
Tools for computer research of cellular automata dynamics

V.Z. Aladjev a, V.K. Boiko b

a E–mail: aladjev@yandex.ru; International Academy of Noosphere; Tallinn, Estonia

b E–mail: boiko@grsu.by; Grodno State University; Grodno, Belarus

To the present, the problematics of Cellular automata (CA) well enough is advanced, being quite
independent field of modern mathematical cybernetics, having own terminology and axiomatics
at existence of a rather broad field of various appendices. CA is a parallel information processing
system consisting of intercommunicating identical finite automata. Although the CA term will be
used throughout the paper as the usual term, it is necessary to keep in mind that the CA, iterative
networks, etc. are essentially synonyms. We can interpret CA as a theoretical basis of artificial
parallel information processing systems. From logical standpoint the CA is an infinite automaton
with specifical internal structure. The CA theory can be considered as a structural and dynamical
theory of the infinite automata. CA models can serve as an excellent basis for modelling of many
discrete processes, representing interesting enough independent objects for research too. Now,
the undoubted interest to the CA problematics has arisen anew and in the given direction many
remarkable results have been obtained [1–4].

So, the CA axiomatics provides such three fundamental properties as homogeneity, localness and
parallelism of functioning. If in a similar computing model we shall associate with an elementary
automaton a separate microprocessor then it is possible to unrestrictedly increase sizes of such
computing system without any essential increase of temporal and constructive expenses, required
for each new expansion of the computing space, and also without any overheads connected to
coordination of functioning of arbitrary supplementary quantity of elementary microprocessors.
Similar high–parallel computing models admit practical realizations consisting of large enough
number of elementary microprocessors which are limited not so much by certain architectural
reasons as by a lot of especially economic and technologic reasons defined by a modern level of
development of microelectronic technology, however with the great potentialities in the future,
first of all, in light of rather intensive works in field of nanotechnology [5].

The above three such features as high homogeneity, high parallelism and locality of interactions
are provided by the CA axiomatic, while such property important from the physical standpoint as
reversibility of dynamics is given by program way. In light of the listed properties even classical
CA are high–abstract models of the real physical world, which function in a space and time. For
this reason, they in many respects better than many others formal architectures can be mapped
onto a lot of physical realities in their modern understanding. Moreover the CA concept itself is
enough well adapted to solution of various problems of modelling in such areas as mathematics,
cybernetics, development biology, theoretical physics, computing sciences, discrete synergetics,
dynamic systems theory, robotics, etc. Told and numerous examples available for today lead us
to the conclusion that CA can represent a rather serious interest as a new perspective modelling
environment of modelling and research of many discrete processes and phenomena, determined
by the above properties; in addition, raising the CA problematics onto a new interdisciplinary
level and, on the other hand, as an interesting enough independent formal mathematical object of
researches.

Meantime, in spite of extremely simple concept of the classical CA, they have generally speaking
a complex enough dynamics. In very many cases theoretical research of their dynamics collides
with essential enough difficulties. For this reason, computer simulation of these structures that in
the empirical way allows to research their dynamics is a rather powerful tool. For this reason this

 2

question is quite natural for considering within the present paper, considering the fact that CA at
the formal level represent the dynamical systems of highly parallel substitutions. The detailed
enough discussion of the problem of computer simulation of the CA can be found in [1-4]. In the
same place it is possible to familiarize in details with the CA concept and its discussion.

At present, the problem of computer modelling of the CA is solved at 2 levels: (1) software that

modells the dynamics on computing systems of traditional architecture, and (2) simulation on the
hardware architecture that as much as possible corresponds to the CA concept; so–called CA–

oriented architecture of computing systems. Thus, computer simulation of CA models plays a
rather essential part at theoretical researches of their dynamics, in the same time it is even more
important at practical realizations of the CA models of various processes. At present, a whole
series of rather interesting systems of software and hardware for giving help to researchers of
different types of the CA models has been developed; their characteristics can be found in [3-4].

