number of the relations is based on receptions,
artificial for the standard procedural paradigm providing correct procedure
calls in the environment of the system dependent on its version.

A quite useful procedure provides converting of a package located in a file
of mx–format into a file of m–format. The call MxFileToMfile[x, y] returns
the path to a datafile y which is the result of converting of a mx–file x with a
package into a datafile y of m–format. At that, the procedure call deletes the
above packages x, y from the current session. The next fragment represents
source code of the procedure with an example of application, whereas with
the examples of the contents of the initial and converted datafiles x, y with
the package the interested reader can familiarize in our books [30–33].

In[2672]:= MxFileToMfile[x_ /; FileExistsQ[x] && FileExtension[x] == "mx",
 y_ /; StringQ[y] && FileExtension[y] == "m"] :=
 Module[{a = ContextFromFile[x], b, c, k = 1}, Get[x]; b = CNames[a];
 WriteString[y, "(* ::Package:: *)", "\n", "(* ::Input:: *)", "\n",

 "(*BeginPackage[\"" <> a <> "\"]*)", "\n"];

V.Z. Aladjev, V.A. Vaganov

 524

 While[k <= Length[b], c = b[[k]] <> "::usage";
 WriteString[y, "(*" <> c <> " = " <>
 ToString1[ToExpression[a <> c]], "*)", "\n"]; k++];
 k = 1; While[k <= Length[b], c = b[[k]];
 WriteString[y, "(*Begin[\"`" <> c <> "`\"]*)",
 "\n", "(*" <> PureDefinition[a <> c] <> "*)", "\n", "(*End[]*)", "\n"]; k++];
 WriteString[y, "(*EndPackage[]*)", "\n"];
 Map[{Clear1[2, a <> # <> "::usage"], Clear1[2, a <> #]} &, b];
 $ContextPath = MinusList[$ContextPath, {a}]; Close[y]]

In[2673]:= MxFileToMfile["C:\\Mathematica\\Grodno.mx", "Tallinn.m"]
Out[2673]= "Tallinn.m"

While the MfileToMx procedure provides converting of a package located
in a datafile of m–format into a datafile of mx–format. The procedure call
MfileToMx[x] returns the path to a datafile that is the result of converting
of a m–file x with a package into a file of mx–format, whose name coincides
with the name of the initial datafile x with replacement of the extension "m"
on "mx". Moreover, the procedure call deletes a package x from the current
session if upto the MfileToMx procedure call the datafile wasn't loaded, and
otherwise no. The next fragment represents source code of the MfileToMx
procedure along with a typical example of its usage.

In[2721]:= MfileToMx[x_ /; FileExistsQ[x] && FileExtension[x] == "m"] :=
 Module[{a = ContextFromFile[x], b, d, c = ToString1[x <> "x"]},
 If[MemberQ[$ContextPath, a],
 ToExpression["DumpSave[" <> c <> "," <> ToString1[a] <> "]"];
 x <> "x", b = ReadList[x, String];
 d = Select[Map[StringReplace[#, {"(*" –> "", "*)" –> ""}] &,
 b[[3 ;; –1]]], # != "" &]; Quiet[ToExpression[d]];
 ToExpression["DumpSave[" <> c <> "," <> ToString1[a] <> "]"];
 Map[Clear1[2, a <> #] &, CNames[a]];
 $ContextPath = MinusList[$ContextPath, {a}]; x <> "x"]];

In[2722]:= MfileToMx["C:\\Mathematica\\Rans_Ian.m"]
Out[2722]= "C:\\Mathematica\\Rans_Ian.mx"

Extension of Mathematica system functionality

 525

This procedure represents a certain interest in a number of appendices.

The question of documenting of the user package is an important enough its
component; at that, absence in a package of usage for an object contained in
it does such object as inaccessible at uploading the package into the current
session. So, description of each object of the user package has to be supplied
with the corresponding usage. At the same time it must be kept in mind that
mechanism of documenting of the user libraries in the Maple system is much
more developed, than similar mechanism of documenting of the user package
in the Mathematica system. Thus, if the mechanism of formation of the user
libraries in the Maple is simple enough, providing simple documenting of
library means and providing access both to means of library, and to their
references at the level of the system means, in the Mathematica system the
similar mechanism is absent. Receiving of the usage concerning a x package
tool is possible only by means of calls ?x or Information[x] provided that a
package has been uploaded into the current session. Meanwhile, in case the
package contains enough many means, for obtaining the usages concerning
the demanded means it is necessary to be sure in their existence, first of all.
The next PackageUsages procedure can be rather useful to these purposes,
whose source code along with examples of its usage are represented below.

In[5313]:= PackageUsages[x_ /; FileExistsQ[x] && FileExtension[x] == "m"]:=
 Module[{a = StringSplit[ReadString[x], {"(**)", "*)\r\n(*"}], b, c, d, f},
 b = Select[a, ! StringFreeQ[#, {"::usage=", "::usage = "}] &];
 c = FileNameSplit[x]; d = FileBaseName[c[[–1]]] <> ".txt";
 f = FileNameJoin[Join[c[[1 ;; –2]], {d}]];
 Map[{WriteString[f, StringReplace[#, "::usage" –> ""]],
 WriteString[f, "\n\n"]} &, b]; Close[f]]

In[5314]:= PackageUsages["AVZ_Package.m", "AVZ_Package_Usages.txt"]
Out[5314]= "AVZ_Package_Usages.txt"
In[5315]:= PackageUsages["C:\\users\\aladjev/mathematica/Tallinn.m"]
Out[5315]= "C:\\users\\aladjev\\mathematica\\Tallinn.txt"

Gs = "Help on Gs."

Rans = "Help on Rans."

Vgs = "Help on Vgs."

V.Z. Aladjev, V.A. Vaganov

 526

The procedure call PackageUsages[x] returns the path to a datafile in which
the extension "m" of a datafile x is replaced on "txt"; the received datafile
contains usages of the user package formed standardly in the form of a nb–
document (see above) with the subsequent its saving in a m–file x by means
of chain of the commands "File –> Save As" of the GUI. The information on
the specific package tool y has the format y = "Help on y". The received txt–
file allows to look through easily its contents regarding search of necessary
means of the user package.

For testing of contents of a datafile of mx–format with the user package in
the context of names of means whose definitions are located in this datafile,
the NamesFromMx procedure is a rather useful means. The procedure call
NamesFromMx[x] returns the list of names in string format of tools whose
definitions are located in x datafile of mx–format with the user package. If
the given package wasn't loaded into the current session, the procedure call
leaves it unloaded. Fragment below represents source code of the procedure
NamesFromMx along with typical examples of its usage.

In[5190]:= NamesFromMx[x_ /; FileExistsQ[x] && FileExtension[x] ==
 "mx"] := Module[{a = ContextFromFile[x], b},
 If[MemberQ[$ContextPath, a], CNames[a], Get[x];
 b = CNames[a]; Map[Close1[2, a <> #] &, b];
 $ContextPath = MinusList[$ContextPath, {a}]; b]]

In[5191]:= NamesFromMx["C:\\Mathematica\\AVZ_Package.mx"]
Out[5191]= {"AcNb", "ActBFMuserQ", "ActCsProcFunc", "ActRemObj",
 "AddMxFile", "Adrive", "Adrive1", "Affiliate", "Aobj", "Aobj1",
 "Args", "Args1", "ArgsBFM", "ArgsTypes", "Arity", ……}
In[5192]:= Length[%]
Out[5192]= 684
In[5193]:= NamesFromMx["C:\\Temp\\Mathematica\\Grodno.mx"]
Out[5193]= {"Ga", "Gs", "GSV", "Vgs"}
In[5194]:= $ContextPath
Out[5194]= {"AladjevProcedures`", "PacletManager`", "QuantityUnits`",
 "WebServices`", "System`", "Global`"}
In[5195]:= Definition[GSV]
Out[5195]= Null

Extension of Mathematica system functionality

 527

While the NamesFromMx1 procedure unlike the NamesFromMx procedure
doesn't demand for obtaining the list of names, whose definitions are located
in a mx–file with the user package, real uploading into the current session of
this datafile. The procedure call NamesFromMx1[x] returns the list of names
of means whose definitions are located in a x datafile of mx–format with the
user package. The fragment below represents source code of the procedure
NamesFromMx1 along with some typical examples of its usage.

In[3570]:= NamesFromMx1[x_ /; FileExistsQ[x] && FileExtension[x] ==
 "mx"] := Module[{c, d = {}, p, h = "", k = 1, j, m, n,
 a = ContextFromFile[x], b = ToString[ReadFullFile[x]]},
 b = StringJoin[Map[FromCharacterCode,
 Select[ToCharacterCode[b], # > 32 && # < 128 &]]];
 {n, m} = Map[StringLength, {a, b}];
 c = Map[#[[1]] + n &, StringPosition[b, a]][[2 ;; –1]];
 While[k <= Length[c], For[j = c[[k]], j <= m, j++, p = StringTake[b, {j, j}];
 If[p == "`", AppendTo[d, h]; h = ""; Break[], h = h <> p]]; k++];
 Sort[MinusList[Select[d, SymbolQ[#] &], {"Private"}]]]

In[3571]:= NamesFromMx1["C:\\Temp\\Mathematica\\Kiev.mx"]
Out[3571]= {"Art", "Avz", "GSV"}

In[3572]:= Length[NamesFromMx1["C:\\Temp\\AVZ_Package.mx"]]
Out[3572]= 428

At that, the procedure call NamesFromMx1[x]returns only those names of
means whose definitions received by means of the Definition contain the
context associated with a package contained in a mx–file x. Whereas on the
other side certain modifications of the NamesFromMx1 procedure allow to
obtain more complete list of names of means whose definitions with context
are located in a datafile x of mx–format with a package. The next fragment
presents one of such modifications qua of which the procedure acts, whose
call NamesFromMx2[x] returns the list of names in string format of means,
whose definitions are located in a mx–file with package. Along with sourse

code of the procedure the examples of its usage are presented. Meanwhile,
the both procedures demand enough considerable temporary expenses on
datafiles of mx–format with a package of rather large size.

V.Z. Aladjev, V.A. Vaganov

 528

In[3584]:= NamesFromMx2[x_ /; FileExistsQ[x] && FileExtension[x] ==
 "mx"] := Module[{a = ToString[ReadFullFile[x]], b},
 b = Select[ToCharacterCode[a], # == 255 || (# > 31 && # < 123 &&
 ! MemberQ[Flatten[{Range[37, 47], Range[91, 95]}], #]) &];
 b = ReduceList[b, 255, 1, 1];
 b = Select[Quiet[SplitList[b, 96]], # != {} &];
 b = Quiet[Map[FromCharacterCode, b]];
 b = DeleteDuplicates[Select[b, SymbolQ[#] &]];
 Sort[Select[b, ! MemberQ[{"Private", "System"}, #] &&
 StringFreeQ[#, {StringTake[ContextFromFile[x], {1, –2}], "ÿ"}] &]]]

In[3585]:= NamesFromMx2["C:\\Temp\\Mathematica\\Kiev.mx"]
Out[3585]= {"Art", "Avz", "GSV"}
In[3586]:= Length[NamesFromMx2["C:\\Temp\\AVZ_Package.mx"]]
Out[3586]= 438

For the purpose of reduction of temporary expenses, the above algorithm of
the NamesFromMx2 procedure can be modified, using the following means
extending the Mathematica system. The Map11 function considered above,
and procedure SplitList1, given by the fragment below, act as such means.

In[5173]:= SplitList1[x_/; ListQ[x], y_/; ListQ[y], z_/; ListQ[z]] := Module[{c,
 a = Map12[ToString, {x, y, z}], b = ToString[Unique["$"]]},
 c = Map11[StringJoin, a, b]; c = Map[StringJoin, c];
 c = SubsString1[c[[1]], {c[[2]], c[[3]]}, StringQ[#] &, 0];
 ToExpression[Map11[StringSplit, c, b]]]

In[5174]:= SplitList1[{x, y, z, a, b, c, d, p, m, n, p, x, y, z, 42, 47, 67, 90, m, n, p},
 {x, y, z}, {m, n, p}]
Out[5174]= {{a, b, c, d, p}, {42, 47, 67, 90}}
In[5174]:= SplitList1[{x, y, z, a, b, c, d, p, x, y, z, 42, 47, 67}, {x, y, z}, {m, n, p}]
Out[5174]= {}

The procedure call SplitList1[x, y, z] returns the sublists of a list x which are
limited by its sublists y and z excepting the limiting sublists y and z. In the
absence of such sublists the empty list, i.e. {} is returned. Along with that the
given procedure extends the above–mentioned SplitList procedure.

Extension of Mathematica system functionality

 529

As it was noted, the Mathematica system has a large enough number of the
global variables that describe, for example, characteristics of the system, an
operating platform, the full paths to its main directories along with a number
of other indicators of current state of the system. Thus, the user has a quite
real possibility quite effectively to develop own means, including the means
that extend the possibilities of the system itself. In reality, on the basis of a
number of such global variables and a number of enough developed tools it
is possible to develop the original means; at that, the development of their
analogs in the Maple system often demands the more essential efforts and
non–standard approaches. Our experience in the given direction confirms
the told. Some quite simple examples were given in [25-27] and, most often,
they concerned the means of access. Considerable interest for the advanced
programming in the system also the problem of definition of a name of the
current document {mws-file, nb-file} represents. In the Maple system for this
purpose the mwsname procedure whose development demanded a certain
non-standard approach was created. Whereas the development of similar
means for the Mathematica appeared much simpler, what the next rather
simple NbName procedure illustrates, whose source code with examples of
usage are represented by the following fragment.

In[3743]:= NbName[] := Module[{a, b, c, d, k = 1},
 {a, d} = {ToString[Notebooks[]], {}};
 {b, c} = Map3[StringPosition, a, {"<<", ">>"}];
 While[k <= Length[b], AppendTo[d, StringTake[a,
 {b[[k]][[2]] + 1, c[[k]][[1]] – 1}]]; k++];
 Select[d, SuffPref[#, ".nb", 2] &]]

In[3744]:= NbName[]
Out[3744]= {"Search.nb", "LoadF.nb", "ActiveProcs.nb", "Int.nb", "Ver.nb"}

In[3745]:= AcNb[] := StringSplit[NotebookFileName[], {"\\", "/"}][[–1]]

In[3746]:= AcNb[]
Out[3746]= "AVZ_Package.nb"

The procedure call NbName[] returns the list of nb–documents which have
been loaded into the current session; at that, their order in the list is defined
by order of their uploading into the current session so, that the first element

V.Z. Aladjev, V.A. Vaganov

 530

defines the current nb–document. In turn, the call AcNb[] of rather simple
function returns the name of the current document or a package which has
been earlier saved in a datafile of the nb–format.

For convenience of uploading of a package into the current session the Need
procedure generalizing in a certain degree the standard Needs function can
be used. The source code of the Need procedure along with examples of its
usage are represented by the following fragment.

In[2672]:= Need[x__] := Module[{a = Directory[], c, p, d = {x}[[1]], f,
 b = If[Length[{x}] > 1 && StringQ[{x}[[2]]], {x}[[2]], "Null"]},
 If[! ContextQ[d], $Failed,
 If[b == "Null", Quiet[Check[Get[d], $Failed]],
 If[b != "Null" && ! MemberQ[{"m", "mx"}, FileExtension[b]], $Failed,
 If[MemberQ[$Packages, d], True,
 CopyFile[b, f = a <> "\\" <> StringTake[d, {1, –2}] <> "." <>
 FileExtension[b]]; Get[f]; DeleteFile[f]; True]]]]]

In[2673]:= Need["Grodno`", "C:\\mathematica\\Grodno.mx"]
Out[2673]= True
In[2674]:= $Packages
Out[2674]= {"Grodno`", "AladjevProcedures`", "GetFEKernelInit`",
 "ResourceLocator`", "PacletManager`", "System`", "Global`"}
In[2675]:= Definition[Vgs]
Out[2675]= Vgs[x_/; IntegerQ[x], y_/; IntegerQ[y]] := x*y

The procedure call Need[x] loads a package that corresponds to a x context
into the current session provided that the corresponding datafile of format
{"m" | "mx"} is located in one of the directories determined by the system
variable $Path with return True; otherwise, the call returns $Failed. Whereas
the procedure call Need[x] loads a package that corresponds to a x context
into the current session provided that the corresponding datafile of format
{"m" | "mx"} is located or in one of the directories determined by the system
variable $Path, or is determined by argument y with return True; otherwise,
the call returns $Failed. So, having created a nb–document with definitions
of objects, having supplied them with usages with its subsequent evaluation
and preservation by means of function {Save|DumpSave} in a file of format
{"m" | "mx"} respectively, we have a possibility in the subsequent sessions

Extension of Mathematica system functionality

 531

to upload it into the current session by means of the Needs function or the
Need procedure with receiving access to the program objects contained in it.
Moreover, for the purpose of increase of efficiency of uploading of a package
it is recommended to use a file of mx-format in which it was earlier saved by
means of the call DumpSave[x] where the argument x determines the context
associated with the saved package. With questions of uploading of the user
packages into the current session along with rather useful recommendations
the interested reader can familiarize in [28,30-33]. In particular, it should be
noted the undesirability of use of identical contexts for the user packages,
leading in some cases to unpredictable results, but not all so negatively. For
example, such approach can be used for replenishment of a datafile of mx–
format with a package by new means as the earlier considered RedMxFile
procedure as the next AddMxFile procedure illustrates.

In[4222]:= AddMxFile[x_ /; FileExistsQ[x] && FileExtension[x] == "mx",
 y_ /; FileExistsQ[y] && FileExtension[y] == "mx",
 z_ /; FileExtension[z] == "mx"] :=
 Module[{a = ContextFromFile[x], b = ContextFromFile[y], c = 90},
 If[a != b, $Failed, If[MemberQ[$ContextPath, a], c = 500;
 Quiet[Get[y]], Quiet[{Get[x], Get[y]}]];
 ToExpression["DumpSave[" <>
 ToString1[z] <> "," <> ToString1[a] <> "]"];
 If[c == 90, Map[Clear1[2, a <> #] &, CNames[a]];
 Quiet[$ContextPath = MinusList[$ContextPath, {a}]]]]; z]

In[4223]:= AddMxFile["Tallinn.mx", "Grodno.mx", "Rans.mx"]
Out[4223]= "Rans.mx"

In[4224]:= Get["Rans.mx"]
In[4225]:= $Packages
Out[4225]= {"Grodno`", "AladjevProcedures`", "GetFEKernelInit`",
 "ResourceLocator`", "PacletManager`", "System`", "Global`"}

In[4226]:= CNames["Grodno`"]
Out[4226]= {"Avz", "GSV", "GSV1", "Gs", "Gs1", "Vgs", "Vgs1"}

In[4227]:= PureDefinition[Vgs1]
Out[4227]= "Vgs1[x_ /; IntegerQ[x], y_ /; IntegerQ[y]] := x*y"

V.Z. Aladjev, V.A. Vaganov

 532

In[4230]:= SaveInMx[x_ /; FileExtension[x] == "mx", y_ /; SymbolQ[y] ||
 ListQ[y] && DeleteDuplicates[Map[SymbolQ[#] &, y]] == {True},
 z_ /; ContextQ[z]] := Module[{b,
 a = Flatten[Select[Map[PureDefinition[#] &, Flatten[{y}]],
 ! SameQ[#, $Failed] &]]},
 Map[ToExpression[z <> #] &, a];
 AppendTo[$ContextPath, z]; DumpSave[x, z];]

In[4227]:= Agn[x_, y_] := Module[{a = 90}, a*(x + y)]; Agn[x_] := x + 500
In[4228]:= SaveInMx["Grodno.mx", {Avz, Agn}, "Grodno`"];
In[4229]:= $ContextPath = MinusList[$ContextPath, {"Grodno`"}];
 Clear[Avz, Agn]; Get["Grodno.mx"]
In[4230]:= PureDefinition[Agn]
Out[4230]= {"Agn[x_, y_] := Module[{a = 90}, a*(x + y)]", "Agn[x_] := x + 500"}

The previous fragment represents source code of the AddMxFile procedure
that uses the mechanism of contexts [28,30-33], whose call AddMxFile[x,y,z]
returns the path to a datafile z – result of supplement of a datafile x by tools
of a datafile y; all datafiles have mx-format while the first 2 datafiles contain
the packages with the same context. At that, if the first package is uploaded
into the current session, then the second package y also remains uploaded;
otherwise, the first 2 packages are unloaded from the current session. While
the procedure call SaveInMx[x, y, z] returns nothing, saving in a mx–file x
with z context the definition of a symbol or list of symbols y which have the
context "Global'". The SaveInMx procedure to a certain extent supplements
earlier represented means of the same plan.

In a number of cases exists a need of testing of a file regarding that whether
it contains a package. The given problem is solved by quite simple function,
whose call PackageFileQ[x] returns True if argument x defines a datafile of
formats {"cdf", "mx", "m", "nb"} with a package, otherwise False is returned.

In[2542]:= PackageFileQ[x_] := If[StringQ[x] && FileExistsQ[x] &&
 MemberQ[{"cdf", "m", "mx", "nb"}, FileExtension[x]],
 If[SameQ[ContextFromFile[x], $Failed], False, True], False]

In[2543]:= Map[PackageFileQ, {"gru.mx", "pack.m", "pack.nb", "pack.cdf"}]
Out[2543]= {True, True, True, True}

Extension of Mathematica system functionality

 533

The previous fragment represents source code of the PackageFileQ function
along with examples of its usage. The given function turned out as an useful
means for a number of means of our package AVZ_Package [48].

At last, for convenience of loading of the user package located in a mx–file x
into the current session the LoadPackage procedure can be used, whose call
LoadPackage[x] returns Null, i.e. nothing, uploading the package into the
current session with activation of all definitions which are contained in it in
the mode similar to the mode of Input–paragraph, i.e. in an optimal format
in the above sense (without package context). The fragment below represents
source code of the LoadPackage procedure with examples of its usage.

In[3422]:= LoadPackage[x_ /; FileExistsQ[x] &&
 FileExtension[x] == "mx"] := Module[{a},
 Quiet[ToExpression["Off[shdw::Symbol]"];
 Get[x]; a = ToExpression["Packages[][[1]]"];
 ToExpression["LoadMyPackage[" <> "\"" <>
 x <> "\"" <> "," <> "\"" <> a <> "\"" <> "]"];
 ToExpression["On[shdw::Symbol]"]]]

In[3423]:= LoadPackage["C:\\Temp\\Mathematica\\AVZ_Package.mx"]
In[3424]:= Definition[StrStr]
Out[3424]= StrStr[x_] := If[StringQ[x], "\"" <> x <> "\"", ToString[x]]

Meanwhile it must be kept in mind, in case of uploading in a described way
into the current session of other user package the availability in the current
session of AVZ_Package package or the activated LoadPackage procedure
is required. The given means is very convenient at processing of definitions
of the package tools in the above optimized format, i.e. without a context.

Tools, presented in this chapter along with other tools of our AVZ_Package
[48] allow to solve a number of important problems of processing of the user
packages which are located in datafiles of formats {"cdf", "mx", "m", "nb"}.
The AVZ_Package package represents toolbox oriented on the wide enough
circle of appendices including the system ones. The package represents also
quite certain interest from standpoint of useful approaches and receptions
used at programming a number of the means entering it, including tools for
non–standard processing of the user packages.