In our works many programs in various program systems for different computer platforms had
been represented. In particular, tools of the Mathematica system support algebraic substitutions
rules that allow to easily model the local transition functions of the classical 1–dimension CA. In
this context many interesting programs for simulation of the CA models in the Mathematica had
been created. On the basis of computer simulation a whole series of rather interesting theoretical
results on the theory of classical CA–models and their applications in the fields such as computer
sciences, developmental biology, mathematics, etc. had been received. By way of illustration a
number of the procedures providing the computer research of certain aspects of dynamics of the
classical 1–dimension CA in the Mathematica system is represented below.

In researches of the CA models an essential enough role is played by a research of dynamics of
configurations-predecessors that is caused by a research of a problem of the nonconstructability
connected with important problem of reversibility in the CA models. The means, programmed by
us are focused on a computer research of important aspects CA dynamics because of complexity
of their theoretical research. These tools allow to obtain not only estimated characteristics of the
studied dynamics, but in many cases allow to obtain serious hints on further ways of research. At
the same time, it must be kept in mind that the procedures given below in turn may contain non-
standard, relatively Mathematica, software, but which is documented and are in the MatToolBox

package with freeware license [5]. These procedures in many respects allow rather essentially to
simplify programming, to optimize and make more compact program codes.

So, the procedure call Predecessors[L, Co, n] on the basis of a L list which determines the local
transition function of a 1–dimension classical CA with n size of its neighbourhood template and
initial Co configuration – a continuous finite block of states of elementary automata – returns the
list of configurations–predecessors for the block Co configuration. At that, parallel substitutions
x1x2x3...xn –> x*1 that define the local transition function of the classical 1–CA in the L list are
represented by strings of the format "x1x2x3...xnx*1". In particular, the procedure can identify
existence for an arbitrary classical 1–CA of the nonconstructability of NCF–type with printing
the appropriate message. The source code of the procedure is represented below.

Predecessors[Ltf_ /; ListQ[Ltf], Co_ /; StringQ[Co], n_ /; IntegerQ[n]] :=
 Module[{L, a, b, c, h = {}, i, j, k, d = StringLength[Co]},
 a = Gather[Ltf, StringTake[#1, –1] === StringTake[#2, –1] &];
 For[k = 1, k <= Length[a], k++,
 L[StringTake[First[a[[k]]], –1]] = Map2[StringDrop, Map[ToString1, a[[k]]], {–1}]];
 b = L[StringTake[Co, 1]];
 For[k = 2, k <= d, k++, c = L[StringTake[Co, {k, k}]];
 For[i = 1, i <= Length[b], i++,
 For[j = 1, j <= Length[c], j++,
 If[SuffPref[b[[i]], StringTake[c[[j]], n – 1], 2],
 h = Append[h, b[[i]] <> StringTake[c[[j]], –1]], Null]]]; b = h; h = {}];

 3

 If[Length[b] != (n – 1)^Length[a],
 Print["Structure possesses the nonconstructability of NCF–type"], Null]; b]

While the PredecessorsL and PredecessorsR procedures act as certain extensions of the above
procedure, allowing to obtain interesting enough special results of the CA dynamics [3,5]. As a
whole, the above procedures allow experimentally to investigate a whole series of aspects of the
reversibility problem in classical 1–CA.

The procedure call RevBlockConfig[C, Ltf] returns True if a list of block configurations which
are predecessors of a finite block configuration C, relative to a local transition function Ltf given
by the list of rules (the parallel substitutions) is other than the empty list, and False otherwise.
While the call RevBlockConfig[C, Ltf, h] with optional 3rd

 argument h – an indefinite symbol –
through it returns the list of all predecessors of the C configuration. The next fragment represents
source code of the RevBlockConfig procedure with the typical examples of its application.