V.Z. Aladjev, V.A. Vaganov

 534

8.4. The organization of the user software in the
Mathematica system

The Mathematica no possess comfortable enough tools of the organization
of the user libraries as in the case of the Maple, creating certain difficulties
at the organization of the user software developed in its environment. For
saving of definitions of objects and results of calculations the Mathematica
uses datafiles of various organization. At that, datafiles of text format which
not only are easily loaded into the current session, in general are most often
used, but also are convenient enough for processing by other known means,
for example, word processors. Moreover, the text format provides a simple
portability on other computing platforms. One of the main prerequisites of
saving in datafiles is possibility of use of definitions and their usages of the
Mathematica-objects in the subsequent sessions of the system. At that, with
questions of standard saving of objects (modules, functions, usages, etc.) the
interested reader can familiarize in details in [28-33,51-53,60,62,64,67], some
of them were considered in the present book in the context of organization
of packages whereas here we represent simple means of organization of the
user libraries in the Mathematica system.

Meanwhile, here it is expedient to make a number of very essential remarks
on usage of the above system means. First, the mechanism of processing of
erroneous and especial situations represents a rather powerful instrument
of programming practically of each quite complex algorithm. However, in
the Mathematica system such mechanism is characterized by a number of
essential shortcomings, for example, successfully using in the Input–mode
the mechanism of output of messages about erroneous situations {Off, On},
in the body of procedures such mechanism generally speaking doesn't work
as illustrates the following rather simple fragment, namely:

In[2602]:= Import["D:\\Math_myLib\\ArtKr_2015.m"]
 Import::nffil: File not found during Import. >>
Out[2602]= $Failed

In[2603]:= Off[Import::nffil]
In[2604]:= Import["D:\\Math_myLib\\ArtKr_2015.m"]
Out[2604]= $Failed

Extension of Mathematica system functionality

 535

In[2605]:= On[Import::nffil]
In[2606]:= F[x_] := Module[{a}, Off[Import::nffil]; a := Import[x];
 On[Import::nffil]; a]
In[2607]:= F["D:\\Math_myLib\\ArtKr_2015.m"]
 Import::nffil: File not found during Import. >>
Out[2607]= $Failed

So, at creation of complex enough procedures in which is required to solve
questions of blocking of output of a number of erroneous messages, means
of the Mathematica system are presented to us as insufficiently developed
means. The interested reader can familiarize with other peculiarities of the
specified system means in [28-33]. Now we will present certain approaches
concerning the organization of the simple user libraries in the Mathematica
system. Some of them can be useful in practical work with the Mathematica.

In view of the scheme of the organization of library considered in [22,25–27]
concerning the Maple with organization different from the main library, we
will present realization of similar user library for a case of the Mathematica
system. On the first step in file system of the computer a directory, let us say,
"С:\\Math_myLib" is created which will contain txt–files with definitions
of the user procedures/functions along with their usages. In principle, it is
possible to place any number of definitions into such txt–files, however in
this case it is previously necessary to call a procedure whose name coincides
with name of the txt–file, whereupon in the current session all procedures/
functions whose definitions are located in the datafile along with usages are
available. That is really convenient in the case when in a single datafile are
located the main procedure and all means accompanying it, excluding the
standard system means.

On the second step the procedures/functions together with their usages are
created and debugged with their subsequent saving in the required datafile
of a library subdirectory, for example:

In[2601]:= NF[x_] := Sin[x]*Cos[x]; ArtKr[x_, y_] := Sqrt[Sin[x] + 90*NF[y]]
In[2602]:= NF::usage = "Help on NF."; Rans::usage = "Help on Rans.";
 Rans[x_]:= Module[{}, x^2]; ArtKr::usage = "Help on function ArtKr.";
In[2603]:= CreateDirectory["C:\\Math_myLib"];
In[2604]:= Save["C:\\Math_myLib\\Userlib.txt", {NF, ArtKr, "NF::usage",

V.Z. Aladjev, V.A. Vaganov

 536

 "ArtKr::usage", "Rans::usage", Rans}]
In[2605]:= Clear[NF, ArtKr, Rans]; ArtKr::usage = ""; NF::usage = "";
In[2606]:= ?ArtKr
In[2607]:= Definition[ArtKr]
Out[2607]= Null
In[2608]:= Get["C:\\Math_myLib\\NF.txt"];
In[2609]:= Definition[ArtKr]
Out[2609]= ArtKr[x_, y_] := Sqrt[Sin[x] + 47 NF[y]]
In[2610]:= ?ArtKr
 Help on function ArtKr.

To save the definitions and usages in datafiles of txt–format perhaps in two
ways, namely: (1) by the function call Save, saving the previously evaluated
definitions and usages in a datafile given by its first argument as illustrates
the previous fragment; at that, saving is made in the append-mode, or (2) by
creating txt–files with names of objects and their usages whose contents are
formed by means of a simple word processor, for example, Notepad. At that,
by means of the Save function we have possibility to create libraries of the
user means, located in an arbitrary directory of file system of the computer.

The next fragment presents the CallSave procedure whose call CallSave[x,
y, z] returns the result of the call y[z] of a procedure/function y on a list z of
factual arguments passed the y provided that object definition y with usage
are located in a txt–file x that has been earlier created by the Save function.
If an object with the given name y is absent in a datafile x, the procedure call
returns $Failed. If a datafile x contains definitions of several procedures or
functions of the same name y, the procedure call is executed relative to their
definition whose formal arguments correspond to a list z of actual arguments.
If y defines the list, the call returns the names list of all means contained in x.
The following fragment represents source code of the procedure CallSave
along with examples of its usage relative to the concrete datafile created by
means of the standard Save function.

In[3582]:= NF[x_] := Sin[x]*Cos[x]; ArtKr[x_, y_] := Sqrt[Sin[x] + 90*NF[y]]
 NF::usage = "Help on NF."; Rans::usage = "Help on Rans.";
 Rans[x_] := Module[{}, x^2]; Rans[x_, y_] := Module[{}, x + y];
 ArtKr::usage = "Help on ArtKr.";

Extension of Mathematica system functionality

 537

In[3583]:= Save["C:\\Math_myLib\\Userlib.txt", {NF, ArtKr, "NF::usage",
 "ArtKr::usage", "Rans::usage", Rans}]
In[3584]:= Clear[ArtKr, NF, Rans]; NF::usage = ""; ArtKr::usage = "";
 Rans::usage = "";

In[3585]:= CallSave[x_ /; FileExistsQ[x], y_ /; SymbolQ[y] || ListQ[y],
 z_ /; ListQ[z]] := Module[{b, c, d, nf, u, p, t, v, n,
 a = StringReplace[StringTake[ToString[InputForm[ReadString[x]]],
 {2, –2}], "\\r\\n\\r\\n" –> "\\r\\n \\r\\n"],
 s = Map[ToString, Flatten[{y}]]},
 b = StringSplit[a, "\\r\\n \\r\\n"]; n = Select[b, StringFreeQ[#, " /: "] &];
 nf[g_] := StringTake[g, {1, Flatten[StringPosition[g, "[", 1]][[1]] – 1}];
 c = Select[b, SuffPref[#, p = Flatten[{Map4[StringJoin, s, "["],
 Map4[StringJoin, s, " /: "]}], 1] &];
 {d, u, t, v} = {{}, {}, Map[# <> " /: " &, s], {}};
 Map[If[SuffPref[#, t, 1], AppendTo[u,
 DelSuffPref[StringReplace[StringTrim[#, t], "\\" –> ""], "rn", 2]],
 AppendTo[d, #]] &, c]; Map[ToExpression, {d, u}];
 If[d == {}, $Failed, If[Length[d] == 1,
 Symbol[nf[d[[1]]]][Sequences[z]],
 If[Length[DeleteDuplicates[Map[nf[#] &, d]]] == 1,
 Map[Symbol[nf[#]][Sequences[z]] &, d][[1]], Map[nf[#] &, n]]]]]

In[3586]:= CallSave["C:\\Math_myLib\\Userlib.txt", {NF, ArtKr, Rans},
 {90, 500}]
Out[3586]= {"NF", "ArtKr", "Rans", "Rans"}

In[3587]:= CallSave["C:\\Math_myLib\\Userlib.txt", ArtKr, {90, 500}]
Out[3587]= Sqrt[Sin[90] + 90 Cos[500] Sin[500]]

In[3588]:= CallSave["C:\\Math_myLib\\Userlib.txt", NF, {90, 500}]
Out[3588]= NF[90, 500]

In[3589]:= CallSave["C:\\Math_myLib\\Userlib.txt", ArtKr, {500}]
Out[3589]= ArtKr[500]

In[3590]:= CallSave["C:\\Math_myLib\\Userlib.txt", NF, {500}]
Out[3590]= Cos[500] Sin[500]

V.Z. Aladjev, V.A. Vaganov

 538

In[3591]:= CallSave["C:\\Math_myLib\\Userlib.txt", Rans, {500}]
Out[3591]= 250 000
In[3592]:= CallSave["C:\\Math_myLib\\Userlib.txt", Rans, {90, 500}]
Out[3592]= 590
In[3593]:= ?ArtKr
 Help on ArtKr.
In[3594]:= CallSave["C:\\Math_myLib\\Userlib.txt", Art, {90, 500}]
Out[3594]= $Failed

In[3600]:= Save2[x_ /; StringQ[x], y_ /; SymbolQ[y] || ListQ[y]] :=
 If[FileExistsQ[x], Save[x, "\\r\\n \\r\\n"]; Save[x, y], Save[x, y]]

In[3601]:= Avz[x_, y_, z_] := Module[{a = 500, b = 90}, a*b*x*y*z];
 Avz::usage = "Help on Avz." ;
In[3602]:= Save2["C:/Math_myLib\\Userlib.txt", {Avz, "Avz::usage"}]
In[3603]:= Clear[Avz]; Avz::usage = "";
In[3604]:= ?Avz
 Help on Avz.
In[3605]:= CallSave["C:\\Math_myLib\\Userlib.txt", Avz, {73, 90, 500}]
Out[3605]= 147 825 000 000

Meantime, the CallSave procedure provides the call of a necessary function
or procedure which is located in a txt–file created by means of the standard
Save function; at that, such user library rather reminds an archive because
doesn't allow the updating. Whereas for extension of such libraries by new
tools it is necessary to use the simple Save2 function, whose call Save2 [x, y]
append to a datafile x the definitions of the means given by a name or their
list y in the format convenient for the subsequent processing by a number of
means, in particular, by the CallSave procedure. In the previous fragment a
source code of the Save2 function with examples of its use are represented.
Thus, the similar organization of the user library provides a simple mode of
its maintaining whereas the CallSave procedure allows extensions on rather
broad circle of functions of operating with the user library. In particular, the
principle of modification of text datafiles with definitions and usages of the
procedures/functions not only is very simple, but allows to keep history of
modifications of definitions of library means also that in a number of cases
is rather actual. In our opinion, the represented approach quite can be used

Extension of Mathematica system functionality

 539

for the organization of simple and effective user libraries of traditional type.

The mentioned simple approach to the organization of the user means in the
Mathematica system is only one of possible methods, giving opportunity of
creation of own libraries of procedures/functions with access to them at the
level of the system means. The interested reader can familiarize with these
questions more in details, for example, in our books [30–33].

Qua of other rather useful approach we will present the CALLmx procedure
whose call provides saving in library directory of definitions of objects and
their usages in the form of mx–datafiles with possibility of their subsequent
loading into the current session. The fragment below represents source code
of the CALLmx procedure along with some typical examples of its usage.