In[4449]:= RevBlockConfig[C_ /; StringQ[C], Ltf_ /; ListQ[Ltf] &&

 AllTrue[Map[RuleQ[#] &, Ltf], TrueQ], h___] :=

 Module[{a = CollectRules[Ltf], b = Characters[C], c = {}, d, p,

 n = StringLength[Ltf[[1]][[1]]] – 1, g},

 d = Flatten[Map[ListToRules, a], 2]; c = Flatten[AppendTo[c, Replace[b[[1]], d]]];

 Do[c = RepSubStrings1[c, If[Set[g, Replace[b[[k]], d]] === b[[k]], g = 74; Break[], g], n],

 {k, 2, Length[b]}];

 If[g === 74, Return[False], Null]; If[{h} != {} && ! HowAct[h], h = c, Null];

 If[Max[Map[StringLength, c]] == StringLength[C] + n, True, False]]

In[4450]:= {RevBlockConfig["0110111101010", {"00" –> "0", "01" –> "1", "10" –> "1",
"11" –> "0"}, v75], v75}
Out[4450]= {True, {"00100101001100", "11011010110011"}}

The research of configurations dynamics, i.e. the sequences of the configurations generated by
the 1–CA from initial configurations represents special interest, and here very important part is
assigned to computer simulation. In this direction a number of procedures oriented on research of
various aspects of configurations dynamics of has been created [4,5].

In particular, the procedure call CFsequences[Co, A, L, n] prints the sequence of configurations
generated by a 1–CA with alphabet of states A={0,1, ..., p} (p = 1..9), local transition function L
from a finite Co configuration, given in string format, during n steps of the automaton. At that, a
function of the kind F[x, y, ..., t] := x*, and the list of substitutions of the kind "xy ... t" –> "x*"

{x,x*,y,z,...,t}∈∈∈∈A can act as the third argument L. The procedure processes basic mistakes arisen
at encoding an initial configuration Co, an alphabet A and/or a local transition function L with
returning $Failed and printing of strings with the appropriate messages. The source code of the
procedure with an example of its application are represented below.

In[3345]:= CFsequences[Co_ /; StringQ[Co] && Co != "", A_ /; ListQ[A] &&
 MemberQ[Map[Range[0, #] &, Range[9]], A], L_ /; ListQ[L] &&
 AllTrue[Map[RuleQ[#] &, L], TrueQ] || FunctionQ[L], n_ /; IntegerQ[n] && n >= 0]:=
 Module[{a = StringTrim2[C, "0", 3], b, c, t = {}, t1 = {}, t2 = {}, t3 = {}, f, p = n},
 If[! MemberQ3[Map[ToString, A], Characters[C]],
 Print["Initial configuration <"<> C <> "> is incorrect"]; $Failed,
 If[FunctionQ[Ltf], b = Arity[L], Map[{{AppendTo[t, StringQ[#[[1]]]],
 AppendTo[t1, StringLength[#[[1]]]]}, {AppendTo[t2, StringQ[#[[2]]]],
 AppendTo[t3, StringLength[#[[2]]]]}} &, L]; b=Map[DeleteDuplicates[#] &, {t,t1,t2,t3}];
 If[! (MemberQ3[{True}, {b[[1]], b[[3]]}] && Map[Length, {b[[2]], b[[4]]}] == {1, 1} &&
 Length[t1] == Length[A]^(b=b[[2]][[1]])), Print["Local transition function is incorrect"];
Return[$Failed], f=Map[ToExpression[Characters[#[[1]]]] –>ToExpression[#[[2]]] &, L]]];

 4

 c = StringMultiple2["0", b]; Print[a]; While[p > 0, p––; a = c <> a <> c;
 a = Partition[ToExpression[Characters[a]], b, 1];
 a = If[FunctionQ[L], Map[L @@ # &, a], ReplaceAll[a, f]];
 a = StringJoin[Map[ToString, a]]; Print[StringTrim2[a, "0", 3]]];]]

In[3346]:= CFsequences["100111100001", {0, 1}, {"00" –> "0", "01" –> "1", "10" –> "1",
"11" –> "0"}, 5]
"100111100001"
"1101000100011"
"10111001100101"
"111001010101111"
"1001011111110001"
A number of modifications of the CFsequences procedure has been programmed, including the
procedures oriented on the dialogue mode.