In[4650]:= NF[x_] := Sin[x]*Cos[x] + x^3
In[4651]:= ArtKr[x_, y_] := Sqrt[42*Sin[x] + 47*Cos[y]] + x*y

In[4652]:= CALLmx[y_, z_ /; MemberQ[{1, 2}, z], d___] := Module[{c = {}, h,
 k = 1, s, a = If[{d} == {}, Directory[], If[StringQ[d] && DirectoryQ[d],
 d, Directory[]]], b = Map[ToString, If[ListQ[y], y, {y}]]},
 If[z == 1, While[k <= Length[b], s = b[[k]]; h = a <> "\\" <> s <> ".mx";
 If[! MemberQ[{"Null", $Failed}, Definition4[s]],
 ToExpression["DumpSave[" <> ToString1[h] <> "," <> ToString[s] <> "]"];
 AppendTo[c, s]]; k++]; Prepend[c, a],
 While[k <= Length[b], s = b[[k]]; h = a <> "\\" <> s <> ".mx";
 If[FileExistsQ[h], Get[h]; AppendTo[c, s]]; k++]; c]]

In[4653]:= NF::usage = "Help on NF"; ArtKr::usage = "Help on ArtKr";
In[4654]:= CALLmx[{NF, ArtKr, "NF::usage", "ArtKr::usage"}, 1]
Out[4654]= {"C:\\Users\\Aladjev\\Documents", "NF", "ArtKr"}

In[4655]:= Clear[NF, ArtKr,]
In[4656]:= CALLmx[{NF, ArtKr}, 2]
Out[4656]= {"NF", "ArtKr"}

In[4657]:= AGN = Sqrt[NF[42.47]^2 + ArtKr[19.89, 19.96]^4]
Out[4657]= 180 710.0

In[4658]:= ?ArtKr
 Help on ArtKr.

V.Z. Aladjev, V.A. Vaganov

 540

The procedure call CALLmx[y, 1, d] returns the list whose the first element
defines library directory while the others – names of objects from argument
y (a separate name or their list) whose definitions are evaluated in the current
session; in the presence of the evaluated usages for objects they are saved in
a datafile too; the optional argument d determines a directory in which the
evaluated definitions of objects and their usages y in the form of mx–files
with the names "Name.mx" where Name is the names of the objects defined
by argument y will be located; in case of absence of argument d as a library
directory a directory determined by the call Directory[] is choosen. Whereas
the call CALLmx[y, 2, d] provides loading into the current session of objects
whose names are defined by an argument y from a library directory defined
by the third argument d; in its absence Directory[] directory is supposed. At
that, it should be noted that in one datafile is most expedient to place only
the main procedure and functions associated with it, excepting references on
the standard functions. It allows to form procedural files enough simply.

It is possible to present the UserLib procedure which supports a number of
useful functions as one more rather simple example of maintaining the user
libraries. The procedure call UserLib[W, f] provides a number of important
functions on maintaining of a simple user library located in a datafile W of
txt–format. Qua of the second actual argument of f the two-element list acts
for which admissible pairs of values of elements can be, namely:

{"names", "list"} – return of the list of objects names, whose definitions are located
in a library datafile; in case of the empty datafile the call is returned unevaluated;
{"print", "all"} – output to the screen of full contents of a library datafile W; in the
case of the empty datafile the procedure call is returned unevaluated;
{"print", "Name"} – output to the screen of definition of an object with the name
Name whose definition is in a library datafile W; in case of the empty datafile the
call is returned unevaluated; in the absence in a library datafile W of the demanded
means the procedure call returns Null, i.e. nothing, in such case the procedure call
prints the message of the following kind "Name is absent in Library W";
{"add", "Name"} – saving in a library datafile W in the append-mode of an object
with a name Name; the definition of a saved means has to be previously evaluated
in the current session in the Input–mode;
{"load", "all"} – uploading into the current session of all means whose definitions
are in a library file W; in case of the empty datafile the call is returned unevaluated;

Extension of Mathematica system functionality

 541

{"load", "N"} – uploading into the current session of an object with name N whose
definition is in a library file W; in the case of the empty datafile the procedure call is
returned unevaluated; in the absence in a library datafile W of a demanded tool the
procedure call returns Null, i.e. nothing, in such case the procedure call prints the
message of the following kind "N is absent in Library W".

In other cases the UserLib procedure call is returned unevaluated. There is
a good opportunity to extend the procedure with a number of useful enough
functions such as: deletion from a library of definitions with usages of the
specified means or their obsolete versions, etc. With the given procedure is
possible to familiarize more in details, for example, in [30–33,48].

The list structure of the Mathematica system allows to rather easily simulate
the operating with structures of other systems of computer mathematics, for
example, the Maple system. So, in the Maple system the tabular structure
as one of the most important structures is used which is rather widely used
both for the organization of data structures, and for the organization of the
libraries of software. The similar tabular organization is widely used for the
organization of package modules of the Maple along with a number of tools
of our UserLib library [47]. For simulation of the main operations with the
tabular organization similar to the Maple system, in the Mathematica system
the Table1 procedure can be used. The procedure call Table1[L,x] considers
a list L of the ListList type, whose 2–element {x, y} sublists correspond to an
{index, entry} of the Maple tables respectively as the table. As the second x
argument can be (1) a list {a, b}, (2) a word {"index"|"entry"} along with an
expression of other type (3). The procedure call Table1[L, x] returns the list
of ListList–type received from an initial list L as follows.

In the case (1) in the presence in L of a sublist with the first element a it is
replaced onto a list {a, b}, otherwise it supplements L; if the argument x has
view {a, Null}, in the presence in L of a sublist with the first element a the
sublist is removed. For the case (2) the list {indices|entries} accordingly of a
list L is returned, whereas in the case (3) the procedure call returns an entry
for a x-index if such in this table really exists. On other tuples of the actual
arguments the procedure call Table1[x, y] returns $Failed. The following
fragment represents source code of the Table1 procedure together with the
most typical examples of its usage. The represented examples of the Table1
procedure usage very visually illustrate its functionality.

V.Z. Aladjev, V.A. Vaganov

 542

In[4412]:= Table1[L_/; ListListQ[L], x_] := Module[{a = {}, c = L, d = {}, k = 1,
 b = Length[L]},
 If[ListListQ[L] && Length[L[[1]]] == 2,
 For[k, k <= b, k++, AppendTo[a, L[[k]][[1]]];
 AppendTo[d, L[[k]][[2]]]];
 {a, d} = Map[DeleteDuplicates, {a, d}];
 If[x === "index", a,
 If[x === "entry", d,
 If[ListQ[x] && Length[x] == 2,
 If[! MemberQ[a, x[[1]]], AppendTo[c, x],
 Select[Map[If[#1[[1]] === x[[1]] && ! SameQ[x[[2]], Null], x,
 If[#[[1]] === x[[1]] && x[[2]] === Null, Null, #]] &, L],
 ! SameQ[#, Null] &]], Quiet[Check[Select[Map[If[#[[1]] === x, #[[2]]] &, L],
 ! SameQ[#, Null] &][[1]], $Failed]]]]], $Failed]]

In[4413]:= Tab1 := {{a, a73}, {b, b42}, {c, c47}, {Kr, d18}, {Art, h26}}
In[4414]:= Table1[Tab1, "entry"]
Out[4414]= {a73, b42, c47, d18, h26}
In[4415]:= Table1[Tab1, "index"]
Out[4415]= {a, b, c, Kr, Art}
In[4416]:= Table1[Tab1, {ArtKr, 2015}]
Out[4416]= {{a, a73}, {b, b42}, {c, c47}, {Kr, d18}, {Art, h26}, {ArtKr, 2015}}
In[4417]:= Table1[Tab1, {Kr, 2015}]
Out[4417]= {{a, a73}, {b, b42}, {c, c47}, {Kr, 2015}, {Art, h26}}
In[4418]:= Table1[Tab1, Art]
Out[4418]= h26
In[4419]:= Table1[Vsv, ArtKr]
Out[4419]= $Failed
In[4420]:= Table1[Tab1, {Vsv, Agn}]
Out[4420]= {{a, a73}, {b, b42}, {c, c47}, {Kr, d18}, {Art, h26}, {Vsv, Agn}}

On the basis of the tabular organization supported by the Table1 procedure
it is rather simply possible to determine the user libraries. Qua of one of such
approaches we will present an example of LibBase library whose structural
organization has format of the ListList list and whose elements have length
two. The principled kind of such library is given below, namely:

Extension of Mathematica system functionality

 543

LibBase := {{Help, {"O1::usage = \"Help on O1\", …,
 "On::usage = \"Help on On\"}},
 {O1, PureDefinition[O1]}, {O2, PureDefinition[O2]},…,
 {On, PureDefinition[On]}}

The first element of the two–element first sublist of the LibBase list is Help
whereas the second represents the usages list in string format for all objects,
whose definitions are in the LibBase library; at that, their actual presence in
the library isn't required. Other elements of the LibBase library – 2-element
sublists of format {Oj, PureDefinition[Oj]}, where Oj – a j-object name, and
PureDefinition[Oj] – its definition, presented in string optimal format. The
following fragment represents the TabLib procedure supporting work with
the above LibBase library along with concrete examples that rather visually
clarify the essence of such maintenance.

In[5248]:= LibBase := {{Help, {"NF::usage = \"Help on function NF.\"",
 "ArtKr::usage = \"Help on function ArtKr.\""}},
 {NF, "NF[x_, y_] := x + y"}, {ArtKr, "ArtKr[x_, y_] := Sqrt[26*x + 18*y]"}}
In[5249]:= DumpSave["LibBase.mx", LibBase]
Out[5249]= {{Help, {"NF::usage = \"Help on function NF.\"",
 "ArtKr::usage = \"Help on function ArtKr.\""}},
 {NF, "NF[x_, y_] := x + y"},
 {ArtKr, "ArtKr[x_, y_] := Sqrt[26*x + 18*y]"}}

In[5250]:= TabLib[Lib_ /; FileExistsQ[Lib] && FileExtension[Lib] == "mx",
 x_, y___] := Module[{a = Get[Lib], b, c},
 If[MemberQ[{"index", "entry"}, x], Table1[LibBase, x],
 Map[ToExpression, LibBase[[1]][[2]]];
 If[ListQ[x] && Length[x] == 2, c = If[SameQ[x[[2]], Null], x,
 {x[[1]], PureDefinition[x[[1]]]}]; b = Table1[LibBase, c];
 If[! SameQ[b, $Failed], LibBase = b;
 ToExpression["DumpSave[" <> ToString1[Lib] <> "," <>
 "LibBase]"]], If[StringQ[x] && ! StringFreeQ[x, "::usage = "],
 c = Quiet[LibBase[[1]][[2]] = AppendTo[LibBase[[1]][[2]], x];
 LibBase = ReplacePart[LibBase, {1, 2} –> c];
 ToExpression["DumpSave[" <> ToString1[Lib] <> "," <> "LibBase]"],

V.Z. Aladjev, V.A. Vaganov

 544

 If[Table1[LibBase, x] === $Failed, $Failed, b = Table1[LibBase, x];
 If[! SameQ[b, $Failed], ToExpression[b]; x[y]], $Failed]]]]]

In[5251]:= Clear[LibBase]; TabLib["LibBase.mx", "index"]
Out[5251]= {Help, NF, ArtKr}

In[5252]:= TabLib["LibBase.mx", "entry"]
Out[5252]= {{"NF::usage = \"Help on function NF.\"",
 "ArtKr::usage = \"Help on function ArtKr.\""},
 "NF[x_, y_] := x + y", "ArtKr[x_, y_] := Sqrt[26*x + 18*y]"}

In[5253]:= NF[x_] := Sin[x]*Cos[x] + x^3

In[5254]:= ArtKr[x_, y_] := 42*Sin[x] + 47*Cos[y] + x*y

In[5255]:= TabLib["LibBase.mx", {ArtKr, PureDefinition[ArtKr]}]
Out[5255]= {{{Help, {"NF::usage =\"Help on function NF.\"",
 "ArtKr::usage =\"Help on function ArtKr.\""}},
 {ArtKr, "ArtKr[x_, y_] := 42*Sin[x] + 47*Cos[y] + x*y"}}}

In[5256]:= TabLib["LibBase.mx", {NF, PureDefinition[NF]}]
Out[5256]= {{{Help, {"NF::usage =\"Help on function NF.\"",
 "ArtKr::usage =\"Help on function ArtKr.\""}},
 {NF, "NF[x_] := Sin[x]*Cos[x] + x^3"},
 {ArtKr, "ArtKr[x_, y_] := 42*Sin[x] + 47*Cos[y] + x*y"}}}

In[5257]:= TabLib["LibBase.mx", "index"]
Out[5257]= {Help, ArtKr, NF}

In[5258]:= Clear[ArtKr, LibBase, NF]
In[5259]:= TabLib["LibBase.mx", ArtKr, 90.42, 590.2015]
Out[5259]= 53 374.4

In[5260]:= TabLib["LibBase.mx", NF, 500.2015]
Out[5260]= 1.25151*10^8

In[5261]:= TabLib["LibBase.mx", ArtKr]
Out[5261]= ArtKr[]
In[5262]:= TabLib["LibBase.mx", {NF, Null}]
Out[5262]= {{{Help, {"NF::usage = \"Help on function NF.\"",
 "ArtKr::usage =\"Help on function ArtKr.\""}},
 {ArtKr, "ArtKr[x_, y_] := 42*Sin[x] + 47*Cos[y] + x*y"}}}

In[5263]:= TabLib["LibBase.mx", Avz42]
Out[5263]= $Failed

Extension of Mathematica system functionality

 545

In[5264]:= TabLib["LibBase.mx", "Avz::usage = \"Help on object Avz.\""]
Out[5264]= {{{Help, {"NF::usage =\"Help on function NF.\"",
 "ArtKr::usage =\"Help on function ArtKr.\"",
 "Avz::usage = \"Help on object Avz.\""}},
 {ArtKr, "ArtKr[x_, y_] := 42*Sin[x] + 47*Cos[y] + x*y"}}}

In[5265]:= LibBase
Out[5265]= {{{Help, {"NF::usage =\"Help on function NF.\"",
 "ArtKr::usage =\"Help on function ArtKr.\"",
 "Avz::usage = \"Help on function Avz.\""}},
 {ArtKr, "ArtKr[x_, y_] := 42*Sin[x] + 47*Cos[y] + x*y"}}}
In[5266]:= ??NF
 Help on function NF.
 NF[x_] := Sin[x] Cos[x] + x^3

In[5267]:= ?ArtKr
 Help on function ArtKr.

The main operations with the library organized thus are supported by the
TabLib procedure whose source code with examples of use are represented
by the previous fragment. The procedure call TabLib[x,y] depending on the
second argument y returns or the current contents of the library which is in
a mx-file x, or names of the objects that are in the library, or their definitions,
namely:

TabLib[x, "index"] – returns the list of objects names whose definitions are
in a library x, including the name Help of help base of the library;
TabLib[x, "entry"] – returns the list of objects definitions that are contained
in a library x, including also the help base Help of the library;
TabLib[x, {N, Df}] – returns the contents of a library x after its extension by
a new definition Df of an object with a name N if Df is different from Null;
at that, obsolete definition of N–object is updated;
TabLib[x, {N, Null}] – returns the contents of a library x as a result of removal
from it of definition of an object with a name N; at that, its usage remains;
TabLib[x, N, y, z, …] – returns the result of call N[y, z, …] of an object N from
a library x; if the object N is absent in the library, $Failed is returned;
TabLib[x, N] – if N – usage on an object N, it supplements the help base of a
library x with return of the updated contents of the library.

V.Z. Aladjev, V.A. Vaganov

 546

In other cases the procedure call returns $Failed or is returned unevaluated.
Qua of a certain initial library LibBase intended for filling its by necessary
contents a ListList-list of the above format is used. An initial library LibBase
should be defined before the first procedure call TabLib. Naturally, for real
use of the TabLib procedure qua of a ready software for the organization of
the user libraries it demands an extension of the functionality, meantime, it
is presented as an illustrative example of one of possible approaches to the
solution of a task of the organization of the user software. We leave this task
for the interested Mathematica user as a rather useful practice. In principle,
the presented library organization provided by the TabLib procedure and
that is based on the tabular organization which is supported by the Table1
procedure represents a certain analog of a Maple–package of tabular type.
The represented library has only a basic set of functions which meanwhile
provides its quite satisfactory functioning. Meanwhile, on the basis of the
offered approach quite really to create the fast rather small libraries of the
user procedures and functions that will be very convenient in operation. At
that, the similar quite simple means can serve as good tools for maintenance
of the libraries of the user procedures/functions that have a text format, and
that are simply edited by usual word processors, for example, Notepad. The
interested reader can develop own means of the library organization in the
Mathematica software, using approaches offered by us along with others.
However, exists a problem of the organization of convenient help bases for
the user libraries. A number of approaches in this direction can be found in.
In particular, on the basis of the list structure supported by the system it is
rather simply possible to determine help bases for the user libraries. On this
basis as one of such approaches an example of the BaseHelp procedure has
been represented, whose structural organization has the list format [30-33].

Meanwhile, it is possible to create the help bases on the basis of the packages
containing usages on means of the user library which are saved in datafiles
of mx–format. At that, for complete library it is possible to create only one
help mx–file, uploading it as required into the current session by means of
the Get function with receiving in the subsequent of access to all usages that
are in the datafile. The next Usages procedure can represent a quite certain
interest for the organization of a help database for the user libraries. This
procedure provides maintaining a help base irrespective of a library that is

Extension of Mathematica system functionality

 547

rather convenient in a number of cases of organization of the user software.
The fragment below represents source code of the Usages procedure along
with the most typical examples of its usage.

In[3600]:= G::usage = "Help on function G.";
 V::usage = "Help on function V.";
 S::usage = "Help on function S.";
 Art::usage = "Help on procedure Art.";
 Kr::usage = "Help on procedure Kr.";

In[3601]:= Usages[x_/; StringQ[x], y___] := Module[{a, b, h = ""},
 If[! FileExistsQ[x], Put[x]];
 If[{y} == {} && ! EmptyFileQ[x], While[! SameQ[h, EndOfFile],
 Quiet[ToExpression[h = Read[x, Expression]]]]; Close[x];,
 If[{y} == {} && EmptyFileQ[x], $Failed,
 If[Quiet[Check[ListQ[y], False]] && {y} != {} && ListSymbolQ[y],
 a = DeleteDuplicates[Select[y, Head[#::usage] === String &]];
 If[a != {}, PutAppend[Sequences[Map[ToString[#] <> "::usage = "
 <> "\"" <> #::usage <> "\"" &, a]], x], $Failed],
 If[! Quiet[Check[ListQ[y], False]],
 b = DeleteDuplicates[Reverse[ReadList[x, Expression]]];
 Put[Sequences[Select[b, ! SuffPref[#1, Map[ToString[#] <>
 "::usage" &, Flatten[{y}]], 1] &]], x], $Failed]]]]]

In[3602]:= Usages["C:/MathLib/HelpBase.m", {Art, Kr, G, V, Art, Kr, Vsv}]

A new session with the Mathematica system

In[2216]:= Usages["C:\\MathLib\\HelpBase.m"]
In[2217]:= ?G
 Help on function G.
In[2218]:= Information[V]
 Help on function V.
In[2219]:= ?S
 Help on function S.
In[2220]:= ?Art
 Help on procedure Art.

V.Z. Aladjev, V.A. Vaganov

 548

For initial filling of a help database in the current session all known usages
on means that are planned on inclusion into the user library are evaluated as
illustrates the first Input–paragraph of the previous fragment. Then by the
procedure call Usages[x, y] the saving in a x–file of the ASCII format of all
usages relating to software tools that are defined by a list y is provided. At
that, saving is executed in the append–mode into the end of the x–file; if the
specified datafile x is absent, the empty x–file is created. While the procedure
call Usages[x, y, z, …] where arguments, since the second, represent names
{y,z,…} of software tools, deletes from the help database the usages on these
means. At last, the procedure call Usages[x] activates all usages containing
in help database x in the current session, doing them available irrespectively
from existence of the means described by these usages. The successful call of
the Usages procedure returns Null, i.e. nothing; otherwise, value $Failed is
returned, in particular, in the case of a call Usages[x] at the absent or empty
datafile x. The presented approach is represented as a rather convenient. At
that, the history of modifications of a datafile x is saved while qua of active
usage the last usage supplementing the datafile acts.

For receiving usages on means that are in packages, it is possible to use the
UsagesMNb procedure, whose source code along with typical examples of
usage, are represented by the following fragment.

In[4242]:= UsagesMNb[x_ /; FileExistsQ[x] && MemberQ[{"m", "nb"},
 FileExtension[x]]] := Module[{a, b, c},
 If[FileExtension[x] == "m",
 a = Select[ReadList[x, String], ! StringFreeQ[#, "::usage="] &];
 a = Map[StringTake[#, {3, –3}] &, a];
 a = Map[If[SymbolQ[StringTake[#, {1, Flatten[StringPosition[#,
 "::usage="]][[1]] – 1}]], #] &, a]; Select[a, ! SameQ[#, Null] &],
 c = "$.m"; b = ContextFromFile[x];
 ToExpression["Save[" <> StrStr[c] <> ", " <> StrStr[b] <> "]"];
 b = Select[Quiet[ReadList["$.m", Expression]],
 ! MemberQ[{Null, {Temporary}}, #] &]; DeleteFile["$.m"]; b]]

In[4243]:= UsagesMNb["C:\users/aladjev/mathematica/avz_package.mx"]
Out[4243]= UsagesMNb["C:\users/aladjev/mathematica/avz_package.mx"]

Extension of Mathematica system functionality

 549

In[4244]:= UsagesMNb["C:\\users/aladjev/mathematica/avz_package.m"]
Out[4244]= {"UprocQ::usage=\"The call UprocQ[x] returns False if x is not
a procedure; otherwise, two-element list of the format {True, {\"Module\"|
\"Block\"|\"DynamicModule\"}} is returned.\", ……}
In[4245]:= UsagesMNb["C:/users/aladjev/mathematica/avz_package.nb"]
Out[4245]= {"The call Names1[] returns the nested 4-element list, whose the
first element defines the list of names of the procedures, the second – the list
of names of functions/modules, the third element – the list of names whose
definitions have been evaluated in the current session of the system, while
the fourth element determines the list of other names associated with the
current session.", ……}

The procedure call UsagesMNb[x] returns the usages list on software of the
user package which is in a datafile x of format {"m", "nb"}; these usages are
returned in string format. At that, for a datafile x of m-format the usages list
containing a prefix "Name::usage=" is returned while for a datafile x of nb–
format the usages list without such prefix is returned. Furthermore, if for a
package from a datafile x of m–format its uploading into the current session
isn't required, then for a package from a datafile x of nb-format its uploading
is required. Unlike the procedures HelpPrint, HelpBasePac the UsagesMNb
procedure provides possibility of both perusal of help databases of the user
packages, and their processing.

At last, the call of the simple function Usages1[x] provides the output of all
usages describing the means contained in the user package associated with
a context x. The following fragment represents source code of the Usages1
function along with a typical example of its usage.

In[2699]:= Usages1[x_ /; ContextQ[x]] := DeleteDuplicates[Map[{Print[#],
 ToExpression["?" <> #]} &, CNames[x]]][[1]]

In[2700]:= Usages1["AladjevProcedures`"]
 "AcNb"

 The call AcNb[] returns full name of the current document
 earlier saved as a nb–file.
===

The above example illustrates the format returned by a function call.