So, the technology presented above on the basis of modifications of the CFsequences procedure
allows to obtain a number of rather interesting properties of numeric sequences, generated by 1–

dimensional binary CA models. In particular, the computer analysis by means of the above tools
allows to formulate rather interesting assumptions, namely: 1-dimensional binary CA model with

the local transition function Ltf[x_, y_, w_] := Mod[x+y+w, 2] from a configuration Co = "1…1"

(StringLength[Co] = 2k; k = 1,2,3, …) generates the numerical sequence that not contains prime

numbers; whereas from a configuration different from Co the above binary CA model generates

the numerical sequence that contains only finite number of prime numbers; more precisely, since

some step that depends on initial Co configuration such binary CA model doesn't generate prime

numbers. Additionally, the 1–dimensional binary CA with local transition function Ltf[x_, y_] :=
Mod[x+y, 2] from configurations of the form Co = "10…01" (StringLength[Co] >=14) generates

numerical sequences that not contain prime numbers. While the 1–dimensional binary CA model

with local transition function Ltf[0,0,0] = 0, Ltf[0,0,1] = 1, and Ltf[x_,y_,w_]:= Mod[x+y+w+1,2]
otherwise, generates the infinite sequence of prime numbers from initial Co="11" configuration.

In addition to the above empirical results, the procedure call CFPrimeDensity[Co, A, f, n] prints
the sequence of 2–element lists whose the first element defines the number of step of 1–CA, the
second element defines the density of primes on this interval; the arguments of this procedure
fully complies with formal arguments of the CFsequences procedure. In the same time, there are
also a number of the other results interesting enough in this direction [1–4].

Meanwhile, the problem of self-reproducing finite configurations is one of the main directions of
researches in CA models. In this direction a number of both theoretical, and experimental results
is obtained. So, the next procedure represents a rather certain interest of experimental character.
The procedure call SelfReprod[c, n, p, j], programmed in the Mathematica returns the number
of iterations of a linear global transition function with neighbourhood index X = {0, 1, ..., n – 1}
and alphabet A = {0, 1, ..., p – 1} (p – an arbitrary integer) that was required to generate j copies
of an initial c configuration. Furthermore, in case of a rather long run of the procedure, it can be
interrupted, by monitoring through the list {d, t} the reality of obtaining the required number of
copies of the c configuration, where d – number of the iterations and t – the quantity of initial c
configuration. Whereas SelfReprod1 and SubConf procedures acts as certain extensions of the
above procedure. The procedures HS and HSD serve for study of configurations dynamics of the
classical 1–CA and 1–CA with delays accordingly [1–5,7].

In the light of research of subconfigurations attainability of in the chains of the configurations
generated by the CA models the CFattainability procedure is a rather useful. The procedure call
CFattainability[x, y, A, f, n] prints the two–element list whose first element defines the number
of step of 1–CA with alphabet A and local transition function f, the second element defines the
number of y subconfigurations containing in a configuration generated by the CA model from a x
configuration, and n argument determines the steps interval of generating, when the inquiry on

 5

continuation or termination of the procedure operating is done (key Enter – continuation, "No" –

termination). The call in response to "no" returns nothing, terminating the procedure, whereas in
response to "other" a new configuration is requested as a sought y configuration. At that, value
in the answer is coded in string format. The following fragment represents the source code of the
CFattainability procedure with examples of its application.

In[3678]:= CFattainability[x_ /; StringQ[x] && x != "" || IntegerQ[x] && x != 0,

 y_ /; StringQ[y] && y != "" || IntegerQ[y], A_ /; ListQ[A] &&

 MemberQ[Map[Range[0, #] &, Range[9]], A], f_ /; ListQ[f] &&

 AllTrue[Map[RuleQ[#] &, f], TrueQ] || FunctionQ[f], n_ /; IntegerQ[n] && n > 1] :=

 Module[{a, b, d, d1, c, tf, p = 0, h = ToString[y]},

 If[FunctionQ[f], b = Arity[f], b = StringLength[f[[1]][[1]]];

 tf = Map[ToExpression[Characters[#[[1]]]] –> ToExpression[#[[2]]] &, f]];

 c = StringMultiple2["0", b]; Label[New]; a = StringTrim2[ToString[x], "0", 3];