V.Z. Aladjev, V.A. Vaganov

 550

8.5. A package for the Mathematica system

The computer mathematics has found application in many fields of science
such as physics, mathematics, education, computer sciences, engineering,
chemistry, computational biology, technology, etc. Computer mathematics
systems (CMS) such as Mathematica are becoming more and more popular
in teaching, research and industry. So, researchers use known Mathematica
system as an essential enough means for solving problems related to their
various investigations. The system is ideal tool for formulating, solving, and
exploring various mathematical models. Its symbolic manipulation facilities
extend greatly over a range of the problems that can be solved with its help.
Educators in universities and colleges have revitalized traditional curricula
by introducing problems and exercises that widely use the Mathematica's
interactive mathematics and physics. While students can concentrate on the
more fundamental concepts rather than on various plural tedious algebraic
manipulations. Finally, engineers and experts in industries use the system
Mathematica as an efficient tool replacing many traditional resources such
as reference books, spreadsheets, calculators, and programming languages.
These users easily solve mathematical problems, creating various projects
and consolidating their computations into professional report. Meanwhile,
our experience with system Mathematica of releases 8 ÷ 10 enabled us not
only to estimate its advantages in regard to other similar CMS, above all the
Maple system, but has also revealed a number of faults and shortcomings
which were eliminated by us. In particular, Mathematica does not support
a number of functions important for procedural programming and datafiles
processing. As a result, the AVZ_Package package oriented on the solution
of the above problems was created [33,48]. The given package contains more
than 680 means which eliminate restrictions of a number of standard means
of the Mathematica, and expand its software environment with new means.
In this context, the package can serve as a certain additional tool of modular
programming, especially useful in the numerous applications where certain
nonstandard evaluations have to accompany programming. At that, means
presented in the given package have a direct relationship to certain principal
questions of procedure–functional programming in Mathematica, not only
for the decision of applied problems, but, first of all, for creation of software

Extension of Mathematica system functionality

 551

extending frequently used facilities of the system and/or eliminating their
defects or extending the system with new facilities. The software presented
in this package contains a series of rather useful and effective receptions of
programming in the Mathematica system, and extends its software which
allows in the system to programme the problems of various purpose more
simply and effectively. The additional means composing the above package
embrace the next sections of the Mathematica system, namely:
– additional means in interactive mode of the Mathematica system
– additional means of processing of expressions in the Mathematica system
– additional means of processing of symbols and strings in the Mathematica
– additional means of processing of sequences and lists in the Mathematica
– additional means extending the standard Mathematica functions or its software
 as a whole (control structures branching and cycle, etc.)
– definition of procedures in the Mathematica software
– definition of the user functions and pure functions in the Mathematica software
– means of testing of procedures and functions in the Mathematica software
– headings of procedures and functions in the Mathematica software
– formal arguments of procedures and functions;
– local variables of modules and blocks; means of their processing
– global variables of modules and blocks; means of their processing
– attributes, options and values by default for arguments of the user blocks,
 functions and modules; additional means of their processing
– some useful additional means for processing of blocks, functions and modules
– additional means of the processing of internal Mathematica datafiles
– additional means of the processing of external Mathematica datafiles
– additional means of the processing of attributes of directories and datafiles
– additional and some special means of processing of datafiles and directories
– additional means of operating with packages and contexts ascribed to them
– organization of the user software in the Mathematica system.

This package, is mostly for people who want the more deep understanding
in the Mathematica programming, and particularly those the Mathematica
users who would like to make a transition from a user to a programmer, or
perhaps those who already have some limited experience in Mathematica
programming but want to improve their possibilities in the system. Expert
Mathematica programmers will probably find an useful information too.

The archive AVZ_Package.zip with the given package that owns the license

V.Z. Aladjev, V.A. Vaganov

 552

FreeWare can be freely downloaded from the web-site presented in [48]. The
package contains 4 datafiles, namely: AVZ_Package.cdf, AVZ_Package.mx,
AVZ_Package.m, AVZ_Package.nb. In particular, for perusal of the package
it is possible to use or datafile AVZ_Package_1.cdf with the CDF Player, or
file AVZ_Package_1.m with a word processor, for example, Notepad. Such
approach allows to satisfy the user on various operation platforms (Mac OS
X, Windows, Linux, Linux ARM). The package contains more than 680 tools
that eliminate restrictions of a number of standard functions of the system,
and extend its software with new means. In this context, this package can
serve as a tool of programming, especially useful in numerous applications,
where certain nonstandard evaluations have to accompany programming.
At that, the memory size, demanded for the AVZ_Package package in the
Mathematica 10.1.0.0 (on Windows 7 Pro, ver. 6.1.7601) yields the next result:
In[1]:= MemoryInUse[]
Out[1]= 28 784 392
In[2]:= Get["C:\\Users\\Aladjev\\Mathematica\\AVZ_Package.mx"]
In[3]:= MemoryInUse[]
Out[3]= 40 724 272
In[4]:= N[(% – %%%)/1024^2]
Out[4]= 11.3868

i.e. in the Mathematica our AVZ_Package package demands near 11.4 MB,
whereas quantity of software whose definitions are located in this package,
at the moment of its uploading into the current session of the Mathematica
system is available on the basis of the following very simple calculations:
In[1]:= Get["C:\\Users\\Aladjev\\Mathematica\\AVZ_Package.mx"]
In[2]:= Length[CNames["AladjevProcedures`"]]
Out[2]= 684

At that it must be kept in mind that debugging of means of the package was
carried out on the basis of Mathematica of version 10, and partially on the
basis of version 9. Therefore in some cases there can be certain slips at their
performance that are rather simply eliminated. Unfortunately, regardless of
sufficient stability of the built–in Math–language, upon transition from the
younger version of the Mathematica to more senior a certain adjustment can
be needed. As a rule, similar adjustment for the used version of the system
Mathematica isn't very complex.

Extension of Mathematica system functionality

 553

References

1. Aladjev V.Z., Hunt Ü., Shishakov M.L. Mathematics on Personal Computer.–
Gomel: BELGUT Press, 1996, 498 p., ISBN 34206140233 (in Russian).

2. Aladjev V.Z., Shishakov M.L. Introduction into Mathematical Package
Mathematica 2.2.– Moscow: Filin Press, 1997, 363 p., (in Russian).

3. Aladjev V.Z., Hunt Ü.J., Shishakov M.L. Basics of Computer Informatics:
Textbook.– Tallinn: Russian Academy of Noosphere & TRG, 1997, 396 p.
4. Aladjev V.Z., Hunt Ü.J., Shishakov M.L. Basics of Computer Informatics:
Textbook.– Moscow, Filin Press, 1998, 496 p., ISBN 5895680682 (in Russian).

5. Aladjev V.Z., Hunt Ü.J., Shishakov M.L. Basics of Computer Informatics:
Textbook, Second edition.– Moscow, Filin Press, 1999, 545 p. (in Russian).

6. Aladjev V.Z., Vaganov V.A., Hunt Ü.J., Shishakov M.L. Introduction into
Environment of Mathematical Package Maple V.– Minsk: International
Academy of Noosphere, 1998, 452 p., ISBN 1406425698 (in Russian).

7. Aladjev V.Z., Vaganov V.A., Hunt Ü.J., Shishakov M.L. Programming in
Environment of Mathematical Package Maple V.– Minsk–Moscow: Russian
Ecology Academy, 1999, 470 p., ISBN 4101212982 (in Russian).
8. Aladjev V.Z., Bogdevicius M.A. Solution of Physical, Technical and
Mathematical Problems with Maple V.– Tallinn–Vilnius, TRG, 1999, 686 p.
9. Aladjev V.Z., Vaganov V.A., Hunt Ü.J., Shishakov M.L. Workstation for
Mathematician.– Tallinn–Gomel–Moscow: Russian Academy of Natural
Sciences, 1999, 608 p., ISBN 3420614023 (in Russian with English summary).

10. Aladjev V.Z., Shishakov M.L. Workstation of Mathematician.– Moscow:
Laboratory of Basic Knowledge, 2000, 752 p., ISBN 5932080523 (in Russian).

11. Aladjev V.Z., Bogdevicius M.A. Maple 6: Solution of Mathematical,
Statistical, Physical and Engineering Problems.– Moscow: Laboratory of Basic
Knowledge, 2001, 850 p., ISBN 593308085X (in Russian with English summary).

12. Aladjev V.Z., Bogdevicius M.A. Special Questions of Operation in Software
Environment of the Mathematical Package Maple.– Vilnius: International
Academy of Noosphere & Vilnius Gediminas Technical Univ., 2001, 208 p.
13. Aladjev V.Z., Bogdevicius M.A. Interactive Maple: Solution of Statistical,
Mathematical, Engineering and Physical Problems.– Tallinn: International
Academy of Noosphere, 2001–2002, CD with Booklet, ISBN 9985927710.

V.Z. Aladjev, V.A. Vaganov

 554

14. Aladjev V.Z., Vaganov V.A., Grishin E.P. Additional Software Means of
Mathematical Package Maple of releases 6 and 7.– Tallinn: International
Academy of Noosphere, 2002, 314 p. + CD, ISBN 9985927737 (in Russian).
15. Aladjev V.Z. Effective Operation in Mathematical Package Maple.–
Moscow: Laboratory of Basic Knowledge, 2002, 334 p., ISBN 593208118Х.
16. Aladjev V.Z., Liopo V.A., Nikitin A.V. Mathematical Package Maple in
Physical Modeling.– Grodno: Grodno State University, 2002, 416 p.

17. Aladjev V.Z., Vaganov V.A. Computer Algebra System Maple: A New
Software Library.– Tallinn: International Academy of Noosphere, the Baltic
Branch, 2002, CD with Booklet, ISBN 9985927753 (in Russian).

18. Aladjev V.Z., Bogdevicius M.A., Prentkovskis O.V. A New Software for
Mathematical Package Maple of Releases 6, 7 and 8.– Vilnius: Vilnius Gediminas
Technical University & International Academy of Noosphere, 2002, 404 p.,
ISBN 9985927745, 9986055652 (in Russian with extended English summary).

19. Aladjev V.Z., Vaganov V.A. Systems of Computer Algebra: A New Software
Toolbox for Maple.– Tallinn: International Academy of Noosphere, the Baltic
Branch, 2003, 270 p., ISBN 9985927761 (in Russian with English summary).

20. Aladjev V.Z., Bogdevicius M., Vaganov V.A. Systems of Computer Algebra:
A New Software Toolbox for Maple. Second edition.– Tallinn: Intern. Academy
of Noosphere, 2004, 462 p., ISBN 9985927788 (in Russian).

21. Aladjev V.Z. Computer Algebra Systems: A New Software Toolbox for the
Maple.– CA: Palo Alto: Fultus Corporation, 2004, 575 p., ISBN 1596820004.
22. Aladjev V.Z. Computer Algebra Systems: A New Software Toolbox for Maple.-
CA: Palo Alto: Fultus Corporation, 2004, Acrobat eBook, ISBN 1596820152.
23. Aladjev V.Z. et al. Electronic Library of Books and Software for Scientists,
Experts, Teachers and Students in Natural and Social Sciences.– CA: Palo Alto:
Fultus Corporation, 2005, CD, ISBN 1596820136 (in Russian and English).

24. Aladjev V.Z., Bogdevicius M.A. Maple: Programming, Physical and
Engineering Problems.– Palo Alto: Fultus Corp., 2006, 404 p., ISBN 1596820802,

eBook, ISBN 1596820810, http://writers.fultus.com/aladjev/index.html

25. Aladjev V.Z. Computer Algebra Systems. Maple: Art of Programming.–
Moscow: BINOM Press, 2006, 792 p., ISBN 5932081899 (in Russian).

26. Aladjev V.Z. Foundations of programming in Maple: Textbook.– Tallinn:
International Academy of Noosphere, 2006, 300 p., (pdf), ISBN 998595081X.