While[p < Infinity, p++; a = c <> a <> c; a = Partition[ToExpression[Characters[a]], b, 1];

 a = If[FunctionQ[f], Map[f @@ # &, a], ReplaceAll[a, tf]];

 a = StringJoin[Map[ToString, a]]; d = StringTrim2[a, "0", 3];

 If[Set[d, StringCount[d, h]] >= 1, Print[{p, d}]; Break[],

 If[Mod[p, n] == 0, Print[p]; d1 = Input["Continue?"];

 If[SameQ[d1, Null], Continue[], If[d1 === "no", Break[], If[d1 === "other",

 d1 = Input["A new configuration in string format"];

 p = 0; h = d1; Goto[New], Break[]]], Null]]]];]

In[3679]:= f[x_, y_] := Mod[x + y, 2]; CFattainability[1, 11000011, {0, 1}, f, 100]
{11, 1}
In[3680]:= g[x_, y_, z_] := Mod[x + y + z, 2]; CFattainability[1101, 1100011, {0, 1}, g, 30]
30
Continue? – Enter
60
Continue? – Enter
90
Continue? – "other"
"A new confiduration in string format"
"1101110100001101000011011101000000000000000000000000000000000000110111010000
1101000011011101"
30
Continue? – Enter
60
Continue? – Enter
{76, 1}

For convenience of tracking of quantity of the steps generated by means of the CA model the
numbers of steps, multiple to value of the n argument are printed. This information is used for
decision–making concerning the further choice of a way of operating with the procedure.

Among research problems of dynamics of sequences of the configurations, generated by the CA
models, the research of diversity of subconfigurations composing the generated configurations
plays a rather essential part. In the same time, this problem in theoretical plan is a rather complex
therefore the computer research is used enough widely. The SubCFdiversity procedure allows to
research the diversity for the 1–dimensional CA models. The call SubCFdiversity[Co, A, f, n]
prints the sequence of 3-element lists whose the first element defines the number of step of 1-CA
model, the second element defines the quantity of various subconfigurations which are contained

 6

in a configuration generated by means of the CA with A alphabet and local transition function f
from initial Co configuration on this step whereas the 3rd element defines the quantity of various
non–overlaping subconfigurations. At last, the fourth n argument determines quantity of steps of
CA model on which research of the specified phenomenon is made. At that, the first argument
admits both the string, and numeric format, A = {0, 1, …, p} (p = 1..9) whereas a list of rules, or
function can be as third argument. The fragment below represents source code of the procedure
SubCFdiversity along with examples of its application.

In[3474]:= SubCFdiversity[Co_ /; StringQ[Co] && Co != "" || IntegerQ[Co] && Co != 0,

 A_ /; ListQ[A] && MemberQ[Map[Range[0, #] &, Range[9]], A], f_ /; ListQ[f] &&

 AllTrue[Map[RuleQ[#] &, f], TrueQ] || FunctionQ[f], n_ /; IntegerQ[n] && n >= 0] :=

 Module[{a = StringTrim2[ToString[Co], "0", 3], b, d, d1, d2, c, t1 = {}, t2 = {},

 t3 = {}, t4 = {}, tf, p = n}, If[! MemberQ3[Map[ToString, A], Characters[a]] ||

 ! MemberQ3[A, IntegerDigits[ToExpression[Co]]], Print["Initial configuration <" <>

 ToString[Co] <> "> is incorrect"]; $Failed, If[FunctionQ[f], b = Arity[f],

 Map[{{AppendTo[t1, StringQ[#[[1]]]], AppendTo[t2, StringLength[#[[1]]]]},

 {AppendTo[t3, StringQ[#[[2]]]], AppendTo[t4, StringLength[#[[2]]]]}} &, f];

 b = Map[DeleteDuplicates[#] &, {t1, t2, t3, t4}];

If[! (MemberQ3[{True}, {b[[1]], b[[3]]}] && Map[Length, {b[[2]], b[[4]]}] == {1, 1} &&