Extension of Mathematica system functionality

 555

Can be freevely from website http://www.aladjev-maple.narod.ru.
27. Aladjev V.Z., Boiko V.K., Rovba E.A. Programming and Applications
Elaboration in Maple.– Grodno: GRSU, Tallinn: International Academy of
Noosphere, 2007, 456 p., ISBN 9789854178912, ISBN 9789985950821.
28. Aladjev V.Z., Vaganov V.A. Modular Programming: Mathematica vs
Maple, and vice versa.– CA: Palo Alto, Fultus Corporation, 2011, 418 p.

29. Aladjev V.Z., Bezrukavyi A.S., Haritonov V.N., Hodakov V.E.
Programming: Maple or Mathematica?– Ukraine: Herson, Oldi–Plus Press,
2011, 474 p., ISBN 9789662393460 (in Russian with English summary).

30. Aladjev V.Z., Boiko V.K., Rovba E.A. Programming in the Packages
Mathematica and Maple: Comparative Aspect.– Belarus: Grodno, Grodno
State University, 2011, 517 p., ISBN 9789855154816 (in Russian).

31. Aladjev V.Z., Grinn D.S., Vaganov V.A. The extended functional means for
the package Mathematica.– Ukraine: Kherson: Oldi–Plus Press, 2012, 404 p.,
ISBN 9789662393590 (in Russian with extended English summary).
32. Aladjev V.Z., Grinn D.S. Extension of functional environment of the system
Mathematica.– Ukraine: Kherson: Oldi–Plus Press, 2012, 552 p., ISBN
9789662393729 (in Russian with extended English summary).

33. Aladjev V.Z., Grinn D.S., Vaganov V.A. The selected system problems in
Mathematica software.– Ukraine: Kherson: Oldi–Plus Press, 2013, 556 p.,
ISBN 9789662890129 (in Russian with extended English summary).
34. Aladjev V.Z., Bogdevicius M. Use of package Maple for solution of physical
and engineering problems // Int. Conf. Transbaltica-99.– Vilnius: Technics Press.
35. Aladjev V.Z., Hunt U. Workstation for mathematicians // Conf. Transbaltica-
 99.– Vilnius: Technics Press, April 1999.

36. Aladjev V.Z., Hunt U. Workstation for mathematicians // Conf. «Perfection of
Mechanisms of Management», Institute of Modern Knowledge, Grodno, 1999.
37. Aladjev V.Z., Shishakov M. Programming in package Maple // 2nd Int. Conf.
«Computer Algebra in Fundamental and Applied Researches and Education».–
Byelorussia: Minsk, 1999.
38. Aladjev V.Z., Shishakov M.L. A Workstation for mathematicians // 2nd Conf.
«Computer Algebra in Fundamental and Applied Researches and Education».–
Byelorussia: Minsk, 1999.
39. Aladjev V.Z., Shishakov M.L., Trokhova T.А. Educational computer

V.Z. Aladjev, V.A. Vaganov

 556

laboratory of the engineer // Proc. 8th Byelorussia Math. Conf., Minsk, 2000.

40. Aladjev V.Z. et al. Modelling in software environment of the mathematical
package Maple // Int. Conf. on Math. Mod. МКММ–2000.– Herson, 2000.

41. Aladjev V.Z., Shishakov M.L., Trokhova T.A. A workstation for solution of
systems of differential equations // 3rd International Conf. «Differential Equations
and Applications».– Saint–Petersburg, Russia, 2000.

42. Aladjev V.Z., Shishakov M.L., Trokhova T.A. Computer laboratory for
engineering researches // Int. Conf. ACA-2000.– Saint–Petersburg, Russia, 2000

43. Aladjev V.Z., Bogdevicius M., Hunt U.J. A Workstation for mathematicians
/ Lithuanian Сonf. TRANSPORT–2000.– Vilnius: Technics Press, April 2000.

44. Aladjev V.Z. Computer Algebra // Alpha, № 1.– Grodno: GRSU, 2001.

45. Aladjev V.Z. Modern computer algebra for modeling of the transport systems
// Intern. Conf. TRANSBALTICA–2001.– Vilnius: Technics Press, April 2001.

46. Aladjev V.Z. Computer Algebra System Maple: A New Software Library //
International Conference «Computer Algebra Systems and Their Applications»,
Saint–Petersburg, Russia, 2003.
47. Aladjev V.Z. A Library UserLib6789 for system Maple.– The library can be
freely downloaded from website http://yadi.sk/d/P1FQaYmW619C7.
48. Aladjev V.Z. A package AVZ_Package for system Mathematica.– Package
can be freely downloaded from website http://yadi.sk/d/G9HBFqTILiAAC.
49. Aladjev V.Z. Modular programming: Maple or Mathematica – A subjective
standpoint / Intern. school «Mathematical and computer modeling of fundamental
objects and phenomena in systems of computer mathematics», ed. Y. G. Ignat’ev.–
Kazan: Kazan Univ. Press, 2014, pp. 18–32.

50. Nelson H.F. Beebe. A Bibliography of Publications about the Maple Symbolic
Algebra Language.– Salt Lake City: Univ. of Utah, Dept. of Mathem., 2010.

51. Arantes R.D. A Computational Reference Guide on Experimental
Mathematics, Algorithmic Number Theory and Symbolic Computing.– Rio de
Janeiro: Federal University, Caixa Postal 11502, 220022–970, 2004.

52. Mangano S. Mathematica Cookbook.– CA: Sebastopol: O'Reilly Media,
Inc., 2010, ISBN–13: 9780596520991, ISBN–10: 0596520999, 828 p.
53. Wellin P. et al. An Introduction to Programming with Mathematica, 3rd
ed.– Cambridge University Press, 2005, 550 p., ISBN 0521846781.

54. Sisson P. College Algebra, 2nd ed.– Hawkes Learning Systems, 2008.

Extension of Mathematica system functionality

 557

55. Gregor J., Tier J. Discovering Mathematics: A Problem–Solving Approach to
Mathematical Analysis with Mathematica and Maple.– Springer, 2010, 254 p.
56. Alberty R. Applications of Mathematica.– Wiley Press, 2011, 456 p.

57. Shiskowski K., Frinkle K. Principles of Linear Algebra with Mathematica.–

Wiley, ISBN 9780470637951, 2011, 616 p.

58. Kilian A. Programmieren mit Wolfram Mathematica.– Springer, 2010.
59. Hollis S. CalcLabs with Mathematica for Multivariable Calculus.– Brooks/
Cole, ISBN–13: 9780840058133, ISBN–10: 0840058136, 2012, 274 p.
60. Annong Xu. Introduction to Scientific Computing: Numerical Analysis With
Mathematica.– China Machine Press, 2010, ISBN 9787111310914.
61. Core Language: Tutorial Collection.– Wolfram Research Inc., 2008, 358 p.
62. Hastings K.J. Introduction to Probability with Mathematica.– CRC Press,
2009, ISBN 9781420079388, 465 p.
63. Wellin P.R. Programming with Mathematica: An Introduction, 2013.

64. Koberlein B., Meisel D. Astrophysics through Computation: With
Mathematica Support, ISBN 9781107010741, 2013.

65. Boccara N. Essentials of Mathematica: With Applications to Mathematics
and Physics.– Springer, ISBN 9780387495132, 2007.

66. Shifrin L. Mathematica Programming: An Advanced Introduction.– Brunel
University, 2008, http://www.mathprogramming-intro.org/2008.
67. Wagon S. Mathematica® in Action: Problem Solving Through Visualization
and Computation, 3rd ed., 2010, 574 p., ISBN 9780387754772.

68. Bunker G. Mathematica Quickstart.– Illinois Inst. of Technology, 2010.

69. Mathematica 9 documentation center: complete reference for Mathematica 9,
http://reference.wolfram.com/mathematica/guide/Mathematica.html.
70. http://www.haskell.org – Web-site concerning functional programming

71. Wadler P. Why no one uses functional languages // ACM Notices, 1998.

72. The fourth international seminar and international school «Mathematical and
computer modeling of fundamental objects and phenomena in systems of computer
mathematics» / Ed. Prof. Yu. G. Ignat’ev.– Kazan: Kazan Univ. Press, 2014,
ISBN 9785000193082, 126 p.

73. The international scientifically–practical conference ITES–2014 / Ed. Prof. Yu.

G. Ignat’ev.– Kazan: Foliant Press, 2014, ISBN 9785905576409, 298 p.

V.Z. Aladjev, V.A. Vaganov

 558

Monographs, textbooks, books and papers on Computer Science,
Theory of General Statistics, Cellular Automata Theory and
Computer Mathematics Systems, prepared and published by

members of the Baltic Branch during 1995 – 2015
 (Publications are grouped according to their primary purpose)

Classical Cellular Automata (Homogeneous Structures)

1. Aladjev V.Z., Hunt Ü.J., Shishakov M.L. Questions of Mathematical Theory
of the Classical Homogeneous Structures (Cellular Automata).– Gomel: BELGUT
Press, 1996, 151 p., ISBN 5063560785 (in Russian with English summary)

2. Aladjev V.Z., Hunt Ü., Shishakov M.L. Mathematical Theory of the Classical
Homogeneous Structures (Cellular Automata).– Tallinn–Gomel: TRG & VASCO
& Salcombe Eesti Ltd., 1998, 300 p., ISBN 9063560789 (in Russian with
extended English summary)

3. Aladjev V.Z., Boiko V.K., Rovba E.A. Classical Homogeneous Structures:
Theory and Applications.– Belarus: Grodno: Grsu, Tallinn: International
Academy of Noosphere, 2008, 488 p., ISBN 9789855150207, 9789985950845
(in Russian with extended English summary)

4. Aladjev V.Z. Classical Homogeneous Structures: Cellular Automata.– USA:
Palo Alto: Fultus Corporation, 2009, 536 p., 159682137X (in Russian)

5. Aladjev V.Z. Classical Homogeneous Structures: Cellular Automata.– USA:
Palo Alto: Fultus Corporation, 2009, 536 p., Adobe Acrobat eBook (pdf),
ISBN 9781596821385 (in Russian and English)

6. Aladjev V.Z., Grinn D.S., Vaganov V.A. Classical Homogeneous Structures:
Mathematical Theory and Applications.– Ukraine: Kherson: Oldi–Plus Press,
2014, ISBN 9789662890358, 520 p.

7. Aladjev V.Z. Classical Cellular Automata: Mathematical Theory and Applica–
tions.– Germany: Saarbrücken: Scholar`s Press, 2014, ISBN–10: 3639713451,
ISBN–13: 9783639713459, EAN: 9783639713459, 520 p.

General Statistics

8. Aladjev V.Z., Veetõusme R.A., Hunt Ü.J. General Theory of Statistics: Text–
book.– Tallinn: TRG & SALCOMBE Eesti Ltd., 1995, 201 p., ISBN 1995146428
(in Russian with extended English summary)

Extension of Mathematica system functionality

 559

9. Aladjev V.Z., Hunt Ü.J., Shishakov M.L. Course of General Theory of Statis–
tics: Textbook.- Belarus: Gomel: BELGUT Press, 1995, 201 p., ISBN 1995146429
(in Russian with extended English summary)

10. Aladjev V.Z. Interactive Course of General Theory of Statistics.– Tallinn:
International Academy of Noosphere, the Baltic Branch, 2001, CD with
Booklet, ISBN 9985608666 (in Russian with extended English summary)

11. Aladjev V.Z., Haritonov V.N. General Theory of Statistics.- USA: Palo Alto:
Fultus Corporation, 2004, 256 p., ISBN 1596820128.

12. Aladjev V.Z., Haritonov V.N. General Theory of Statistics.- USA: Palo Alto:
Fultus Corporation, 2004, Adobe Acrobat eBook, ISBN 1596820160.

13. Aladjev V.Z., Haritonov V.N. General Theory of Statistics.- USA: Palo Alto:
Fultus Corporation, 2006, 256 p., ISBN 1596820861, Adobe Acrobat eBook
(pdf), ISBN 1596820810 (in Russian with extended English summary)

14. Aladjev V.Z., Vaganov V.A. General Statistics.– Tallinn: International
Academy of Noosphere, the Baltic Branch, eBook, (pdf), 2014, 259 p., ISBN
9789985950876.

Computer Mathematical Systems

15 Aladjev V.Z., Hunt Ü.J., Shishakov M. Mathematics on Personal Computer.-
Belarus: Gomel: BELGUT Press, 1996, 498 p., ISBN 34206140233 (in Russian
with extended English summary)

16 Aladjev V.Z., Shishakov M.L. Introduction into Mathematical Package
Mathematica 2.2.– Moscow: Filin Press, 1997, 363 p., ISBN 5895680046 (in
Russian with extended English summary)

17. Aladjev V.Z., Vaganov V.A., Hunt Ü.J., Shishakov M.L. Introduction into
Environment of Mathematical Package Maple V.– Belarus: Minsk: International
Academy of Noosphere, the Baltic Branch, 1998, 452 p., ISBN 1406425698 (in
Russian with extended English summary)

18 Aladjev V.Z., Vaganov V.A., Hunt Ü.J., Shishakov M.L. Programming in
Environment of Mathematical Package Maple V.– Minsk–Moscow: Russian
Ecology Academy, 1999, 470 p., ISBN 4101212982 (in Russian with extended
English summary)

19. Aladjev V.Z., Bogdevicius M.A. Solution of Physical, Technical and
Mathematical Problems with Maple V.– Tallinn–Vilnius, TRG, 1999, 686 p.,
ISBN 9986053986 (in Russian with extended English summary)

V.Z. Aladjev, V.A. Vaganov

 560

20. Aladjev V.Z., Vaganov V.A., Hunt Ü.J., Shishakov M.L. Workstation for
Mathematician.– Tallinn–Minsk–Moscow: Russian Academy of Natural
Sciences, 1999, 608 p., ISBN 3420614023 (in Russian with English summary)

21. Aladjev V.Z., Shishakov M.L. Workstation of Mathematician.– Moscow:
Laboratory of Basic Knowledge, 2000, 752 p. + CD, ISBN 5932080523 (in
Russian with extended English summary)

22. Aladjev V.Z., Bogdevicius M.A. Maple 6: Solution of Mathematical,
Statistical, Engineering and Physical Problems.– Moscow: Laboratory of Basic
Knowledge, 2001, 850 p. + CD, ISBN 593308085X (in Russian with extended
English summary)

23. Aladjev V.Z., Bogdevicius M.A. Special Questions of Operation in
Environment of the Mathematical Package Maple.– Vilnius: International
Academy of Noosphere, the Baltic Branch & Vilnius Gediminas Technical
University, 2001, 208 p. + CD with Library, ISBN 9985927729 (in Russian
with extended English summary)

24. Aladjev V.Z., Bogdevicius M.A. Interactive Maple: Solution of Statistical,
Mathematical, Engineering and Physical Problems.– Tallinn: International
Academy of Noosphere, the Baltic Branch, 2001–2002, ISBN 9985927710.

25. Aladjev V.Z., Vaganov V.A., Grishin E.P. Additional Software of Mathema–
tical Package Maple of releases 6 and 7.– Tallinn: International Academy of
Noosphere, the Baltic Branch, 2002, 314 p. + CD with Library, ISBN 9985–
9277–3–7 (in Russian with extended English summary)

26. Aladjev V.Z. Effective Operation in Mathematical Package Maple.– Moscow:
Laboratory of Basic Knowledge, 2002, 334 p. + CD, ISBN 593208118Х (in
Russian with extended English summary)

27. Aladjev V.Z., Liopo V.A., Nikitin A.V. Mathematical Package Maple in
Physical Modeling.– Grodno: Grodno State University, 2002, 416 p.,
ISBN 3093318313 (in Russian with extended English summary)

28. Aladjev V.Z., Vaganov V.A. Computer Algebra System Maple: A New
Software Library.– Tallinn: International Academy of Noosphere, the Baltic
Branch, 2002, CD with Booklet, ISBN 9985927753.

29. Aladjev V.Z., Bogdevicius M.A., Prentkovskis O.V. A New Software for
Mathematical Package Maple of releases 6, 7 and 8.- Vilnius: Vilnius Gediminas
Technical University and International Academy of Noosphere, the Baltic
Branch, 2002, 404 p., ISBN 9985927745, 9986055652.

Extension of Mathematica system functionality

 561

30. Aladjev V.Z., Vaganov V.A. Systems of Computer Algebra: A New Software
Toolbox for Maple.– Tallinn: International Academy of Noosphere, the Baltic
Branch, 2003, 270 p. + CD, ISBN 9985927761.

31. Aladjev V.Z., Bogdevicius M., Vaganov V.A. Systems of Computer Algebra:
A New Software Toolbox for Maple. Second edition.– Tallinn: International
Academy of Noosphere, the Baltic Branch, 2004, 462 p., ISBN 9985927788.

32. Aladjev V.Z. Computer Algebra Systems: A New Software Toolbox for
Maple.– USA: Palo Alto: Fultus Corporation, 2004, 575 p., ISBN 1596820004.

33. Aladjev V.Z. Computer Algebra Systems: A new software toolbox for Maple.–
USA: Palo Alto: Fultus Corp., 2004, Adobe Acrobat eBook, ISBN 1596820152

34. Aladjev V.Z., Bogdevicius M.A. Maple: Programming, Physical and
Engineering Problems.– USA: Palo Alto: Fultus Corporation, 2006, 404 p.,
ISBN 1596820802, Adobe Acrobat eBook (pdf), ISBN 1596820810.

35. Aladjev V.Z. Computer Algebra Systems. Maple: Art of Programming.–
Moscow: BINOM Press, 2006, 792 pp., ISBN 5932081899 (in Russian with
extended English summary)

36. Aladjev V.Z. Foundations of programming in Maple: Textbook.– Tallinn:
International Academy of Noosphere, 2006, 300 p., (pdf), ISBN 998595081X,
9789985950814 (in Russian with extended English summary)

37. Aladjev V.Z., Boiko V.K., Rovba E.A. Programming and applications
elaboration in Maple: Monograph.– Belarus: Grodno: Grsu, Tallinn:
International Academy of Noosphere, 2007, 456 p., ISBN 9789854178912,
ISBN 9789985950821 (in Russian with extended English summary)

38. Aladjev V.Z., Vaganov V. Modular programming: Mathematica vs Maple,
and vice versa.– USA, CA: Palo Alto: Fultus Corporation, 2011,
ISBN 9781596822689, 418 p.

39. Aladjev V.Z., Bezrukavyi A., Haritonov V.N., Hodakov V. Programming:
System Maple or Mathematica?– Ukraine: Kherson, Oldi–Plus Press, 2011,
ISBN 9789662393460, 474 p. (in Russian with extended English summary)

40. Aladjev V.Z., Boiko V.K., Rovba E. Programming in system Mathematica
and Maple: A Comparative Aspect.- Belarus: Grodno, Grodno State University,
2011, 517 p. (in Russian with extended English summary)

41. Aladjev V.Z., Grinn D.S., Vaganov V.A. The extended functional means for
system Mathematica.– Ukraine: Kherson: Oldi–Plus Press, 2012.

V.Z. Aladjev, V.A. Vaganov

 562

42. Aladjev V.Z., Grinn D.S. Extension of functional environment of system
Mathematica.– Ukraine: Kherson: Oldi–Plus Press, 2012, ISBN 978–966–
2393–72–9, 552 p. (in Russian with extended English summary)

43. Aladjev V.Z., Grinn D.S., Vaganov V.A. The selected system problems in
software environment of system Mathematica.– Ukraine: Kherson: Oldi–Plus
Press, 2013, ISBN 9789662393729, 556 p. (in Russian with English summary)

44. Aladjev V.Z., Vaganov V.A. Extension of the Mathematica system
functionality.– Estonia: Tallinn, TRG Press, 2015, ISBN 9789985950883, 563 p.

Computer Science

45. Aladjev V.Z., Hunt Ü.J., Shishakov M.L. Basics of Computer Informatics:
Textbook.– Tallinn–Gomel: Russian Academy of Noosphere & TRG, 1997,
396 p., ISBN 5140642545 (in Russian with extended English summary)

46. Aladjev V.Z., Hunt Ü.J., Shishakov M.L. Basics of Computer Informatics:
Textbook.– Moscow, Filin Press, 1998, 496 p., ISBN 5895680682 (in Russian
with extended English summary)

47. Aladjev V.Z., Hunt Ü.J., Shishakov M.L. Basics of Computer Informatics:
Textbook, Second edition.– Moscow: Filin Press, 1999, 545 p. (in Russian with
extended English summary)

Scientific Reports and Collection of Papers

48. Aladjev V.Z., Hunt Ü.J., Shishakov M.L. Scientific–research Activity of the
Tallinn Research Group: Scientific Report over a period 1995 – 1998.– Tallinn –
Gomel – Moscow: TRG & VASCO, 1998, 80 p., ISBN 1406429856 (in Russian
with extended English summary)

49. Aladjev V.Z. et al. Electronic Library of Books and Software for Scientists,
Experts, Teachers and Students in Natural and Social Sciences.– USA: Palo Alto:
Fultus Corporation, 2005, CD, ISBN 1596820136 (in Russian and English)

50. Aladjev V.Z. Modular programming: Maple or Mathematica – A subjective
standpoint / Intern. school «Mathematical and computer modeling of fundamental
objects and phenomena in systems of computer mathematics», ed. Y. G. Ignat’ev.–
Kazan: Kazan University Press, 2014, pp. 18–32.

Extension of Mathematica system functionality

 563

About the Authors

Professor Aladjev V.Z. was born on June 14, 1942 in the town Grodno (West
Byelorussia). Now, he is the First vice–president of the International Academy
of Noosphere (IAN), and academician–secretary of Baltic branch of the IAN
whose scientific results have received international recognition, first, in the
field of Cellular Automata theory. Aladjev V.Z. is known for the works on
computer mathematical systems too. He is full member of a number of the
Russian and International Academies. Prof. Dr. Aladjev V.Z. is the author of
more than 500 scientific publications, including 90 books and monographs,
published in many countries. He participates as a member of the organizing
committee and/or a guest lecturer in many international scientific forums in
mathematics and cybernetics. In May, 2015 Prof. Aladjev V.Z. was awarded
by Gold medal "European Quality" of the European scientific and industrial
consortium (ESIC) for works of scientific and applied character.

Dr. Vaganov V.A. was born on February 2, 1946 in Primorye Territory (Russia).
Now Vaganov V.A. is the proprietor of the firms Fortex and Sinfex, engaging
of problems of delivery of industrial materials to the firms of the Estonian
republic. Simultaneously V.A. Vaganov is the executive director of the Baltic
branch of the IAN. Vaganov V.A. is known enough for the investigations on
automation of economical and statistical works. Result was a series of the
scientifical and applied works published in Republican editions and at All–
Union conferences. Dr. Vaganov V.A. is the honorary member of the IAN and
the author of more than 60 scientific publications, including 10 books.

==

 No part of this book may be reproduced, stored in a retrieval system, or
transcribed, in any form or by any means electronic, mechanical, recording,
photocopying, or otherwise. Software described in this book is furnished
under the license agreement and may be used or copied only in accordance
with the agreement. The source codes of software presented in the book are
protected by Copyrights and at use of any of them the reference to the book
and the appropriate software is required. Usage of the enclosed software is
subject to the license agreement and software can be used in noncommercial
purposes only with reference to the present book.