Length[t2] == Length[A]^(b = b[[2]][[1]])), Print["Local transition function is incorrect"];
Return[$Failed], tf=Map[ToExpression[Characters[#[[1]]]] –>ToExpression[#[[2]]] &, f]]];

 c = StringMultiple2["0", b]; Print[Co]; While[p > 0, p––; a = c <> a <> c;

 a = Partition[ToExpression[Characters[a]], b, 1];

 a = If[FunctionQ[f], Map[f @@ # &, a], ReplaceAll[a, tf]];

 a = StringJoin[Map[ToString, a]]; d = StringTrim2[a, "0", 3];

d1=Length[DeleteDuplicates[Map[StringJoin, Flatten[Map[Partition[Characters[d],#,1] &,
Range[2, StringLength[d]]], 1]]]];

d2=Length[DeleteDuplicates[Map[StringJoin, Flatten[Map[Partition[Characters[d],#,#] &,
Range[2, StringLength[d]]], 1]]]]; Print[{n – p, d1, d2}]];]]

In[3475]:= SubCFdiversity[11, {0, 1}, {"000" –> "0", "001" –> "1", "010" –> "1",
"011" –> "0", "100" –> "1", "101" –> "0", "110" –> "0", "111" –> "1"}, 5]
11
{1, 6, 4}
======
{3, 22, 11}
{4, 30, 13}
{5, 38, 17}

The SelfReproduction procedure serves for study of self–reproducibility problem in classical 1–

CA models [1-5]. The first three arguments {Co,A,f} of the procedure are fully equivalent to the
above CFsequenses procedure, whereas n argument defines the demanded number of copies of a
Co configuration in configurations that are generated by the CA model, and m argument defines
an interval of the generating when the inquiry on continuation or termination of operating with
the procedure is done (key "Enter" – continuation, No – exit). The call SelfReproduction[Co, A,

f, n, m] returns the 2–element list whose the first element determines the number of the CA step
on which the demanded number of Co copies has been obtained, while the second element
defines the really obtained number of Co copies. The procedure call in response to “No” returns
nothing, terminating the procedure.

The tools represented here and in [5,7] and intended for computer research of dynamic properties
of the 1–dimensional CA models, are of interest not only especially for specific applications of

 7

the given type but many of them can be successfully used as auxiliary tools at programming in
the Mathematica system of other problems of the computer research of the 1–dimensional CA
models. The complex of procedures and functions developed by us which are focused both on
the computer research of CA models, and on expansion of the Mathematica software are located
in the MathToolBox package which contains more than 1140 tools with freeware license. This
package can be freely downloaded from web–site [5]. The package is represented in the form of
the archive included five files of formats {cdf, m, mx, nb, txt} which, excepting mx–format, can
be used on all known computing platforms.

Meanwhile, the procedures presented in the article are intended for the computer research CA of
models focused on 1–dimensional models. Experience of use of similar means for a case of two-
dimensional CA models has revealed expediency of use for these purposes of the Maple system,
but not the Mathematica system. The main reason for it consists that performance of the nested
cyclic structures in the Maple is essential more fast than in the Mathematica. For these purposes
it is the most expedient to use the parallel systems of information processing focused on CA–like
computing architectures [1-4].

At last, we will make one essential remark concerning of place of the CA problems in scientific
structure. By a certain contraposition to the standpoint on the CA–problematics that is declared
by the book [6] our vision of this question is being represented as follows. Our experience of
researches in the CA–problematics both on theoretic, and applied level speaks entirely another:

(1) CA–models represent one of special classes of infinite abstract automata with the specifical
internal organization which provides extremely high–parallel level of the information processing
and calculations; these models form a specific class of discrete dynamic systems that function in
especially parallel way on base of a principle of local short–range interaction;

(2) CA–models can serve as a quite satisfactory model of high–parallel calculations just as the
Turing machines (Markov normal algorithms, Post machines, productions systems, etc.) serve as
the formal models of sequential calculations; from this standpoint the CA–models it is possible to
consider and as algebraical systems of processing of finite or/and infinite words, defined in finite
alphabets, on basis of a finite set of rules of parallel substitutions; in particular, a CA–model can
be interpreted as a some system of parallel programming where the rules of parallel substitutions
act as a parallel language of the lowest level;

(3) principle of local interaction of elementary automata composing a CA–model which in result
defines their global dynamics allows to use the CA and as a fine environment of modelling of a
rather broad range of processes, phenomena and objects; furthermore, such phenomenon as the
reversibility permitted by the CA does their by very interesting tools for physical modelling, and
for creation of very perspective computing structures basing on the nanotechnologies;

(4) at last, the CA–models represent an interesting enough independent mathematic object whose
essence consists in high–parallel processing of words in finite or infinite alphabets.

At that, it is possible to associate the CA–oriented approach with certain model analogue of the
differential equations in partial derivatives describing those or another processes with that the
difference, that if the differential equations describe a process at the average, then in a CA–model
defined in appropriate way, a certain researched process is really embedded and dynamics of the
CA–model enough evidently represents the qualitative behaviour of researched process. Thus, it
is necessary to define for elementary automata of the model the necessary properties and rules of
their local interaction by appropriate way. The CA–approach can be used and for research of the
processes described by complex differential equations which have not of analytical solution, and
for processes, that it is not possible to describe by such equations. Furthermore, the CA models
represent a rather perspective modelling environment for research of those phenomena, objects,
processes, phenomena for that there are no known classical means or they are difficult enough.

 8

As we already noted, as against many other modern fields of science, the theoretical component
of CA-problematics is no so appreciably crossed with its second applied component, therefore, it
is possible to consider CA–problematics as two independent enough directions: (1) research of
the CA as mathematical objects and (2) use of the CA for simulating; at that, the second direction
is characterized also by the wider spectrum. The level of development of the second direction is
appreciably being defined by possibilities of the modern computing systems since CA–models,
as a rule, are being designed on base of the immense number of elementary automata and, as a
rule, with complex enough rules of local interaction among themselves. The indubitable interest
to them amplifies also a possibility of realization of high–parallel computing CA–models on the
basis of modern successes of microelectronics and prospects of the information processing at the
molecular level (methods of nanotechnology); while the itself CA–concept provides creation of
both conceptual and practical models of spatially–distributed dynamic systems of which namely
physical systems are the most interesting and perspective. Namely, from the given standpoint the
CA–models of various type represent a special interest, above all, from the applied standpoint at
research of a lot of processes, phenomena, objects in different fields and, first of all, in physics,
computer science and development biology. As a whole if classical CA–models represent first of
all the formal mathematical systems researched in the appropriate context, then their numerous
generalizations represent a perspective modelling environment of various processes and objects.

References

1. Аладьев В.З., Бойко В.K., Ровба E.A. Классические клеточные автоматы: Теория и
приложения.– Беларусь: Гродно: Изд–во Гродненского госуниверситета, 2008, 485 p.
ISBN 978–985–551–020–7, ISBN 978–9985–9508–4–5.

2. Aladjev V.Z. Classical Cellular Automata. Homogeneous Structures.– USA, CA: Palo Alto,
Fultus Corporation, 2010, 480 p., ISBN 159–682–222–8

3. Aladjev V.Z., Grinn D.S., Vaganov V.A. Classical Homogeneous Structures: Mathematical
Theory and Applications.– Kherson: Oldi–Plus Press, 2014, ISBN 9789662890358, 520 p.

4. Aladjev V.Z. Classical Cellular Automata: Mathematical Theory and Applications.– Germany:
Saarbrücken: Scholar`s Press, 2014, ISBN 9783639713459, 517 p.

5. Aladjev V.Z. A package of procedures and functions for system Mathematica.– Tallinn, 2017;
https://yadi.sk/d/6qbBq5Fn3LHkLa

6. Wolfram S. A New Kind of Science.– N.Y.: Wolfram Media, 2002, ISBN 978–1579550080

7. Aladjev V.Z., Shishakov M.L. Software Etudes in the Mathematica system. Tallinn Research
Group.- USA: CreateSpace Press, An Amazon.com Company, 2017, ISBN-13: 978-1979037273,
ISBN–10: 1979037272, 614 p.

